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Fast Calculation for Particle Interactions in SPH
simulations: Outlined Sub-domain Technigque
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Abstract—A simple and easy algorithm is presented for a fast The searching process is necessary at every tiepe ahd

calculation of kernel functions which required inid simulations
using the Smoothed Particle Hydrodynamic (SPH) oakthPresent
proposed algorithm improves the Linked-list algamtand adopts the
Pair-Wise Interaction technique, which are widedgd for evaluating
kernel functions in fluid simulations using the SPh¢thod. The
algorithm is easy to be implemented without any glexities in
programming. Some benchmark examples are useddw she
simulation time saved by using the proposed algorit Parametric
studies on the number of divisions for sub-domanyothing length
and total amount of particles are conducted to stih@neffectiveness
of the present technique. A compact formulatiorpieposed for
practical usage.

thus the computation effort in this searching metisovery time
consuming, and is not feasible for problems witstmount of
particles.

The Linked-list technique was introduced in [7] dref the
SPH method was invented, since then; the technisusaill
widely being used to perform the SPH method. Tin&ed-list
algorithm uses uniform meshes for bookkeeping thighsize of
2h. Where,2h is the radius of compact support domain of the
kernel function. Thus, all particles in the neigtihg
sub-domains can then contribute to the properfipsudicles in
the sub-domain. An improvement was made in [8lenstthe

Keywords—Technique, Fluid simulation, Smoothing Particlecylindrical sub-domain is used as a bookkeepingicgeto

Hydrodynamic (SPH), Particle interaction

|. INTRODUCTION

simulate shocks in accretion disks. However, tireutar
domain will loose its capability to cover arbitrasimulation
domain which is not circular, in general problenténlike the

MOOTHED Particle Hydrodynamic (SPH) method whichectangular sub-domain, the circular sub-domaindsahe four

as firstly introduced [1,2] for modeling astrophogs
phenomena is one amongst many particle methodbakadieen
used for simulating the physical behavior of fluahd
continuum solid bodies. Recent progress in usitg Sethod
has been applied in the fields of fluid and satigtraction [3,4],
multi-phase fluids and free surface flows [5].

In the SPH method, the so-called smoothing function
kernel function which is based on particle appration plays a
very important role in carrying out the integratiofilgoverning
partial differential equations within the suppogtthomain. One
of the important issues for implementing the SPHhoe using
the particle approximation is how to perform effeely the
evaluation of kernel functions based on a set atigles
scattered in an arbitrary manner. A lot of efférdse been done
to improve the governing equations used in the sitimns and
variation of kernel functions as summarized in [Bpwever

there was a few research work which has been dane Size of the whole simulation domain.

enhancing the technique to carry out the interacimong
particles in the supporting domain.

Classically, the particles searching algorithmesfgrmed at
a particle to find other particle inside its supgpay domain
within the entire simulation domain.
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corners of its bounding rectangle untouched, thugslapping
between circular sub-domains for bookkeeping cah b
avoided, which results in less effectivenesshis technique.

The Hierarchical Tree coding has been also widelgdu
[9-11], however due to the complexity in implemagtithe
algorithm; this technique was not gaining any peagty in
practice. In [12], the application of Hierarchicalee coding
was facilitated with parallel programming to boo#s
performance; nevertheless, the efforts merely asmemore
complexities for adopting the algorithm proposed.

In this study, a simple and easy algorithm basedreation
of fixed sub-domains and its outlines is preseritedca faster
calculation of kernel evaluations. The presentppsed
technique based on the same concept with the Lilikedut
the sub-domain width need not have to the siZhoin most of
simulation problems, thigh size is very small compared to the
Parametriedigts
conducted in this study have shown that too snuddtdomain
divisions’ size could result in an increase of catagion time
considerably. For an easy use, the size of sulatlons
determined from equally dividing the size of thdirendomain
of simulation by a constant number. The proposetrique is
then, further facilitated by the Pair-Wise Intefact method
[11,13-14] to register all particles within the lngd
sub-domain which contribute to the particles insithe
sub-domain where the kernel functions are beinduated.
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11. SPHFORMULATION FOR NAVIER-STOKES EQUATIONS

SPH can be considered as a kind of interpolatiotihoaefor
interactions of arbitrary particles in a suppontéin inside the
fluid simulation system [15]. In present studyHs@ethod is
used for solving the Navier-Stokes equations probleFig. 1
shows a typical kernel functid. The kernel function shown is
used in this study was taken from the cubic syftamaily which
is known as B-spline function (1) as given in [16].

Fig. 1 Support domain of the kernel functidhof particlei

2-§%+18%  0sé<1
W(Ed)=a, x{ 1(2-&° 1<é<2 (1)
0 £=22
Here,&{=2r/d ,

particles;d = kh ,wherex is a constanth is the smoothing
length; anda, =2/d , a, =60/7/d* , a, =12/d* are given
for one-, two- and three-dimensional problem, retpely.

The particle approximation of density in the cornaépn of
mass governing equation can be expressed as follow:

D” =S'm @)

j=1

where, p; is the density of particle m is the mass of particje

v =vf -v/is the relative velocity between particleand,].

For the conservation of momentum and energy, thiéclma
approximation of momentum and energy governing &gos
taking artificial viscosity into account are givas follows:

DY _ S| %, |2 @)
m _ i |l=F
j=1 o’ pj2 ") oxf
N > P, oW,
S=m| L, s S (o
bt 293 (@ pm 0x; pu
where, g;, g, are the stresses for particleg B, P, are the

i, 4 is the dynamic viscosity for particleand the artificial
viscosity [1; [17,18].

There have been many variations of the governing@gons
which are summarized in [6]. Regardless of theegowng
equations being used in the SPH simulations, tresgmt
technique is generally applicable and effective dualuating
the kernel functions.

I1l. OUTLINED SUB-DOMAIN TECHNIQUE

The present proposed algorithm improves the Lirlistd-
algorithm by allowing an arbitrary width for thexéd
sub-domains and outlining the sub-domain withatheidth to
guarantee all interacting particles are taken awcount in the
calculations. By dividing the entire size of simtibn domain
into equal size of sub-domains, time which is rezplifor
storing particle data become longer but the timedckwvhs
required for searching the neighboring particleidasthe
sub-domain is reduced which results in considerakézution
time saving.

To illustrate the present outlined sub-domain tépem a
schematic two dimensional arbitrary domain as shiovfig. 2
is used. The entire simulation domain is firstlyided into
smaller squares sub-domains and their outlinedrequaThe
width of the outer square is determined from the sif the inner
square added at both width and height sidedWwiich is equal

where r is the distance between twoto the radius of kernel functioW in the support domain. There

are overlapping areas between the adjacent ouiaress} hence
the coverage of compact support of kernel funcfimm a
particle at the edge of inner squares is guarant&eding the
bookkeeping process, all the particles in the irstprares are
also registered for the outer squares.

Outer square
(contain N, particles)

Horizontal dI \‘
Outlines
Py ©
Oﬂv/" d (%) d d = radius of support domain
i i1 =kh
olo ¢ Y h = smoothing length
© © 7 k = multiplier factor
J3 P Inner square
(contain Nj, particles)
Vertical
Outlines

Fig. 2 A 2-D schematic representation of outlined-domain
technique

Here, for each particle inside the inner squartisiandexed
acts as a center for evaluating the governing @nsof (2-4)
to interact with the surrounding particles inside buter square
those arej indexed. Hence, the searching for interacting

pressures at particleg, &, is the viscous strain rate for particleParticles will only necessary sought inside theeouquare

which is requiring less time rather than searcfimgarticles in
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the entire domain of simulation.
The additional time required in the present techaids to
register all the particles inside the predefineb-damains and

TABLE |
PARAMETRIC STUDY FOR SHOCK TUBEL-D PROBLEM

Number of Particles

their outlined area to account particles at theostrhoundary of Case d;':%? d;gg‘i’t LTeﬁh
the sub-domains for calculation of kernel functions | 80 K 20 . 03
Registration of particles to their sub-domains antlined area Il 80C 20C 3.0
is conducted after each time step calculationHigis I 8000 2000 30.0

IV. PARAMETRIC STUDY USING BENCHMARKS

In the following study, the timing evaluations weerformed
on a personal computer with Core2 Duo E7500 CPbkilate
of 2.93 Hz, FSB speeds of 1066 MHz and 4 GB Menuiry
RAM. FORTRAN compiler was used to edit, modifynuaile,
debug and run the source codes available from [6].

A. Shock tube 1-D problem

The shock tube problem is one dimensional benchmark

which was comprehensively simulated by many re$easc
using SPH method [11,19]. The shock tube is a lstngight
tube filled with gas, which is separated by a membrinto two
equal parts in which each part is initially in dduium state of
constant pressure, density and temperature.
membrane is taken away instantaneously, a shoclewav
rarefaction wave and a contact discontinuity wéllgroduced.
The initial conditions of the simulation are similgith [11],
then introduced by [14] which were taken from [20}, x<0
(p=1, v=0, e=25, p=1, Ax=0.001875) and for

x>0 ( p=025, v=0, e=179%5 , p=0.179% ,

10.0

Number of
Particles
—A—100
- 1000
—-@- 10000

Execution Time Ratio

0.0

1 2 4 8 16 32 64 128 256
Number of Division

Fig. 4 Results of execution time for shock tube prbblem

Wihen t

Fig. 4 depicts the ratios of timing evaluation bé tpresent
proposed technique compared with the results fraotiginal
technique without improvement, for a variety numbmr
particles and division of vertical sub-domains.

From Fig. 4, the present proposed outlined sub-@toma
technique shows less computing times for larger bermof
particles used in the simulation. For 100 totaimbar of

Ax=0.0075). Herep, p, e andv are the density, pressure, particles useéh the simulation, time for registering the pasisl

internal energy and velocity of the gas, respebtivé\x is the

distance between two particles. A constant tirap ef 0.0002 s
is used for running 1000 steps calculation. A tams
smoothing lengthh =0.015 and multiplier factox =2 are

used in this simulation. Fig. 3 shows the schemeudined

sub-domain technique which is applied to the shable 1-D

problem.

Table | shows three different total numbers ofipkes used
in the SPH simulation. The parametric study isdumted in
which the same percentage distribution of partitidso equal
part of the tube was of 80% and 20% for both highsity and
low density regions. To keep a constant densitintaimed in
the tube, the length of the tube is increased alwitly the
increasing number of particles.

For each case of the three shock tubes shown ite Tathe
total length of the tube is divided by vertical sidmains which
resultin 2, 4, 8, 16, 32, 64, 128 and 256 division

high density low density
o membrane
0000 CECEEUIe € 6 6 €00 @
d d
iL=r/Mi M : Number of Division
012 012

Fig. 3 Outlined sub-domain scheme in the shock purbblem

became longer than for evaluating the kernel fanstji thus less
effectiveness were resulted. However, the presafitnique

shows its effectiveness for larger number of plgicsed in the
simulation. In case, the number of particle is000; the

reduction in execution time of less than 10% caratigeved

when the divisions of sub-domains in between 64 H2ftl are

used.

B. Shear driven cavity 2-D problem

The classic shear driven cavity 2-D problem isfiiiel flow
within a closed square generated by moving thesidg of the
square at a constant velocity while the other sidemin fixed.
The flow will reach a steady state and form a wedation
pattern. In the simulation, the dimension the &ineiscosity
and density are’ =10° m?/s and p =10° kg/nT respectively.

The top side of the square moves at a velocity=#0° m/s,
thus the Reynolds number for this case is oneostant time
step of 5x10 s is used. A constant smoothing length of 2.5x10
is used.Table Il shows four different total numbefrgarticles
used in the simulation to conduct a parametricystonl the
present proposed technique. For each case obthveshear
driven cavity 2-D problems shown in Table II, thmglation
domain is divided equally by vertical and horizdnta
sub-domains of 2, 4, 8, 16, 32, 64 and 128 divisiokig. 5
shows the scheme how the outlined sub-domain tqahnis
applied to the shear driven cavity 2-D problem.
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TABLE Il
PARAMETRIC STUDY FOR SHEAR DRIVEN CAVITY2-D PROBLEM
Case Number of Particles Side Computation
inside the square Length Steps
[ 50x50 0.00125 1000
1l 100x10( 0.0025( 100(
Il 200x200 0.00500 1000
\Y 1000x1000 0.02500 10
V oP
equal
division

Fig. 5 Outlined sub-domain scheme in the sheaedroavity 2-D
problem

100

Number of
Particles
—A— 50X50
—#100X100
—-@-200X200
—-1000X1000

o

Execution Time Ratio

0.01

0.001

1 2 4 8 16 32 64 128
Number of Division

Fig. 6 Results of execution time for shear drivawity 2-D problem

Similar tendency with the results obtained from gh®ck

tube 1-D problemis also observed. The present proposed
technique shows significant etim

outlined sub-domain
reductions for larger number of particles usecdagimulation.
As shown in Fig. 6, for small number of particlee ttime for
registering the particles became longer than etialyahe
kernel functions, thus less effectiveness will bsutted. The
present technique shows much time reduction fgelanumber
of particle used, as shown in the number of partiof
1000%1000 used in the simulation. The computdiioe can
be reduced to less than 1% when the divisions lofdeuimains
about 32 are used. On the contrary, further irsingaof
number divisions will result in longer executiomé.

C. Shear driven cavity 3-D problem

The shear driven cavity 2-D problem is extendea t8-D
closed cube problem by moving the top side of thigecat a
constant diagonally 45 degres-z direction of velocity
generated while the other sides remain fixed. 8ygithe same
parameters in the 2-D problem, the flow will reactteady state
and form a recirculation pattern. In the simulatiche
dimension the kinetic viscosity and density are10° m?s and
0 =10 kg/n?® respectively. The top side of the cube moves at a

velocity of V=10® m/s in the diagonal x-z directions. A
constant time step of 5xF0s is used. A constant smoothing
length of 2.5x10 is used. Fig. 7 shows the scheme how the
outlined sub-domain technique is applied to theashiFiven
cavity 3-D problem.

Table IIl shows four different total numbers of fieles used
in the simulation to show the effectiveness of firesent
proposed techniquer-or each case of the four 3-D shear driven
cavity problems shown in Table IlI, the simulatidomain is
divided by sub-domains of 2, 4, 8 and 16 equalsitivis in all
Cartesian axes directions.

TABLE IlI
PARAMETRIC STUDY FOR SHEAR DRIVEN CAVITY3-D PROBLEM

Case Number of Particles Side Computation
inside the cube Length Steps
| 30x30x30 0.00100 1000
1l 40x40x4( 0.0010( 100C
Il 50x50x50 0.00100 1000
\Y 60x60x60 0.00100 1000
£, AAZ,V”‘
VAl
inner
box .
N /
outer o 3 ~d  equal
box 7 ] division
a1

equal
division

d
i equal
division X

Fig. 7 Outlined sub-domain scheme in the sheaedroavity 2-D
problem

In similar tendencies with the results obtainednfrthe
previous studies, the present proposed outlineddsuofmin
technique is showing less execution time for latg&l number
of particles used in the simulation. As shownim. B, for less
number of particles, the time required for regisiginteracting
particles became longer than evaluating the kefngdtions,
thus less effectiveness will be resulted.
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Number of
Particles

—A— 30X30X30
—- 40X40X40
—-@- 50X50X50
—0-60X60X60

Execution Time Ratio
o

0.01

1 2 4 8 16
Number of Division

Fig. 8 Results of execution time for shear drivanity 3-D problem

The present technique shows less execution timéafger
number of particle used, as shown for the numbgadicle of
60x60x60 the computation time can be reduced tothes 3%.
This value is achieved when the divisions of sulnrdims about
8is used. However, further increasing the nurdbgsions will
result in longer execution time.

V.PROPOSAL FORPRACTICE

From the results of parametric studies, the effeatss of
the present technique in reducing the executioa tiepends on
the dimensional type problem, total number of pkes in the
simulations and number of divisions adopted indineulations
as shown in Figs. 4, 6 and 8. The most reducedutioa time
ratios resulted from parametric studies are calbcand
summarized in Table IV. Here, an additional nomefsional
ratio of L/h is introduced to represent physical characterédtic
the simulation.In Table IV,L is the size of sub-domaihjs the

TABLE IV
THE MOST REDUCED EXECUTION TIME FROM PARAMETRIC STUBS

Total Number of L/h

Case Particles ratio ND
Shock Tube I 1,000 9.563 1000
1-D 1] 10,00( 31.31¢ 10,00(
| 50x50 9.375 50
Shear Driven I 100x100 12.500 100
Cavity 2-D 1] 200x20( 18.75( 20C
\Y 1000x1000 31.250 1000
| 30x30x30 5.682 30
Shear Driven I 40x40x4( 6.250 40
Cavity 3-D 1] 50x50x50 7.031 50
\Y 60x60x60 7.485 60
10000 >
g 1000 Q———— —_
2
)
o
£ Q
o
5 100 Ao
2
£
=]
p=4
]
£ 10 9
T ¥
Q
< ND = 0.5 (L/h)**
Coefficient of Determination, R? =08
1

1 10 100

Division and Smoothing Lengths ratio, L/ ratio

smoothing lengthiN is the total number of particles used in the

simulation.

For practical purpose, a simple formulation thédtes all the
parameters in the simulation is to be sought. Aque
relationship between the total number of particleslius of
smoothing length and number of division is formetht

Fig. 9 shows a logarithmic relationship betweenLitineratio
and ND which is defined asN\D = NP , where D is the
dimension of the simulation type. By using the#inregression
analysisto the data plotted in Fig. 7, a straight line tietaship
can be formulated as follow.

ND =05 (L/h)** (5)

In term of total number of particles used in thaudation,N,
the expression (5) can be rewritten as follows.

N = ND° =0.5°(L/h)*° (6)
Depends on the problem type and number of particded in

the simulations, the reduction of execution timeias from
one-hundredth to one-tenth ratio can be achieved.

Fig. 9 Results of parametric study with the moduction time ratio

Unlike the other techniques proposed in the pagession
in (6) is very simple and provides a handy forniakatfor
implementation, thus recommended for practical &tman
purpose.

VI. APPLICATION

In order to verify the effectiveness of the presemposed
technique, a 1-D type fluid simulation problem iegented.
The proposed formula in (6) was used to deternfiaedivision
number of the sub-domains.

The original shock tube problem which was used hes t
benchmark problem is modified by dividing the lostgaight
tube filled with gas into four equal parts. Thbeus separated
by membranes at three locations. All parts of tilge are
initially in equilibrium state of assumed constgmessure,
density and temperature. When all the membranegadken
away instantaneously, shock waves, rarefaction sveamed
contact discontinuities will be produced. Fig. 4ffows the
scheme of outlined sub-domain technique appliedtht®
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modified shock tube 1-D problem.Considering thevflof gas 12
inside the tube is adiabatic in smooth regions, fthetional -+t 0.00
entropy can be set as a constant, thus the resaijosmbetween 0 o3 |1

density and pressure follows the isentropic law.
The initial conditions of the simulation are givers: for
x<015 ( p=10 , v=0 , e=25 , p=10 ,

Ax =0.0000375 ); for 0.15<x<030 ( p=05, v=0,
e=1.895, p=0.379, Ax=0.000075); for 0.30 < x<0.45
(p=08,v=0, e=2287, p=0.732, Ax=0.000046875);

0.8 ° at0.06

Pressure
o
>

o
IS

o
N
i
1 ofo
foooa

and for x>045 (=03, v=0, e=1544, p=0.185, 00 ‘
0.0 0.1 0.2 0.3 04 0.5 0.6
AX = 0000125) X coordinate
Here,p, p, €, andv are the density, pressure, internal energ}é_ o -
. . . . ig. 12 Pressure distributions along the tube filoenmodified shock
and velocity of the gas, respectivelix is the distance between tube 1-D simulation results at 0.06 s
two particles. A constant time step of 0.00005ssied for 3000
steps calculation. There were 10400 particles usethe 12
simulation. The radius smoothing length used éndiimulation ---rat0.00

1.0

was determined from the largest radius of smootiémgth,
d =2h =0.00025 which is two times of distance between ,
particles in the least density regiofix = h=0.000125. By 2
using (5), the division lengthcan be calculated; hence number £ °°
of division of the tube length calculated is 80. :
Figs. 11-14 show the mixture processes of diffepeassure
regions at varying simulation times along the xsafter all the 02

0.4

membranes that separated density varied regionsademn
instantaneously at the same time. 0 00 04 02 03 04 05 06
The CPU time required for conducting the 1000 steps X coordinate

simulation was recorded to be 86 s which is ontlyuy.1% of
the time required when no sub-domains along thgtlethat
was 1211 s. From the comparison of both exec@®b times,

Fig. 13 Pressure distributions along the tube floenmodified shock
tube 1-D simulation results at 0.09 s

the present proposed technique shows its effe@sgerin 12
reducing the time required for conducting the miedifShock

Tube 1-D simulation. 10
0.8

__Membranes____~ °
S | % 0.6

| | \ a
x=0.00 x=015 x=0.30 X=0.45 x=0.60 04

Fig. 10 Modified Shock Tube 1-D problem

0.2
12 after 0.12 s
0.0
----at 0.00 0.0 0.1 0.2 03 04 05 0.6

X coordinate

0.8

Fig. 14 Pressure distributions along the tube floenmodified shock
tube 1-D simulation results at 0.12 s

Pressure
o
>

VII. CONCLUSION

o
IS

From parametric studies, it can be concluded tiaptesent
proposed technique shows its effectiveness in fhiEmam

o
o

oo ranges of number division which gives the most céda in
00 04 02 03 04 05 o6 execution time, especially when larger number ofigas is

X caordinate used in the SPH simulation.
Fig. 11 Pressure distributions along the tube ftioenmodified shock An easy and handy formulation for practical purpdése
tube 1-D simulation results at 0.03 s conducting a simulation using SPH method is propodequal

division of sub-domains; and the longest smootHimgth
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selection for the outlines; are the two simple athmns which
are seamlessly implement able to the existing Shtidlation
codes.

For future works, application of parallel programmio the
bookkeeping and evaluation of kernel functionsuib-domains
could further boost the performance of the preggoposed
technigue in reducing the execution time for sirtiafausing
SPH method.
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