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Abstract—Consider the Gregory integration (G) formula 
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with end corrections where hΔ  is the forward difference operator 
with step size h. In this study we prove that (1) can be optimized by 

minimizing some of the coefficient ka   in the remainder term by 
particle swarm optimization. Experimental tests prove that (1) can be 
rendered a powerful formula for library use.  
 

Keywords—Numerical integration, Gregory Formula, Particle 
Swarm optimization.  

I. INTRODUCTION 
OTE that for hk=1 (1) reduces to the classical Gregory 
integration formula. To justify our formula, we shall use 

the umbral methods developed by Rota and his school [1]-[2] 
instead of classical generating function technique. 
 When f(x) is replaced by 1, x, x², x³…we find. 
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So, at the order 5 we can write: 
 

 
Dr N.Khelil is with the mathematics department, university Med khider  at 

Biskra, Algeria. (Corresponding author to provide phone +213 33 742186; e-
mail: khelilna@yahoo.fr).  

LDjerou is PhD student at Labo of Physics and Applied Mathematics, 
University Med Khider at Biskra, Algeria (e-mail: ldjerou@yahoo.fr). 

Pr. A. Zerarka is with the Physics department, University Med Khider at 
Biskra, Algeria, (e-mail: azerarka@hotmail.com). 

Pr. M. Batouche computer Science Departement CCIS-King Saud 
University, Riyadh Saudi Arabia, (e-mail: mbatouche@ccis.ksu.edu.sa). 

 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( )

3 3

4

0 1 1 1 10
0

2 1 2 2 2 2 2

3 3
3 1 2 3

4
4 1 2 3 4

f 0  a 0   

                   a , 2 2 0 2 2

                   a , , 0

                   a , , ,

nn

k

h h

h

f x dx f k a f n h f h f f n h f n

h h f h f h f f n h f n h f n

h h h f f n

h h h h f

=

−

⎡ ⎤ ⎡ ⎤≈ + + + − + − −⎣ ⎦ ⎣ ⎦

⎡ ⎤+ − + + − − − +⎣ ⎦
⎡ ⎤+ Δ +Δ⎣ ⎦

+ Δ

∑∫

( ) ( )
( ) ( ) ( )

4

5 5

4

5 5
5 1 2 3 4 5

0

                   a , , , , 0                                         (2)

h

h h

f n

h h h h h f f n

−

−

⎡ ⎤+Δ⎣ ⎦
⎡ ⎤+ Δ +Δ⎣ ⎦

 

This formula has a sense so n ≥ 2. In the contrary case an 
appropriate variable change will permit us to do the integral 
without no difficulty. 

Our goal is to optimize the remainder. For do it, we try to 
determine h1, h2, h3, h4 and h5 that returns a3, a4 and a5 as small 
as possible. a3, a4 and a5 is a system non linear of 3 equations 
to 5 unknowns h1, h2, h3, h4 and h5; we take h4, h5 (=1, in this 
study) as parameters and let's solve this system by PSO. 

II. PARTICLE SWARM OPTIMIZATION 
Overview and strategy of particle swarm optimization 
Recently, a new stochastic algorithm has appeared, namely 

‘particle swarm optimization’ PSO. The term ‘particle’ means 
any natural agent that describes the `swarm' behavior. The 
PSO model is a particle simulation concept, and was first 
proposed by Eberhart and Kennedy [3]. Based upon a 
mathematical description of the social behavior of swarms, it 
has been shown that this algorithm can be efficiently 
generated to find good solutions to a certain number of 
complicated situations such as, for instance, the static 
optimization problems, the topological optimization and 
others [4]-[5]-[6]-[7]. Since then, several variants of the PSO 
have been developed [8]-[9]-[10]-[11]-[12]-[13]-[14]. It has 
been shown that the question of convergence of the PSO 
algorithm is implicitly guaranteed if the parameters are 
adequately selected [15]-[16]-[17]. Several kinds of problems 
solving start with computer simulations in order to find and 
analyze the solutions which do not exist analytically or 
specifically have been proven to be theoretically intractable. 

The particle swarm treatment supposes a population of 
individuals designed as real valued vectors - particles, and 
some iterative sequences of their domain of adaptation must 
be established. It is assumed that these individuals have a 
social behavior, which implies that the ability of social 
conditions, for instance, the interaction with the 
neighborhood, is an important process in successfully finding 
good solutions to a given problem. 
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The strategy of the PSO algorithm is summarized as 
follows: We assume that each agent (particle) i can be 
represented in a N dimension space by its current position 

( )i i i iNx x x x1 2, ,...,=  and its corresponding velocity.      Also 
a memory of its personal (previous) best position is 

represented by, 
( )i i iNp p p p1 2, , . . . ,=

 called (pbest), the 
subscript i range from 1 to s, where s indicates the size of the 
swarm. Commonly, each particle localizes its best value so far 
(pbest) and its position and consequently identifies its best 
value in the group (swarm), called also (sbest) among the set 
of values (pbest).  

The velocity and position are updated as. 

( ) ( )1
1 1 2 2    (3)k kk k k k k k

ij j ij ij ijij ij
v w v c r pbest x c r sbest x+ ⎡ ⎤ ⎡ ⎤= + − + −⎣ ⎦ ⎣ ⎦  

1 1     (4)k k k
ij ij ijx v x+ += +  

where are the position and the velocity vector of particle i 

respectively at iteration k + 1, c1  et c2  are acceleration 
coefficients for each term exclusively situated in the range of 

2--4, ijw
is the inertia weight with its value that ranges from 

0.9 to 1.2, whereas r1 , r2 are uniform random numbers 
between zero and one. For more details, the double subscript 
in the relations (2) and (3) means that the first subscript is for 
the particle i and the second one is for the dimension j. The 

role of a suitable choice of the inertia weight ijw
 is important 

in the success of the PSO. In the general case, it can be 
initially set equal to its maximum value, and progressively we 
decrease it if the better solution is not reached. Too often, in 

the relation (1), i jw  is replaced by i jw / σ , where σ  denotes 
the constriction factor that controls the velocity of the 
particles. This algorithm is successively accomplished with 
the following steps [18]-[19]: 

1. Set the values of the dimension space N and the size 
s of the swarm (s can be taken randomly). 

2. Initialize the iteration number k (in the general case 
is set equal to zero). 

3. Evaluate for each agent, the velocity vector using its 
memory and equation (3), where pbest and sbest can 
be modified.  

4. Each agent must be updated by applying its velocity 
vector and its previous position using equation (4). 

5. Repeat the above step (3, 4 and 5) until a 
convergence criterion is reached. 

 
The practical part of using PSO procedure will be examined 

in the following section, where we‘ll optimize a3, a4 and a5 

using PSO. 
The PSO algorithm is applied, with parameter setting   

(Table I). 
 
  

III. SIMULATION STUDY 
 
To test the performance of this algorithm we took various 

functions and we looked for an approximation with Gregory    
(G) and the new formula (GP ) (Table II).  

IV. CONCLUSION 
A Considering results we note that:   

• the middle value turns around 0.3   
• some well-known functions badly to integrate by the 

methods classic (1/1+x,…  ) give good results with 
this formula . 

• in general the GP formula improves the order of 
precision in a considerable way in relation to 
Gregory, without using as many assessments. 
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