
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3224

Abstract—I/O workload is a critical and important factor to

analyze I/O pattern and file system performance. However tracing I/O

operations on the fly distributed parallel file system is non-trivial due

to collection overhead and a large volume of data. In this paper, we

design and implement a parallel file system logging method for high

performance computing using shared memory-based multi-layer

scheme. It minimizes the overhead with reduced logging operation

response time and provides efficient post-processing scheme through

shared memory. Separated logging server can collect sequential logs

from multiple clients in a cluster through packet communication.

Implementation and evaluation result shows low overhead and high

scalability of this architecture for high performance parallel logging

analysis.

Keywords—I/O workload, PVFS, I/O Trace.

I. INTRODUCTION

VER the past few decades a large number of studies have

been made on file system traces to analyze I/O pattern and

file system performance[1,2,3]. Through tracing file system

operation and analyzing the trace data, we can get insight into

the file system behavior.

The result of file system traces has been used for a wide

variety of purposes: First, researches of file system traces have

been used for file system performance [4]. By tracing file

system and analyzing the trace data, we can identify the

bottleneck point of file system. It is helpful to improve the file

system performance. Monitoring file system operation is need

for optimize of file system performance. Second, file system

traces is helpful for file system debugging. In the process of file

system development, file system tracing is the one of important

factors. It can works for verification of each I/O operation and

detecting the problems. Third, file system traces are utilized to

analyze I/O workload of file system. To maximize performance

using the limited resource, file system managers trace file

system and analyze I/O workload and optimize file system

based on the I/O workload data. In addition, the I/O workload

data is one of important factors for the design of new file system.

Finally, file system traces is useful for analyzing the access

pattern of user application. For example, we can trace the I/O

operation of MPI program and analyze access pattern of MPI

The authors are with the Supercomputing Center, Korea Institute of Science

and Technology Information (KISTI), Korea (e-mail: chohy@kisti.re.kr).

I/O program [5,6,7]. From the result we can optimize the MPI

Program for high performance.

According to those purposes of I/O trace, the location of

tracing is different. Our goal is a trace system for I/O workload

analysis among the previous four purposes.

Even though I/O workload is significant for this variety of

purposes, it is difficult to get I/O trace data on the fly system of

the real world, because of collection overhead and a large

volume of data. Especially, file system traces on a live

distributed parallel file system such as PVFS [8], Luster[9],

GPFS[10], for data-intensive high-end applications is

non-trivial due to the following reason. First, the distributed file

system organized physically many number of different systems

like Fig. 1. Second, it generates a huge amount of data, since

parallel and distributed file systems are used for data-intensive

high-end applications. Third, the file system trace should not

affect its performance.

In this paper we preset the design and implementation of a

shared memory based parallel file system logging method called

MIOT (Multi-layer I/O Tracer), which collects I/O operations

of PVFS [8]. Through performance evaluation, we show the

proprieties of the proposed approach.

The contributions of this work are:

� Low overhead logging system architecture with reduced

logging operation response time

� Efficient post-processing scheme using shared memory

� Extension to be multiple system logging system using

remote log server through socket communication

The rest of this paper is organized as follows. We reviewed

and discussed existing tracing tools in Section II. In Section III,

we describe the architecture of MIOT, which collects I/O

operation data on distributed file system environment using

shared memory. We show the performance evaluation in

Section IV. In Section V, a short conclusion and future works

are given.

II. RELATED WORKS

There have been many studies on tracing file system for each

different purpose, such as analysis and optimization of I/O

access pattern or file system debugging [1, 2, 3]. Most of

previous studies obtained data by tracing at system call level or

virtual file system [11, 12]. Roselli [2] collect and analyze the

result of file system tracing from a variety of different

Design and Implementation of Shared Memory

based Parallel File System Logging Method for

High Performance Computing

Hyeyoung Cho, Sungho Kim, and SangDong Lee

O

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3225

environment, including both UNIX and NT systems. He traces

data by invoking a trace function after system call at UNIX

system and a tool at Window NT traces. In 2004, Tracefs [13]

tries to decrease overhead through buffering. However, these

approaches were designed for local file system. In addition,

because the traces located on system call or virtual file system

layer, it cannot trace the I/O workload of parallel applications

such as MPI-IO applications [6,7]. MPI-IO is generally used in

high performance computing environment, since it allows for

rich descriptions of the I/O patterns for scientific application.

Recently, several papers have been devoted to the study of

file system traces on distributed file system for I/O intensive

parallel applications. DFSTrace [14] is a system to collect and

analyze file system activities in a distributed UNIX workstation

environment. However it traces on system call level or virtual

level which cannot collect MPI-IO application. Other approach

is passive network monitoring. Passive tracing is performed by

placing a monitoring system like tcpdump [15] on the network

that snoops all NFS or CIFS traffic [16, 17,18]. However

passive tracing should handle a very large volume of data,

because passive tracing monitors all network packets.

III. PARALLEL VIRTUAL FILE SYSTEM

Parallel Virtual File System (PVFS) developed at Clemson

University and Argonne National Laboratory is an open source

parallel file system under the GPL and used on clusters based on

Linux systems. PVFS is designed to provide high performance

for parallel applications, where concurrent, large I/O and many

file access are common. PVFS provides dynamic distribution of

I/O and metadata. PVFS stripes file data across multiple disks in

different nodes in a cluster. By spreading out file data, larger

files can be created, potential bandwidth is increased, and

network bottlenecks are minimized [8].

Fig. 1 Structure of PVFS

Fig. 1 shows the structure of PVFS. One node in a cluster can

play a number of roles in the PVFS system. A node can be one

or more of three different types: meta server, I/O server or

compute node. Meta server have two responsibilities: validating

permission to access files and maintaining metadata on PVFS

files. Applications running on compute nodes communicate

with the meta server when performing activities such as listing

directory contents, opening files and removing files for

metadata processing. I/O server used for accessing PVFS file

data and correlating data transfer. Direct connections are

established between applications and I/O servers to directly

exchange data during read and write operations. Compute nodes

support the interface accessing PVFS. The library of calls is

used by applications running on compute nodes, or client nodes,

in order to communicate with both meta server and the I/O

server. Typically, a single node will serve as a meta server,

while a group of the nodes will be compute nodes and another

group will serve as I/O server. It is also possible to use all nodes

as both I/O and compute nodes [19].

IV. THE DESIGN AND IMPLEMENTATION

Fig. 2 illustrates the PVFS I/O operation path. There are

several options for accessing PVFS on a client node. First, there

is a shared, or static, library that can be used to interact with the

file system using its native interface. However, applications

should be written by using specific functions such as pvfs_open

and pvfs_write. Another option is to use Virtual File System

(VFS) interface. Loading PVFS kernel module allows users to

mount PVFS just like any other traditional file system. A final

option is to use MPI-IO interface, which is a part of the MPI-2

standard for message passing in parallel applications. MPI-IO

interface for PVFS is provided through the ROMIO MPI-IO

implementation [7, 19].

Fig. 2 PVFS I/O operation path

There are different layers which are possible locations for I/O

traces on the architecture of PVFS. According to the purpose of

trace, the location of tracer is different. In the case of tracing on

virtual file system layer, it can get the I/O request data of

programs using POSIX interface, such as C programming

applications and command line operations, but it can not detect

I/O request of MPI program. In the case of tracing on MPICH2

library layer, it does not include the tracing data of programs

using POSIX interface. In the case of tracing on PVFS2 server,

the tracing time is not accurate and it can not get accurate data

for I/O workload, since the data was already reflected by file

system policy, such as distribution size.

We traced I/O requests at PVFS client layers, since our

purpose of trace is overall I/O workload analysis for distributed

file system. It can get I/O workload data including both requests

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3226

of programs using POSIX interface and requests of MPI

applications.

Fig. 3 shows the logging process of both PVFS and MIOT.

The logging process of PVFS is divided into three steps. First

step is initialization and assignment of a data structure which

will be traced. Second step is log formatting to express tracing

data as human recognizable strings such sprintf() or vsprintf().

Third step is log writing on a local file system. These schemes

are quite simple and easy to implement but have lots of

overheads in terms of response time.

To minimize the overhead, we designed MIOT using shard

memory like (b) in Fig. 3. In Fig. 4 we described detail logging

flow of MIOT. PVFS client copies the log data to shared

memory and returns to PVFS service process immediately and

can restart next processing for I/O request. Therefore this

structure can reduce overheads of those two steps, and finally

minimize response time of file operation.

log data

setup

log

format
log data

write

pvfs service

process
I/O

request

pvfs service

process
logging service

process

logging

request
return

delay time

(a) PVFS gossip_debug() logging process

(b) MIOT SHMPut() logging process

Fig. 3 logging process of PVFS and MIOT

Fig. 5 shows the overall architecture of MIOT. In other to

trace and collect I/O operations of distributed and parallel file

system, we designed MIOT by three-tire architecture: PVFS

client, Log Client(LC), Log Server(LS). PVFS client copies a

log data to a shared memory. The shared memory is

implemented as circular buffer structure. The size of circular

buffer is configured as 20000. LC monitors the shard memory

and sends the log data to LS by periods. LS can receive the log

data using socket and store it to local file system.

Fig. 4 Logging flow of MIOT

Fig. 5 Architecture of MIOT

The separated logging server can collect sequential logs from

multiple clients in a cluster through packet communication. This

structure of MIOT can minimize response time of PVFS service

through the overhead process transfers to external process on

remote system.

V. PERFORMANCE EVALUATION

To evaluate our approach, we measured cost of PVFS and

MIOT log process. Table I presents the overhead of logging

methods. To achieve high accuracy, we use Intel Pentium’s

rdtsc(x86 Read Time-Stamp Counter, RDTSC) instruction. The

RDTSC instruction reads the processor’s 64-bit cycle counter

and stores its value in a register. The overhead of RDTSC is

very small, when it is compared with the overhead of

gettimeofday(). Therefore it used for more accurate and detailed

performance tests, such as overhead measurement of system call

function[20,21]. These results were obtained by executing each

logging methods more than 10,000 times. The measurement is

tested on the Intel Xeon 2.00GHz.

TABLE I

RESPONSE TIME OF LOGGING PROCESS

System
Total

(cycles)

log format

(cycles)

log write

(cycles)

SHM copy

(cycles)

PVFS log 16089
14373

(89.33%)

1716

(10.65%)
-

MIOT 293 - -
293

(100%)

Response time of logging system described in Table I. The

result indicates that overhead of MIOT log process decreased

more than 54 times compared with overhead of PVFS log
process.

For analyzing overall client overhead, we measured the CPU

utilization. Fig. 6 shows CPU utilization when MIOT and IOR

benchmark with 128MB file size and changing data transfer size

was run. The result shows that the average of CPU utilization

was 1.27%. It means since MIOT is low overhead architecture,

it can be useful as an I/O tracer for high performance parallel

logging analysis.

To test overall performance of MIOT in scalable

environment, we used 8 nodes small cluster system like Table II.

Each node has two Intel Xeon processors and all nodes are

connected via gigabit Ethernet. PVFS 2.6.1 is installed with

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3227

MIOT. Since our testbed is a small scale cluster system, we

configured PVFS with 4 I/O servers and 1 meta server. To

measure I/O performance, we used IOzone, which generates and

measures a variety of file operations[22].

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

utilization(%)

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

time(sec)

CPU utilization

idle

system

user

average

idle : 98.73%

use : 0.138

system : 1.096

Fig. 6 CPU utilization

TABLE II

CONFIGURATION OF TESTBED

OS Linux 2.6.18

PVFS PVFS 2.6.1

CPU Intel Xeon 2.00GHz

Memory 2GB

HDD 40GB SCSI

Network Gigabit Ethernet

Fig. 7 shows performance results of IOzone benchmark. The

most of PVFS performance include MIOT is similar with PVFS

performance without logging. The average of MIOT overhead

was 0.92-1.81% while the average of io log overhead was

1.18-5.01%. In the case of performance include all log option; it

can not get the result at more than 16 megabyte of file, since the

overhead is too big. The average of overhead was 46.99

-48.21%. Even though the test is run on a small size cluster

system, the results shows architecture of MIOT is low overhead

and MIOT can support the scalability of PVFS.

VI. CONCLUSION AND FUTURE WORK

In this paper, we design and implement a parallel file system

logging method for high performance computing using shared

memory-based multi-layer scheme. It minimizes overhead with

reduced logging operation response time and provides efficient

post-processing scheme through shared memory. Through

external processing on remote servers, we decrease logging

overhead. Our implementation and evaluation result shows low

overhead and high scalability of this architecture for high

performance parallel logging analysis.

In the future, we will collect using this I/O tracing method on

a distributed file system and analyze I/O workload of high

performance computing application. Through the analysis, we

will recognize the characteristic of both user I/O pattern and

overall system. In addition, the results of analysis will be used as

a feedback for file system management and optimization.

(a) read performance

(b) write performance

(c) random read performance

(d) random write performance

Fig. 7 IOzone performance

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3228

REFERENCES

[1] John K. Ousterhout, Hervg Da Costa, David Harrison, John A. Kunze,

Mike Kupfer, and James G. Thompson, “ A Trace-Driven Analysis of

the UNIX 4.2 BSD File System,” ACM SIGOPS Operating Systems

Review archive, Volume 19, Issue 5, pp. 15~24, 1985.
[2] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson, "A comparison

of file system workloads," Proc. of USENIX Annual Technical

Conference, pp. 41~54, 2000.

[3] Akshat Aranya, Charles P. Wright, and Erez Zadok, “Tracefs: A File

System to Trace Them All,” FAST 2004.

[4] Pin Lu and Kai Shen, “Multi-Layer Event Trace Analysis for Parallel I/O

Performance Tuning,” Proceedings of the 2007 International Conference

on Parallel Processing, 2007.

[5] Anthony Chan, William Gropp, and Ewing Lusk, “User’s Guide for

MPE: Extensions for MPI Programs”, from MPICH2 web site,

http://www.mcs.anl.gov/research/projects/mpich2

[6] MPICH2 web site, http://www.mcs.anl.gov /research/projects/mpich2

[7] Rajeev Thakur, William Gropp, Ewing Lusk, “On Implementing MPI-IO

Portably and with High Performance,” In Proceedings of the 6th

Workshop on I/O in Parallel and Distributed Systems, pp. 23-32, 1999.

[8] PVFS web size, http://www.pvfs.org

[9] Lustre web site, http://wiki.lustre.org

[10] GPFS Wikipedia, http://en.wikipedia.org/wiki/GPFS

[11] Chris Ruemmler and John Wilkes, “A trace-driven analysis of disk

working set sizes”, Technical Report HPL-OSR-93-23, Hewlett-

Packard Laboratories, April 1993.

[12] sourceforge starce home page, http://sourceforge.net/projects/strace/

[13] Akshat Aranya, Charles P. Wright, Erez Zadok, “Tracefs: A File System

to Trace Them All,” Proceedings of the 3rd USENIX Conference on File

and Storage Technologies, pp. 129 – 145, 2004.

[14] L. Mummert, M. Satyanarayanan, “Long term distributed file reference

tracing: Implementation and experience,” Software—Practice &

Experience, Volume 26, Issue 6, pp. 705-736, 1996.

[15] tcpdump/libcap homepage, http://www.tcpdump.org/

[16] M. Blaze, “NFS Tracing by Passive Network Monitoring, ” In

Proceedings of the USENIX Winter Conference, January 1992.

[17] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS Tracing of

Email and Research Workloads. In Proceedings of the Annual USENIX

Conference on File and Storage Technologies, March 2003.

[18] Andrew W. Leung, Shankar Pasupathy, Garth Goodson, Ethan L. Miller

“Measurement and Analysis of Large-Scale Network File System

Workloads,” In the proceedings of the 2008 USENIX Annual Technical

Conference, June 2008.

[19] Ibrahim F. Haddad inSysAdmin, “PVFS: A Parallel Virtual File System

for Linux Cluster,” Linux Journal, 2000.

[20] Mohan Rajagopalan, Matti Hiltunen, Trevor Jim, and Richard

Schlichting, “Authenticated System Calls,” DSN–2005: The

International Conference on `Dependable Systems and Networks, June

2005.

[21] Intel web site, http://software.intel.com/en-us/forums/watercooler-

catchall /topic/54276

[22] iozone web site, http://www.iozone.org/

Hyeyoung Cho received the M.E. degree in computer engineering from the

Information and Communications University, Daejeon, Korea in 2004. She is

currently a researcher of the Supercomputing Center of Korea Institute of

Science and Technology Information. Her interests include cluster system,

distributed and parallel file system, and embedded system. She is a member of

the Korea Information Science Society.

Sungho Kim received the Ph.D. degree in aerospace engineering from Korea

Advanced Institute of Science and Technology, Daejeon, Korea in 1999. He is

currently a chief researcher of the Supercomputing Center of Korea Institute of

Science and Technology Information, Daejeon, Korea. He performed many

national projects related to cluster computer architecture, system software and

grid technology. He is now one of the key members to design 4th

supercomputer of KISTI Supercomputing Center and other related projects.

His research interests include cluster computing and embedded computing.

SangDong Lee received the Ph.D. degree in physics from Pusan National

University, Korea in 2000. He is currently a chief researcher of the

Supercomputing Center of Korea Institute of Science and Technology

Information, Daejeon, Korea. He performed many national projects related to

supercomputer and high performance computing applications. He is now one

of the key members to design and manage 4th supercomputer of KISTI

Supercomputing Center and other related projects. His research interests

include e-science and grid computing and cluster computing.

