International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:1, No:2, 2007

Simulation Tools for Fixed Point DSP Algorithms
and Architectures

K. B. Cullen, G.C.M. Silvestre and N.J. Hurley
Department of Computer Science
University College Dublin — Ireland

Abstract— This paper presents software tools that convert the
C/C++ floating point source code for a DSP algorithm into a fixed
point simulation model that can be used to evaluate the numerical
performance of the algorithm on several different fixed point
platforms including microprocessors, DSPs and FPGAs. The tools
use a novel system for maintaining binary point information
so that the conversion from floating point to fixed point is
automated and the resulting fixed point algorithm achieves
maximum possible precision. A configurable architecture is used
during the simulation phase so that the algorithm can produce
a bit-exact output for several different target devices.

I. INTRODUCTION

Fixed point DSP devices are preferred over floating point
devices in systems that are constrained by complexity, cost
and power consumption such as mobile phones, personal
digital assistants and wearable computing devices. In general
a fixed point algorithm starts life as a high level floating
point simulation model. Converting the simulation model to
fixed point arithmetic and then porting it to a target device
is a time consuming and difficult process. DSP devices have
very different instruction sets so an implementation on one
device cannot be ported easily to another device if it fails
to achieve sufficient quality. Choosing a target device with
an abundance of resources will exceed the constraints of any
low power, low cost system. For these reasons it is necessary
to evaluate a fixed point DSP algorithm in terms of signal
quality before work on the final implementation begins. There
are tools available to convert floating point algorithms to fixed
point however the conversion process usually requires a great
deal of interaction from the user. Also the conversion process
usually involves a certain amount of approximation so that the
resulting fixed point algorithm does not achieve the maximum
possible numerical accuracy. Existing tools to simulate DSP
algorithms use a generic form of fixed point arithmetic which
does not take architectural details of the target device into
consideration such as data-bus and accumulator word lengths
and the presence of Multiply Accumulate (MAC), rounding
and limiting modules. As a result the simulation cannot
produce a bit-exact output and gives an approximate evaluation
of signal quality.

The software tools presented in this paper automatically
convert floating point DSP algorithms implemented in C/C++
to fixed point algorithms that achieve maximum accuracy. The
tools then simulate the algorithm on a generic architecture
that can be configured to represent the datapaths in various
microprocessor, DSP and FPGA devices so that one simulation

model can produce a bit-exact output for several different
platforms.

The rest of this paper is organized as follows: section Il
gives a brief overview of fixed point arithmetic, section Il
presents the tools and section IV gives an evaluation.

Il. FIXED POINT ARITHMETIC

| WL »
OREDUREE
!
P>
IWL FWL

Fig. 1. Generalized fixed point format showing Word Length (WL),
Integer Word Length (IWL), Fraction Word Length (FWL) and sign
bit (s).

A fixed point variable consists of a binary pattern, usually
in 2’s compliment encoding, and a binary point. The size of
the binary pattern and the location of the binary point are
specified using three parameters which are indicated in Fig. 1.
Word Length (WL) is the total number of bits in the binary
pattern, Integer Word Length (IWL) is the number of bits to the
left of the binary point not including the sign bit and Fraction
Word Length (FWL) is the number of bits to the right of the
binary point. This format can represent numbers in the range
[-2fWL 2IWLY with a step size of 27FWL. The parameter
values determine the scaling operations required before and
after fixed point operations. For example to add two variables
with different FWLs the one with the larger FWL must be right
shifted. Implementing an algorithm in fixed point arithmetic
involves finding the binary point location for every variable
and determining the scaling operations required before and
after each operator.

I11. FIXED POINT SIMULATION TOOLS

The software tools are implemented as a C++ class hier-
archy. The lowest level of the hierarchy, the Integer class,
deals with 2’s compliment binary pattern operations. Arbitrary
precision arithmetic is used to overcome the limitations of the
host machine running the simulation so that objects of any
size can be created, added, multiplied ...etc. Each overloaded
operator determines the correct word length to use for the
output so that no data is lost. This means that in an arithmetic
expression the word lengths of the intermediate results get
larger and larger as more operations are performed until an

368

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:1, No:2, 2007

assignment operator is encountered. The next layer is the
fixed point class, Fixed, which is a composite of the integer
class. It stores binary point information and implements the
scaling operations required in fixed point arithmetic due to
differences in binary point locations. These two layers conform
to the SystemC standard [1]. The third layer in the hierarchy,
ArchFixed, deals with the architectural details of the target
device. Instead of allowing the word lengths of intermediate
results to get larger and larger the data is processed by a
configurable architecture that constrains the word lengths of
intermediate results according to the size of the data-bus,
accumulator, multiplier input ...etc and applies rounding and
limiting at the appropriate stages. This architecture can be
configured to simulate various existing or conceptual devices
simply by changing parameter values.

A. Floating Point to Fixed Point Conversion

Starting with a C/C++ floating point algorithm the first
step in creating a simulation model is to run the source code
formatter. This tool has two functions: to replace variable
definitions with fixed point types and to give each variable a
unique identifier. For example the following C++ source code:

float f(float ul, float vi,
float u2, float v2) {
float y;

ul * vl + u2 » v2;
Y * Yi

Y
Yy

return y;

}
is replaced with:

ArchFixed f (ArchFixed ul, ArchFixed v1,
ArchFixed u2, ArchFixed v2) {
ArchFixed y;

y.label ("f:y i1");
y = ul * vl + u2 x v2;

y.label ("f:y i2");
Yy =Y *VYi

return y;

}

Each archrixed object uses the identifier given to it
(“£:y_i1”) to access a centrally stored table of binary point
locations. This method of maintaining binary point information
has been developed to overcome the limitations of the standard
approach whereby IWL or FWL values are added to the
variable definitions in the source code. The problem with
this approach is that one source code identifier may represent
several different fixed point variables. This problem manifests
itself in two different ways.

The first problem is due to the structure of the original float-
ing point algorithm. A fixed point variable is given a binary
point location that depends on the range of values assigned
to it. Therefore each fixed point variable should be written

to once and then read one or more times. In a floating point
algorithm it is not uncommon to use a single identifier more
than once. In the previous example the identifier y is written to
twice. It effectively serves as two different fixed point variables
with two different binary point locations determined by the
range of values in the two assignments. Because of the trade-
off between range and precision it is essential to choose binary
point locations that give the minimum required range and
therefore the maximum precision. If one binary point location
is found for y then one of the two fixed point variables that
y represents will not have the correct binary point location.
With the new system two different binary point locations are
stored and retrieved from the table by the fixed point object
y using the labels “£:y_i1” and “f:y_i2” to index the table.
A solution to this problem was presented in [2] whereby IWL
and FWL values are included in the assignment operations
instead of the variable definitions however this method does
not solve the second problem.

\.
12
!
VRN
? T
VNN

y u vl ou2 w2

Fig. 2. (a) Example parse tree for the expression y = ul = v1 +
u2 * v2 showing the implicit variables labelled 10, i1 and i2

The second problem with associating binary point infor-
mation to source code identifiers is that not all variables
in a C/C++ program are explicitly defined. An arithmetic
expression can be described using a parse tree that shows the
sequence of operations and the extra variables needed to store
intermediate results. These extra variables are called implicit
variables. They are created by the overloaded operators in the
ArchFixed class and cannot be referred to in the original
floating point source code. An example parse tree is given
in Fig. 2. In this example the result of the multiplication u1
» v1 is assigned to an implicit variable io. Because of the
statistical correlation between u1 and v1 it is possible to left
shift the product io without overflow i.e
i0 = (ul * vl) << (i0.fwl - (ul.fwl + v1.fwl))
where the fraction word lengths i0. fwl, ul.fwl and vi.fwl
are determined from the range of values assigned to these vari-
ables and their word lengths. This left shift does not improve
the accuracy of the product but does improve the accuracy of
the remaining operations in the expression. In the above exam-
ple if both i0 and i1 are left aligned then the effect of the right
shift before addition is minimized. The output variable created
by the overloaded multiplication operator in the ArchFixed
class must represent the results io and i1 as well as every
other multiplication result in the algorithm. This one variable
effectively represents several different product variables that

369

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:1, No:2, 2007

would be defined in an assembly language implementation
on a target device. It must know which binary point location
to use every time a multiplication is performed in order to
determine the left shift amount. The standard approach used
by other tools such as SystemC is simply to leave out the left
shift and to interpolate the fraction word length for i0 from u1
and v1 to get i0.fwl = ul.fwl+vl.fwl. This method of
interpolation compromises numerical accuracy. The simulation
tools presented in this paper solve this problem by maintaining
binary point information for implicit variables using labels
created by concatenating the names of the input variables. For
the example in Fig. 2 the binary point location for 10 would
be stored using the label “£ : (u1xv1)” and the addition output
would be labeled as “£: ((ulxvl) + (u2+v2))”.

The new system for maintaining binary point information
allows every fixed point variable to have its own uniquely
determined binary point location including multiple variables
that are associated with one identifier in the original source
code and those that are implied in arithmetic expressions. The
advantage is that the resulting fixed point algorithm achieves
maximum accuracy. A second advantage is that because the
binary point information is not stored in the source code it
can be changed at run time which allows the floating point to
fixed point conversion process to be automated.

The standard method used to determine the actual binary
point locations is called range estimation. With this approach
extra code is added to the floating point version of the
algorithm to monitor the range of values assigned to each
variable using sample input signals. The range is then used
to determine the integer word lengths. The method used by
the aArchFixed class is based on overflow detection. When
the simulation model is first created the binary points are
initialized to give each variable extremely low range. The
simulation is executed using sample input signals. When a
variable overflows due to insufficient range its binary point is
moved to the left by the overflow amount. The variables will
continue to overflow and adjust until eventually they reach
stable values. The table is stored as a human readable file so
that binary point locations can also be specified directly by
the user. This allows other methods for obtaining binary point
locations [3], [4], [5] to be used. At this point the floating
point to fixed point conversion is complete and the simulation
phase can begin.

B. Configurable Architectural Model

In order for the simulation tools to produce a bit-exact out-
put for different fixed point devices a configurable architecture
model, which is shown in Fig. 3, was developed by comparing
the major DSP and microprocessor devices to identify the
important architectural differences. It consists of mandatory
and optional components and is governed by three parameters:
W, w, and w; which are the memory, accumulator and
multiplier input word lengths respectively.

The architecture model is only concerned with numerical
details. There will be some structural differences between the
model and the target devices it can emulate. For example

Databus(w,,,)

Wi Wi

4 4

Multiplier

Accumulator A

e
Accumulator B Wi
W, Memory
e
Mandatory | Limiter B |
——— Optional L I

R

Fig. 3. Configurable Fixed Point Architecture Model. At points
where a reduction in word length may occur, such as the connection
between the w,,-bit databus and the w;-bit multiplier input, the least
significant bits are discarded.

devices that do not have two accumulators may still be
numerically compatible with the model.

The architecture model represents the combined soft-
ware/hardware operations used to carry out fixed point op-
erations. For instance the multiplier on an integer processor
does not calculate the higher order bits in the product. To
prevent overflow the inputs are read into the accumulator,
right shifted and written back to memory so they can be read
back in. In the architecture model this is represented by the
connection between the w,, bits of the databus and the w;
bits at each input to the multiplier. The architecture model can
also represent software routines on the target device for double
precision multiplication, addition ...etc, since these algorithms
simply emulate more powerful devices.

The parameter values and optional components for various
existing devices are shown in Table I. The ARM9 has only one
accumulator but it can use any memory location as a second
accumulator since the memory and accumulator word lengths
are the same size on integer devices. Similarly the Blackfin
devices have data registers that can serve as accumulators.

The configurable architecture is embedded into the over-
loaded operators of the ArchFixed class. Schematic views of
the Fixed and ArchFixed multiplication operator functions
are shown in Fig. 4.

IV. EVALUATION

A very simple example is described in this section to
demonstrate the conversion and simulation features of the
tools. Minimax polynomials are often used to approximate

370

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:1, No:2, 2007

TABLE |
PARAMETER VALUES AND OPTIONAL COMPONENTS FOR SOME
EXAMPLE PLATFORMS.

wm wa w; R LA LB
TMS320C5x 16 32 16 n y n
ADSP-BF5xx (Blackfiny 16 40 16 y y n
DSP56XXX 24 56 24 y n vy
ARM9 3 32 16 n n n

Binary Point Table

=
3
=
3

g
:

3
(IIITH
15 2

EmEn
B
X
s 2
OTrTTE &
A
I TIEE

EnunaunsEs
EEERMRECES
BEE

H output
output

(a) (b)

Fig. 4. Schematic view of (a) the Fixed and (b) ArchFixed
multiplication operators. The Fixed operators create output objects
that are large enough to store the result. The ArchFixed operators
constrain the word lengths of the inputs and output according to the
parameters w.,,,, w, and w; of the configurable architecture model.

functions like cosine, tangent, logarithm ...etc. These poly-
nomials have the property that the maximum value of the
approximation error is minimized. For example the 3rd degree
minimax polynomial approximation to cos(z),0 < z < /2
is the expression

y = ((c3 » x + c2) * x + cl) * x + c0

where the coefficients, cn, can be obtained using the Remez-
exchange algorithm.

The binary point table produced by the tools for this algo-
rithm will contain entries for 12 variables including “ (c3xx) ”,
“((((e3%x)+c2) *x) +cl)” ...etc.

Fig. 5 shows the Signal-to-Noise Ratio (SNR) for the
minimax cosine approximation with polynomial degree on
the abscissa and different values assigned to the parameters
< W, We,w; >. Each polynomial degree is implemented
as a separate algorithm. The curves shown represent a 24-
bit FPGA implementation (< 24,24,24 >), a 24-bit DSP
device implementation (< 24,48,24 >) and a 24-bit integer
microprocessor implementation (< 24,24,12 >). For the 7th
degree polynomial the difference in SNR between the DSP and
FPGA implementations is 11.26 dB. The difference between
the DSP and integer microprocessor versions is 72.24 dB. All
of the curves reach a maximum value of SNR that cannot be
exceeded. This is due to the interaction between approximation
and fixed point error which is discussed in [6]. This example
illustrates the point that even for an algorithm with a small
number of operations architectural details have a significant
effect on fixed point error. This fact is more significant for real
world systems which usually involve thousands of operations.

140

1201 —o— <24, 24, 24>
—— <24, 48, 24>
—=— <24,24,12>

1001

80r

SNR (dB)

601

40t

0 1 2 3 4 5 6 7

Polynomial Degree

Fig. 5. Signal-to-Noise Ratio (dB) vs polynomial degree for a fixed
point minimax approximation of cos(z),0 < = < m/2 with different
parameter values < W, Wa, w; >.

V. CONCLUSION

The simulation tools presented in this paper have ap-
plications in the design and rapid prototyping of a wide
range of signal processing systems. They have been used
successfully to convert an independently developed MPEG 2
AAC encoder [7] from floating point to fixed point. The
resulting simulation model was then ported to a 32-bit ARM9
processor and part of the system was ported to an FPGA [8]
device. The simulation model was used to determine the ideal
architecture for the FPGA version and to establish the need
for double precision arithmetic in the ARM version. These
implementations have verified that the simulation results are
bit-exact.

REFERENCES

The Open SystemC Initiative, “SystemC Version 2.0 User’s guide,”
http://mww.systemc.org, 2002.

Markus Willems, Volker Biirsgens, Holger Keding, Thorsten Grotker
and Heinrich Meyr, “System Level Fixed-Point Design Based on an
Interpolative Approach,” in Proc. 34th Design Automation Conference,
Jun. 1997.

Seehyun Kim, Ki-1l Kum and Wonyong Sung, “Fixed-Point Optimization
Utility for C and C++ Based Digital Signal Processing Programs,” in
|EEE Transactions on Circuits and Systems |1: Analog and Digital Sgnal
Processing, Nov. 1998.

Sanmati Kamath, Neeraj Magotra and Ashish Shrivastava, “Quantization
Analysis Tool for Fixed-Point Implementation of Real Time Algorithms
on the TMS320C5000,” Proc. ICASSP, May. 2002.

Ki-Il Kum, Jiyang Kang and Wonyong Sung, “AUTOSCALER For C:
An Optimizing Floating-Point to Integer C Program Converter For Fixed-
Point Digital Signal Processors,” in IEEE Transactions on Circuits and
Systems — I1: Analog and Digital Sgnal Processing, Sep. 2000.

K.B. Cullen, A. Guérin, N.J. Hurley and G.C.M Silvestre, “Evaluation of
Fixed Point Elementary Functions for FPGA Audio Perceptual Coding,”
in Proc. Irish Sgnals and Systems Conference, Jul. 2003.

K.B. Cullen, N.J. Hurley and G.C.M Silvestre, “Scalable Architecture for
MPEG-2 AAC Encoders,” in Proc. Irish Sgnals and Systems Conference,
Jun. 2002.

A. Guérin, K.B. Cullen, NJ. Hurley and G.C.M Silvestre, “FPGA
Implementation of the MPEG-2 AAC Filter Bank,” in Proc. Irish Sgnals
and systems Conference, Jul. 2004.

[1

—

[2

—

3

—

[4

[l

5

i

6

—_

[7

—

8

—_—

371

