
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:8, 2012

1208

 

 

  
Abstract—The motion of a sphere moving along the axis of a 

rotating viscous fluid is studied at high Reynolds numbers and 
moderate values of Taylor number. The Higher Order Compact 
Scheme is used to solve the governing Navier-Stokes equations. The 
equations are written in the form of Stream function, Vorticity 
function and angular velocity which are highly non-linear, coupled 
and elliptic partial differential equations. The flow is governed by 
two parameters Reynolds number (Re) and Taylor number (T). For 
very low values of Re and T, the results agree with the available 
experimental and theoretical results in the literature. The results are 
obtained at higher values of Re and moderate values of T and 
compared with the experimental results. The results are fourth order 
accurate. 
 

Keywords—Navier_Stokes equations, Taylor number,  
Reynolds number, Higher order compact scheme, Rotating Fluid.  

I. INTRODUCTION 
N a fluid of constant density ρ and kinematic viscosity ν, 
which is in solid body rotation with angular velocity Ω, a 

sphere of radius ‘a’ moves with the speed U along the axis of 
rotation which is free to rotate about the same axis. The 
motion created by a sphere is of great interest since in this 
flow two kinds of basic motion rotation and translation, 
interact and modify each other. In a viscous flow the flow 
depends upon two dimensionless parameters namely the 
Ekman number E and the Rossby number R0 where 
 
 
 
With 0ω    is the  constant angular velocity at large enough 
distances from the sphere. The Taylor number (T) and the 
Reynolds number (Re) are defined as  
 

  
E
R

E
T 02

Re,1
== .   

Proudman (1916) theoretically predicted that in such a kind 
of flow, a column of fluid is pushed ahead of the sphere like a 
solid mass having zero axial velocity relative to the moving 
body. This prediction was confirmed by [7] experimentally. 
This phenomenon is now referred as the Taylor column.  [2] 
studied the flow theoretically by the method of singular 
perturbation technique, for small values of Re and T.  
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These results were experimentally verified by [4]. 

Maxworthy also found that for a fixed Reynolds number, 
when the rotation parameter T increases, the drag also 
increases. [5] experimentally observed forward separation of 
the axi-symmetric flow for large values of Re and T. Dennis et 
al (1982)  analyzed the problem by the method of second order 
finite differences  for Reynolds numbers from 0 to 0.5 and 
values of T ranging from 0 to 0.5. Using series expansion 
method and monopole approximation method, Weisenborn 
(1984) studied the problem for zero Reynolds number and 
values of T ranging from zero to infinity. In this paper the 
problem is studied using Higher order compact scheme for 
higher values of Re and moderate values of T. 

II. FORMULATION OF THE PROBLEM. 
We have considered a sphere of radius ‘a’ whose centre is 

fixed at origin with the coordinate axes are fixed in direction. 
The sphere is moving with constant velocity U in the negative 
Z direction in an incompressible viscous fluid. The Navier-
Stokes equations governing the steady axi-symmetric flow can 
be written as three coupled, nonlinear, elliptic partial 
differential equations. The governing equations in spherical 
polar co-ordinates ሺݎ, ,ߠ ߮ሻ with the transformation ξer =  
are  
      
                           (1) 
 
 
 
 
                         
 
                          (2) 
 
 
 
 
 
                          (3) 
 
where  ψ is the dimensionless Stream function, 

θ
ς

ξ sine
 is the 

vorticity and 
θξ sine

Ω is the angular velocity. The 

dimensionless velocity components are related to ψ and Ω by 
the equations 
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                                  III. BOUNDARY CONDITIONS 
The equations (1)-(3) are solved subject to the following 

boundary conditions 
On the surface of the sphere ( ξ=0) 
 
 
 
At large distances from the sphere ( )∞→ξ  
 
 
 
Along the axis of symmetry ( )00 180,0 == θθ  
 
 

                                    IV. NUMERICAL METHOD 
The above governing equations are discretized using higher 

order compact scheme (HOCS) on nine point compact stencil. 
The first and second order derivatives are approximated by the 
central differences along with their leading errors as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where 
 
 
 
 
 
 
 

The third and fourth derivatives occurring above are 
calculated by differentiating the given partial differential 
equation which introduces cross derivatives which are 
approximated by second order central differences. The 
matrices associated with the finite difference equations are 
diagonally dominant. The algebraic equations are solved using 
line Gauss-Seidel iteration method.  Among the variables, we 
first solved for Ω, and then for ς, and then for ψ. Convergence 
is said to have been achieved when the norm of the dynamic 
residuals is less than 10-6.   The vorticity on the surface of the 
sphere is obtained using Briley (1971) formula 
 
, 
 
 

The value of Ω on the surface is depending on the value of     
ω~ . Childress (1964) had given the expression as  
 
 
with 
  

2Re
2T

=α  

where 
 
 
 
 

For small values of α ranging from 0 to 1, the values of χ(α) 
found by Childress (1964) are provided in Table. II. For large 
values of α, the corresponding value of χ(α) can be obtained 
from the polynomial expression (Childress 1964) 
 
 
 

V. RESULTS AND DISCUSSION 
A far field of 21.58 times the radius of the sphere is 

considered in all the numerical simulations which are 
performed in the finest grid of 240 × 128. Numerical 
investigations were carried out for Reynolds numbers of 25, 
40 and 100 and rotating parameter (T) from 0 to 4.0. The 
initial solution for  T = 0 is taken as ψ = 0, ς = 0 and Ω = 0 at 
all the grid points inside the boundary.  In finding the solution 
for higher values of Re and T, the solutions obtained for lower 
values of Re and T are used as the starting solution.  Using the 
solution Drag co-efficient CD  and D/Ds =(CD*Re)/12 were 
calculated.   

The results are computed for Re = 0.12 at T = 0.025, 0.05, 
0.075 and 0.1 in different grids and is presented in Table.I to 
show the grid independence.  D/Ds values for Re = 0.12 at 
different values of T are presented in Table. III along with 
experimental values of [4] and numerical results of Childress 
(1964), Weisenborn (1984) and Dennis et.al (1982). The 
obtained results are in agreement with experimental results of 
Maxworthy (1965) and numerical results of Weisenborn 
(1984) and Dennis et.al (1982).  

The results are also obtained at higher values of Re = 25, 40 
and 100 and for values of T ranging from 0 to 4.0 and the drag 
coefficient values are presented in Fig 1. From this figure it is 
clear that the drag coefficient increases with increase of T 
which agree with experimental results of Maxworthy (1965). 
The streamlines for Re = 25,40 and 100 for different values of 
T are presented in Fig. 2 - Fig.4 respectively. It is observed 
that as T increases  the separation length and angle increases. 

 
TABLE I 

GRID INDEPENDENCE OF  D/DS VALUES 
T 48X48 64X64 80X80 96X96 

0.025  1.102923596   1.102716017   1.102575950  1.102523755  

0.05    1.148402303   1.147745547   1.147226625  1.147042066  

0.075  1.185303233  1.184232138   1.183373917  1.183061173 

0.1  1.216450312  1.216110115   1.214975468  1.214502026 
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TABLE II 
VALUES OF              FOR SMALL VALUES OF  α   

α  0  0.1  0.23  0.37  0.5  0.67  0.83 

χ(α)  0.375  0.375  0.367  0.337  0.31  0.287  0.266 

 
TABLE III 

COMPARISON OF (D/DS ) -1 VALUES WITH NUMERICAL AND EXPERIMENTAL 
VALUES 

T (1) (2) (3) (4) (5) (6) 

0.025  0.09  0.1  0.1  0.11  0.1  0.09±0.01 

0.05  0.13  0.14  0.14  ‐‐‐‐‐   0.15  0.13±0.02 

0.075  0.16  0.18  0.18  ‐‐‐‐‐   0.18  0.18±0.02 

0.1  0.18  0.21  0.21  ‐‐‐‐‐   0.22  0.22±0.03 

0.2  0.26  0.32  0.32  ‐‐‐‐‐   0.33  0.30±0.04 

0.25  0.29  0.37  0.37  0.31  0.37  0.37±0.04 

0.5  0.4  0.56  0.57  0.63  0.56  0.57±0.05 

0.75  0.49  0.72  0.74  ‐‐‐‐‐   0.71  0.75±0.05 

1  0.57  0.83  0.9  ‐‐‐‐‐   0.86  ‐‐‐‐‐ 

Numerical results of (1) Childress(1964), (2) Weisenborn Series Expansion 
(1984), (3) Weisenborn Monopole approximation(1984), (4) Dennis et 
al(1982), (5) Present results and (6) Experimental results of 
Maxworthy(1965). 
 
 

 
Fig. 1 Drag co-efficients corresponding to different Taylor numbers 

for Re=40 and 100 

 

 

 

 
Fig. 2 Streamlines for Re=25 at T=0,1,1.5,2,2.5 and 3 
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Fig. 3 Streamlines for Re=40 at T=0,1,2,3,4 and 5 

 

 

 

 

 
Fig. 4 Streamlines for Re=100 at T=0,1,2,3 and 4 
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