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Abstract—This article presents a computationally tractable 

probabilistic model for the relation between the complex wavelet 

coefficients of two images of the same scene. The two images are 

acquisitioned at distinct moments of times, or from distinct 

viewpoints, or by distinct sensors. By means of the introduced 

probabilistic model, we argue that the similarity between the two 

images is controlled not by the values of the wavelet coefficients, 

which can be altered by many factors, but by the nature of the 

wavelet coefficients, that we model with the help of hidden state 

variables. We integrate this probabilistic framework in the 

construction of a new image registration algorithm. This algorithm 

has sub-pixel accuracy and is robust to noise and to other variations 

like local illumination changes. We present the performance of our 

algorithm on various image types.  

 

Keywords—Complex wavelet transform, image registration, 

modeling using hidden state variables, probabilistic similarity 

measure. 

I. INTRODUCTION 

MAGE registration is the process of geometrically 

overlapping two or more images of the same scene. This 

basic capability is needed in various image analysis 

applications. For example image registration is a critical 

component of remote sensing, medical, industrial image 

analysis systems, etc..[1] 

The two images involved in the task of image registration 

are named reference image, and target image [2]. Image 

registration consists in finding a coordinate transformation 

from the target image to the reference image such that the two 

images become similar. The precise meaning of ‘similar’ 

depends on the specific registration problem to be solved [1].  

Depending on the type of the transformation, that we look 

for, there are two types of registration: parametric, and non- 

parametric registration. In the case of the parametric 

registration, the transformation can be expanded in terms of 

some basis functions. In the case of non-parametric 

registration, the transformation is no longer restricted to a 

parametrizable set.  

As the algorithm that we propose is from the category of 

parametric image registration, we will no further insist on the 

non-parametric image registration. Parametric image 

registration can be divided into: landmark based parametric 

image registration, principal axes-based registration and 

optimal parametric registration [1].  

Landmark based parametric registration is a type of 

registration that relies on the features extracted at an initial 
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stage in the process of registration. Those features can be line 

intersections [3], road crossings, inflection points of curves, 

corners [2], local extremes of wavelet transform [4], etc. The 

quality of landmark based registration is highly dependent on 

the performances of the feature detector that is being used. If 

the feature detector is not reliable enough, the registration will 

be low quality.  

This is why sometimes is better to use a registration method 

that relies on features that can be automatically deduced from 

the image. Such intrinsic features are for example the principal 

axes [5]. Although principal axes registration is fast and 

necessitates very few parameters, it needs the moment matrix 

and the eigenvalue decomposition of two large matrixes, it is 

not suitable for multimodal registration and its results can be 

ambiguous [1]. 

The disadvantages of the landmark-based registration and 

principal axes registration led to the emergence of a more 

general and flexible class of parametric image registration. 

This category consists of optimal parametric registration 

algorithms. 

The basic idea of optimal parametric registration is to define 

a distance (similarity) measure between the reference image 

and the target image, and then to find the parameters of the 

transformation that optimize this similarity measure. The most 

known similarity measures are the sum of squared differences, 

the correlation [2], and the mutual information [6]. The 

domain of this similarity measures is either the intensities 

space like in [7], or another feature space like the wavelet 

coefficients with a magnitude above a certain threshold [4], the 

energy map [8], and the wavelet coefficients from the first 

decomposition level [9].  

The algorithm that we introduce is an optimal registration 

algorithm. The similarity measure that we use is a probability 

defined on the wavelet coefficients space. This makes our 

similarity measure more robust to noise than the similarity 

measures defined on the intensity space. The latter mentioned 

similarity functions are affected by the noise that usually 

corrupts the image intensities.  

We chose to use for our algorithm the complex wavelet 

transform because unlike the discrete wavelet transform, it is 

almost shift invariant and almost rotationally invariant and 

because, it has a good directional selectivity [10]. We used the 

dual tree complex wavelet transform to construct the complex 

wavelet transform  

This article is structured as following. In section II we 

present an introduction to the dual-tree complex wavelet 

transform. In section III we expose the probabilistic model 

underlying the registration algorithm. In section IV we present 
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the registration algorithm and introduce different modalities to 

integrate it into real world registration systems. In section V 

we present experimental results on artificial data as well as on 

real data. In section VI we present our conclusions. 

II.   COMPLEX WAVELET TRANSFORM 

Discrete wavelet transform (DWT) is a modality to project a 

signal onto an orthogonal wavelet basis. By using the DWT it 

is possible to obtain local information about a signal both in 

the spatial domain and in the frequency domain. For a 2-D 

signal the DWT coefficients are obtained by passing the signal 

through a cascade of orthogonal high pass and low pass filters. 

The original image is decomposed at any scale j, into 4 

components: HHj (contains the diagonal details), HLj 

(contains the horizontal details), LHj (comprised of vertical 

details), and LLj (contains the approximation coefficients). For 

more details on DWT see for example [11]. 

Any signal f(x, y) can be reconstructed via the inverse 

discrete wavelet transform from its detail and approximation 

coefficients as in (1) 
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In (1) φj,m,n represents the scaling function scaled with a 

factor of j and translated with m and n, ψ
k
j,m,n represents k-th 

mother wavelet function, scaled with a factor of j and 

translated with m on Ox, and n on Oy, Wφ(., .) represents the 

aproximation coefficients, and W
k
ψ (., .) represents the detail 

coefficients. 

For the 2-D DWT there are 3 mother wavelet functions: one 

that permits the extraction of horizontal details, one for the 

vertical details, and one for the diagonal details. So we can say 

that Wφ(j, ., .) corresponds to LLj(., .) and that, for example, 

Wψ
1
(j, ., .) corresponds to HLj(., .), Wψ

2
(j, ., .) corresponds to 

LHj(., .), and that Wψ
3
(j, ., .) corresponds to HHj(., .). 

Unfortunately, the DWT has some major drawbacks that 

make it less appropriate for registration. Among those 

drawbacks, we mention poor directional selectivity, as the HH 

coefficients cannot differentiate between edges at 45 degrees 

and edges at 135 degrees and rotation and translation variance. 

Complex wavelet transform constitutes a remedy for these 

problems. 

It is possible to observe that by taking in (1), instead of a 

real scaling function and real wavelet functions, a complex 

scaling function, and complex wavelet functions, for which the 

real and the imaginary part form a Hilbert pair, the drawbacks 

of the DWT are eliminated [12]. 

 In our article, we employed dual tree complex wavelet 

transform to obtain the complex wavelet decomposition for 

our images. The dual tree complex wavelet transform uses 6 

complex mother wavelets that distinguish spectral features 

oriented at {75˚, 45˚, 15˚, -75˚, -45˚, -15˚}. By projecting the 

image onto the 6 complex wavelet functions, we obtain 6 

complex wavelet coefficients for each scale and translation. 

To facilitate the presentation, from now on, every time we 

mention wavelet transform, we refer to the dual tree complex 

wavelet transform. 

III. PROBABILISTIC FRAMEWORK 

The research behind this article is motivated by the desire to 

understand and model the relation between the corresponding 

complex wavelet coefficients of two images of the same scene, 

that are captured at different times, or from different 

viewpoints or with different sensors. 

What happens with the complex wavelet coefficients of the 

two images, when we have previously registered them (by 

some means)? How does the relation between the coefficients 

differ, in the case in which we already registered the two 

images, from the case in which we haven’t yet registered the 

images? 

By considering that every wavelet coefficient can be in one 

of the two states: large or small, we claim that the probability, 

of having the magnitudes from one image in the same state as 

the magnitudes from the other image, reaches its maximum 

when the two images are registered (see Fig. 1). 

We construct below the probabilistic framework that is 

needed to define the above-mentioned probability. 

First we model the distributions of the wavelet coefficients 

magnitudes, and then, based on those distributions, we define, 

for the considered images, the probability that their complex 

wavelet coefficients are in the same states. 

In the following, each set, consisting of all coefficients of a 

certain level, corresponding to the same mother wavelet [10], 

will be referred as a layer. 

In order to model the distribution of the wavelet coefficient 

magnitudes we performed the following experiment. We 

considered several images, and compute different layers of 

coefficients. By selecting a certain threshold, we divided each 

layer into two classes, the class containing the coefficients with 

magnitudes larger than the threshold and it’s complementary. 

(see Fig. 2 for such an example) 

As Fig. 2 (c) and Fig. 2 (d) suggest, the distribution of 

coefficient magnitudes larger than a threshold, and the 

distribution of coefficient magnitudes smaller than that 

threshold can be assumed as being log-normal distributions. 

This yielded us to consider the following probabilistic model. 

Let S be a random variable modelling the state of each 

coefficient magnitudes [12], that is S can take one of the two 

values low and high 
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(c) (d) 

Fig. 1 Image (a) and (c) are two outdoor images not registered yet. 

Image (b) represents the fourth level wavelet coefficients, of image 

(a). Image (d) represents the fourth level of wavelet coefficients, of 

(c). The wavelet coefficients in (b) and (d) correspond to the same 

mother wavelet and they are computed on the overlapping region 

between images (a) and (c) after they were registered. Being given the 

law relevancy of the wavelet coefficients computed in the 

neighbourhood of the borders, in our tests we used exclusively the 

wavelet coefficients computed at a conventionally established 

distance from the image borders 

 

Usually low coefficient magnitudes correspond to smooth 

regions, and high magnitudes correspond to regions that 

contain edges. 

Since the magnitude values can be observed, while the 

values taken by S can not be observed directly, we say that S is 

a hidden variable. 

We conjecture that the magnitude of every coefficient is 

conditioned by a different hidden state variable, therefore in 

case of a layer the number of hidden state variables equals the 

number of coefficients. Also we assume that there are no 

correlations among the hidden state variables corresponding to 

different wavelet coefficients. This assumption corresponds to 

the idea that behind each coefficient magnitude there is a 

switcher whose on/off state determines that certain values are 

From mathematical point of view, we consider that the 

magnitude of each coefficient i from a layer is the realization 

of a variable Wi, that is conditioned by the hidden state 

variable Si, associated to that coefficient. This means that in 

order to generate a particular realization of Wi, we have to 

generate a realization s of Si, and then draw an observation w 

according to the density function f Wi | Si (w |Si = s). Since the 

hidden state variable Si can take only two values we get: 
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(c)                                            (d) 

Fig. 2 Image (b) represents a layer of level 3 computed for the initial 

image (a). Image (c) represents the histogram of the magnitudes of the 

coefficients of (b) smaller than 20. Image (d) represents the histogram 

of the magnitudes of the coefficients of (b) larger than 20 
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In our model we take: 
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Besides we assume that the variables that model the 

magnitudes of the wavelet coefficients from a layer are 

identically distributed. Consequently we can drop the indexing 

of the collection of variables Wi, and we can say that for every 

coefficient pair (i, j) from a layer the equalities (5) and (6) 

hold. 

,, ,

,,large ,large large

i ji small j small small

i ji j

σ σ σ

σ σ σ

= = ∀

= = ∀
 (5) 

 

f (w | S = large)= e  (4) 

more probable than others, and the switchers are independent.  
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In the following, we assume that the variables, modelling 

the coefficient magnitudes from a layer, are independent.  

In order to model the distribution of the magnitudes from a 

layer we need to estimate the parameters σsmall, σlarge, µsmall, 

µlarge. We look for the values of these parameters that 

maximize the expression (7). 

 

( | small) (small)
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If we would know the probability mass functions of all Si, 

this method would be equivalent with the maximum likelihood 

method for estimating the parameters σsmall, σlarge, µsmall, µlarge. 

Since we do not know those probability mass functions, we 

also have to estimate them and this complicates the problem. 

Luckily, we can simplify the estimation problem by means of 

the assumptions that we have made. According to those 

assumptions, when maximizing in relation with the probability 

mass functions, all the terms of the product from (7) are 

independent. This implies that the maximum of (7) can be 

reached if all the terms in (7) are maximum. We use this 

observation to first estimate the probability mass functions and 

then σsmall, σlarge, µsmall, µlarge. 

As the state variables are independent, the estimates, of the 

probability mass functions that maximize (7), are given in (8) 

and (9) 
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    (large) 1 (small)p p
S Si i

= −
 (9) 

 

(8) and (9) tell us that, in fact, the hidden states variables are 

not random variables, since they have deterministic values. 

After the hidden variables of the layer are divided in the two 

classes, large and small, we can estimate the values of σsmall, 

σlarge, µsmall, µlarge using maximum likelihood for the 

observations also separated in the two categories, according to 

the values of their hidden state variables: 
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σsmall, µsmall are computed in the same way by replacing 

large with small. 

The algorithm for estimating the parameters is: 

Begin Algorithm 

Step 1: Generate randomly a value t between the minimum 

value of the magnitudes from the layer and the maximum value 

of those magnitudes 

Step 2: for all i do 

large,w

small,  otherwise

tiSi

>
=





 

Step 3: compute σsmall, σlarge, µsmall, µlarge using (10) and (11) 

 

Step 4: 

new new
 ,  

small small large large,

new new
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small largesmall large
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Step 5: 

repeat  

1. use (8) and (9) to compute for every i 

(small)
iSp , (large)

iSp  

2. compute σsmall, σlarge, µsmall, µlarge using (10) and 

(11) 

3. Assign  

old new old new

small small large large
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small small large large
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End Algorithm 

We use the distributions of the complex wavelet coefficient 

magnitudes to define the probability that the correspondent 

magnitudes are in the same state. 

Let us consider 
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We denote: 

 

large small
L Lj, common j,common j,commonN = +  (15) 

 

 
t r
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We define in (17) the probability that the correspondent 

magnitudes, of the layer j, are in the same state. 

 

j, common
 

N

p j
N j

=  (17) 

 

Since all the layers are independent, we define in (18), the 

probability that the correspondent magnitudes of the two 

images are in the same state. 

p p jj
= ∏  (18) 

 

IV. THE REGISTRATION ALGORITHM  

If we parameterize the transformation that registers the two 

images by θ, than the registration algorithm consists in 

searching for θ , that maximize the probability from (18). 

In the implementation of our algorithm, we maximized (18) 

as in [13] by means of simulated annealing [7]. This helped us 

to avoid that the algorithm outputs a local maximum instead of 

a global maximum. We have used this algorithm to register 

images that differ by a similarity transform. For those images, 

the search space of the parameter is quite large. Fortunately, 

we observed that the value for the parameter θi, for which the 

maximum of (18) is attained when the parameters ,j j iθ ≠ , 

are fixed, is somehow close to the value that this parameter has 

in the set θ when the global maximum of (18) is reached. This 

especially happens when the other ,j j iθ ≠  are also 

somehow close of their values from the set θ for which the 

global maximum is attained.  

This allowed us to find the optimizing parameters not by 

searching on the Cartesian product of the spaces of all 

parameters but by alternatively searching on the space of each 

parameter. This process necessitates several iterations, 

depending how far the solution is from the initial guess. 

For high temperature the generation function, for our variant 

of the simulated annealing algorithm, is the product between a 

Gaussian centered in the current value, x, and the function h 

from (19). For smaller temperatures, the generation function is 

simply a Gaussian centered in x 
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In order to speed up the convergence, we have used an 

annealing scheduling function s(.), that decreases faster for 

larger iteration indexes. 
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where k is the current iteration index, t0 is the initial 

temperature and k1, k2 are positive integers. 

Although the optimization idea is similar with the one used 

in [13], the similarity measure, from this article, and the 

probabilistic framework, on which we construct this similarity 

measure, are radically different from the ones presented in 

[13]. 

In practice our algorithm requires two stages: one of 

training, in which the values for all σsmall, σlarge, µsmall, µlarge  are 

obtained, and the other one for the actual optimization of (18).  

Once the parameters σsmall, σlarge, µsmall, µlarge are estimated 

for every layer, the speed of our algorithm depends of three 

factors. The first is the initial value for the set of parameters θ. 

The second is the stopping criterion. We have used as the 

stopping criterion the value of p as long as a number of 

iterations is not reached This means that the algorithm 

searches for a solution until a certain value of is reached or 

until a number of iterations is reached. The third speed factor 

is the number of parameters from the set θ. If this number is 

large, than the algorithm is more time costly. 
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Like the algorithm from [13] our algorithm can be used in 

many situations: For example one can use it to estimate the 

vector θ, starting from a random value for this vector. When 

the vector θ has a single parameter, for example the rotation 

angle, the speed is reasonable and the algorithm can be 

considered even for time dependent applications. The speed 

decreases with the increase in the number of parameters. If the 

registration task consists in finding a transformation with a 

large number of parameters, we recommend our algorithm 

when the time is not crucial, but instead the registration 

accuracy is. This recommendation is supported by the fact that 

our algorithm allows finding a solution with sub-pixel 

accuracy. 

This algorithm can also be used for tuning the solution 

vector θ. This requires of course that a less accurate solution 

was already found by a different method. For example as in 

[14], one can find a first alignment from low frequency 

components. In this situation, the speed of convergence to a 

highly accurate solution is reasonable for time dependent 

applications even when the number of parameters is large. 

V. EXPERIMENTAL RESULTS 

A. Synthetic uni-modal data  

In order to perform an experimental study on synthetic 

pairs, that contain images captured with the same imaging 

modality, we have used two sets of synthetic data  

The first set of pairs contains pairs of images that are 

obtained one from the other by a single parameter transform. 

For every pair the value and the type of this parameter (i.e the 

parameter can be either the rotation angle, either, the scaling 

factor, either the translation on Ox or the translation on Oy) 

are randomly chosen. More specifically, the rotation angle is 

random in [-90˚,90˚], the translation parameters have random 

values in [0, size_of_the_image /2], the scaling factor is 

random in [0.1, 3]. We have produced 100 pairs of images. 

Fig. 3 (a) and 3 (b) shows an example of such a pair. 

The second set of pairs contains pairs of images with images 

obtained one from another by a similarity transform. This 

consists of scaling, together with translation and rotation. We 

obtained 50 pairs. You can see in Fig. 3 (c) and(d) an example 

of such a pair. If we denote, for a pair of images, (I1, I2), by Tθt 

the real transform (the transform that is used to obtain I2 from 

I1) and by Tθa the transform outputted by the algorithm, then 

the inaccuracy for this pair of images is given in (21). 
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(a)                                     (b) 

   
(c)                                              (d) 

Fig. 3 Example of artificial pairs of images.The image (b) is the 

scaled version of image (a).The image (d) is the image (c) 

transformed by a similarity transform 

B. Real uni-modal data 

We have tested this algorithm on a real data set consisting 

of 50 outdoor image pairs. An example of pair of outdoor 

images used for testing the algorithm, is the one consisting in 

images 1 (a) and 1 (c). The algorithm has found, for every 

outdoor pair, a similarity transform that registered that pair. 

We compare it with the similarity transform inferred from our 

ground truth. The results for those synthetic sets are shown in 

Table I. The results computed by using (21) are shown in 

Table II 

TABLE I 

RESULTS FOR SYNTHETIC DATA 

Type of the artificial 

transform 

Percent of image pairs registered by our 

algorithm with an inaccuracy < 1 pixel 

Single parameter 100% 

Multiple parameter 100% 

TABLE II 

RESULTS FOR OUTDOOR DATA. 

Image cathegory Percent of image pairs 

registered by our algorithm 

with an inaccuracy < 5 pixels 

Oudoor 98% 

 

C.Multi-modal data 

We tested the capacity of our algorithm to register multi-

modal images using images from the BrainWeb database [15]. 

These images contain 3% noise and 20% intensity non 

uniformity, in order to achieve realistic results. The ground 

truth alignment for the images is manually chosen by us. We 
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show in Fig. 4 examples from the image classes that we have 

used. We considered 50 pairs of T1 and T2 images, 50 pairs of 

T1 and PD images and 50 pairs of T2 and PD images. We 

obtained, by means of formula (21), the results summarized in 

TABLE III. 

TABLE III 

Registered images Percent of image pairs  

registered by our algorithm 

 with an inaccuracy < 5 pixels 

T1-T2 96% 

T1-PD 94% 

T2-PD 98% 

 

IV. CONCLUSION 

In this paper, we have presented a new mathematical model 

for the relation between the complex wavelet coefficients. The 

importance of this model derives from the fact that it provides 

a constraint, not on the values of the magnitudes of the wavelet 

coefficients, which are more prone to variations, but on their 

states, which are in exchange more stable to variations. In 

consequence, the registration algorithm, based on our model, 

is more robust to noise (and others variations). Other 

characteristics of the registration algorithm presented in this 

paper are: large applicability, the ellimination of any neccesity 

for preprocessing, and sub-pixel accuracy (this was proved 

only on the set of images artificially transformed, since the 

accuracy on real images (as it is outputed by the tests) depends 

on the limited precision of the humans that created the ground 

truth.  

 
(a)                                         (b) 

 
(c) 

Fig. 4 Example of brain images that we used in our tests. (a) is a T1 

image, (b) is a T2 image and (c) is a proton density weighted 
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