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Abstract— In this paper static and dynamic response of a 

varactor of a micro-phase shifter to DC, step DC and AC 
voltages have been studied. By presenting a mathematical 
modeling Galerkin-based step by step linearization method 
(SSLM) and Galerkin-based reduced order model have been 
used to solve the governing static and dynamic equations, 
respectively. The calculated static and dynamic pull-in 
voltages have been validated by previous experimental and 
theoretical results and a good agreement has been achieved. 
Then the frequency response and phase diagram of the system 
has been studied. It has been shown that applying the DC 
voltage shifts down the phase diagram and frequency 
response. Also increasing the damping ratio shifts up the 
phase diagram. 

 
Keywords—MEMS, Phase Shifter, Pull-in Voltage, Phase 

Diagram 
 

I. INTRODUCTION 
ICROELECTROMECHANICAL systems (MEMS) are 
increasingly gaining popularity in modern technologies, 

such as atomic force microscope (AFM), sensing sequence-
specific DNA, and detection of single electron spin, mass 
sensors, chemical sensors, and pressure sensors [1,2]. MEMS 
devices are generally classified according to their actuation 
mechanisms. Actuation mechanisms for MEMS vary 
depending on the suitability to the application at hand. The 
most common actuation mechanisms are electrostatic, 
pneumatic, thermal, and piezoelectric [3]. Electrostatically 
actuated devices form a broad class of MEMS devices due to 
their simplicity, as they require few mechanical components 
and small voltage levels for actuation [3], which the 
electrostatic actuation is inherently non-linear. Microbeams 
(e.g., fixed-fixed and cantilever microbeams) under voltage 
driving are widely used in many MEMS devices such as 
capacitive micro-switches, micro phase shifters and resonant 
micro-sensors. These devices are fabricated, to some extent, in 
a more mature stage than some other MEMS devices. One of 
the most important issues in the electrostatically-actuated 
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micro-devices is the pull-in instability. The pull-in instability 
is a discontinuity related to the interplay of the elastic and 
electrostatic forces. When a potential difference is applied 
between a conducting structure and a ground level, the 
structure deforms due to electrostatic forces. The elastic forces 
grow about linearly with displacement whereas the 
electrostatic forces grow inversely proportional to the square 
of the distance. When the voltage is increased the 
displacement grows until at one point the growth rate of the 
electrostatic force exceeds than the elastic force and the 
system cannot reach a force balance without a physical 
contact, thus pull-in instability occurs. The critical voltage is 
known as “pull-in voltage”. Some previous studies predicted 
pull-in phenomena based on static analysis by considering 
static application of a DC voltage [4-5]. 

Phase shifters are key components of many communication 
and sensor systems. Most of existing phase shifters are based 
on semiconductor or ferrites technologies. High material and 
fabrication expenses, as well as high RF losses associated with 
the materials, hinder their applications [6]. Distributed MEMS 
transmission line (DMTL) phase shifter was first proposed by 
Barker and Rebeiz [7] using a quartz substrate .A series of 
MEMS airgap bridge varactors are placed over a coplanar 
waveguide (CPW) transmission line. Phase shifts are created 
by phase velocity changes induced by altering bridge parallel-
plate capacitances.   

There are two classes of RF MEMS phase shifters namely 
analog and digital. The analog phase shifters provide a 
continuous variable phase shift from 0 to 360◦ using varactor 
capacitive switches [7]; whereas the digital phase shifters 
provide a discrete or quantized set of phase delays with 1 bit 
180◦, 2 bit 180◦/90◦ set of delay networks which allow phase 

shifts of 0, 90, 180 and 270◦ depending on the combination of 
bits used [8]. When comparing to the other topologies, the 
distributed MEMS transmission line (DMTL) phase shifter on 
silicon wafer has the advantage of low cost, low loss and small 
size. In addition, the DMTL phase shifters demonstrated in 
this work have better performance [9] on simple coplanar 
waveguide (CPW) transmission lines because CPW based 
phase shifters are uniplanar. This is one of the main 
advantages as only one side of the substrate is used; 
eliminating the need for via-hole process and simplifying the 
fabrication and integration process with other components[10]. 

Though the phase shifting technique has many advantages, 
it is marred by a few inaccuracies due to the vibration and 
mechanical movement of the phase shifter itself. Much of the 
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where rσ is the biaxial residual stress [15], and υ is the 
Poisson’s ratio. Assuming the stretching and residual stresses 
effects, the governing differential equation takes the following 
form: 
 

[ ] ( )
( )

2

2

2

2

2

4

4

,2
~

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
∂
∂

+−
∂
∂

+
∂
∂

+
∂
∂

txwd
tVb

x
wNN

t
wc

t
wbh

x
wIE ra

ερ              (7)                  

 
For convenience in analysis, this equation must be non-

dimensionalized.In particular, both the transverse 
displacement, w, and the spatial coordinate, x , are normalized 
by characteristic lengths of the system and thegap size and 
beam length,respectively,accordingto: dww /ˆ = and

lxx /ˆ = .Tim is non-dimensionalized 
byacharacteristicperiodofthesystemaccordingto: */ˆ ttt = with 

( ) 2/14* ~/ IEbhLt ρ= . 
Substituting these parameters into Eq. (7), the following 

nondimensional equation is obtained: 
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The non-dimensional parameters appeared in Eq. (8) are: 
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II. NUMERICAL SOLUTION 

A.  Static Analysis 
In the static analysis there is no exist time derivatives, so 

using Eq. 8 the governed equation describing the static 
deflection of the microbeam can be obtained as follow: 
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where the ( )xws ˆˆ  for fixed-fixed end microbeam must be 

satisfied same boundary condition as mentioned in Eq. (2). 
Due to the nonlinearity of derived equation, the solution is 
complicated and time consuming. Direct applying Galerkin 
based reduced order model create a set of nonlinear algebraic 
equation. In this paper we use a method to solve it which 
consists of two steps. In first step, we use step by step 
linearization method (SSLM), and in second, Galerkin method 
for solving the linear obtained equation is used. Because of 
considerable value of ŵ respect to initial gap especially when 
the applied voltage increases, the linearizing respect to ŵ , 

may cause some considerable errors, therefore, to minimize 
the value of errors, the method of step-by-step applied voltage 
increasing is proposed and the governing equation is 
linearized at each step [16]. To use SSLM, it is supposed that 
the s

kŵ  , is the displacement of beam due to the applied 
voltage kV . Therefore, by increasing the applied voltage to a 
new value, the displacement can be written as: 
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Therefore, Eq. (10) can be rewritten as follow: 
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By considering small value of δV , it is expected that ψ 

would be small enough, hence using of Calculus of Variation 
Theory and Taylor’s series expansion about kŵ , and applying 
the truncation to first order of it for suitable value of δV , it is 
possible to obtain desired accuracy. The linearized equation to 
calculate ψ can be expressed as: 
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where variation of the hardening term based on Calculus 
Variation Theory can be expressed as: 
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By considering small value of δVˆ and as a result ( )x̂ψ

,multiplying aN̂δ to   22 ˆ/ xdd ψ would be small enough that 
can be neglected. The obtained linear differential equation is 
solved by Galerkin based reduced order model. ( )x̂ψ based 
on function spaces can be expressed as: 
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where ( )xj ˆϕ is the ith shape function that satisfies the 

boundary conditions. The unknown ( )x̂ψ  , is approximated 
by truncating the summation series to a finite number, n: 
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By substituting the Eq. (17) into Eq. (14), and multiplying 
by ( )xi ˆϕ as a weight function in Galerkin method and then 

integrating the outcome from 0ˆ =x  to 1 , the Galerkin based 
reduced-order model is generated. 

 
 
B. Dynamic Analysis 
 
In the numerical solution it is considered that the 

microbeam is deflected by a DC voltage, VDC and then the 
dynamic characteristics and forced response of the system 
considered about these conditions. So total deflection of the 
microbeam consists of two parts as: 
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( )xws ˆˆ introduces the static deflection of the beam and 

( )txwd
ˆ,ˆˆ  denotes the dynamic deflection about ( )xws ˆˆ .  

Because of the applied AC voltage in the model is small 
enough than DC voltage   DCAC VV << by linearizing Eq. 8 

about calculated ( )xws ˆˆ  small linear vibrations are studied by 
following equation: 
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where ACVV =δ and dww =δ : The ACV is small AC 

voltage and equal to ( )tV ωsin0 and ω is excitation 
frequency. 

 
Subtracting Eq. 19, the linearized equation of motion about 

equilibrium position can be obtained in the following form: 
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In order to solve this equation, a Galerkin based 

reducedorder model can be used [17]. So dŵ can be expressed 
as: 
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where ( )xj ˆϕ is the jth shape function that satisfies the 

boundary conditions. The unknown ( )txwd
ˆ,ˆˆ ; can be 

approximated by truncating the summation series to a finite 
number, N: 

   ( ) ( ) ( )xtTtxw j

N

j
jd ˆˆˆ,ˆˆ

1

ϕ∑
=

=                                         (22)                    

 
In this paper, ( )xj ˆϕ  is selected as the jth undamped linear 

mode shape of the straight microbeam. By substituting the Eq. 
22 into Eq. 20 and multiplying by ( )xi ˆϕ  as a weight function 
in Galerkin method and then integrating the outcome from 

0ˆ =x  to 1; the Galerkin based reducedorder model is 
generated as: 
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where mechKCM ,,  and elecK are mass, damping, 

mechanical and electrical stiffness matrixes, respectively. Also 
F  introduces the forcing vector. The mentioned matrices and 
vector are given by: 
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The same procedure is used to study the response of the 
system to the step DC voltage, where the equation 23 is 
written as follow: 
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where F introduces the forcing vector as follow: 
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Now, equation 25 can be integrated over time by various 
integration methods such as Rung-Kuta method where 

)ˆ,ˆ(ˆ txw
t

in each time step of integration take the value of 
previous step.  

By applying the procedures mentioned, the static and 
dynamic stabilities and frequency response of the system is 
gained.  
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C. Phase Diagram 
It is known that there is a phase shifting, ϕ  between the 

applied AC voltage and harmonic vibration of the microbeam. 
For study the phase diagram under various damping ratios and 
DC voltages the following formula is applied: 
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where nω and ω  are fundamental and excitation frequency 

of the system. ξ  is the damping ratio. The fundamental 
frequency is varied by variable DC voltage. 

 

III.  RESULTS & DISCUSSION 
For verification of our numerical solution it is considered a 

microbeam with the geometric and material properties listed in 
table 1. 
 

TABLE I THE VALUES OF DESIGN VARIABLES 
           Design Variable Value 

                    B mμ50  

                    H mμ3  

                    D mμ1  

                    E 169GPa 

                   ρ  2331kg/ 3m  

                   ε  8.85PF/m 

                   V 0.06 

 
In table 2 and 3 it is compared the calculated pull-in voltage 

with previous works for the fixed-fixed and cantilever 
microbeams with properties of table 1, respectively. 
 

TABLE II COMPARSION OF THE PULL-IN VOLTAGE FOR A FIXED-
FIXED MICROBEAM 

 Residual 
stress 
(MPa) 

Our 
residual  

Energy 
model 
[18] 

MEMCAD 
[18] 

L=350 0 
100 
-25 

20.1V 
35.3V 
13.8V 

20.2V 
35.4V 
13.8V 

20.3V 
35.8V 
13.7V 

L=250 0 
100 
-25 

39.5V 
57.3V 
33.4V 

39.5V 
56.9V 
33.7V 

40.1V 
57.6V 
33.6V 

 

TABLE III  COMPARSION OF THE PULL-IN VOLTAGE FOR A 

CANTILEVER MICROBEAM ( mL μ150=  ) 
 Our result Cosolve 

simulation 
[18] 

Closed 
form 
2D 
model 
[18] 

Pull-in 
Voltage(v) 

17.0 16.9 16.8 

 
It is shown that the calculated pull-in voltages are in good 

agreement with previous works. For validation of dynamic 
results with previous works, a fixed-fixed microbeam is 
considered with the specifications of the pressure sensor used 
by Hung and Senturia [19]: 

E =149 GPa , 3/2330 mkg=ρ , mL μ610= , 
mb μ40= , mh μ2.2= and md μ3.2= . 

Because h is given as a nominal value, it is modified to 
match the experimental pull-in voltage .Accordingly, 
thickness is obtained mh μ135.2= . They have considered a 
residual stress of -3.7 MPa. 

 

 
Fig. 3. Comparison of the pull-in time for no damping case 

without the stretching effects. 

 
In fig. 3 the calculated pull-in time obtained using proposed 

method is compared with the theoretical and experimental 
results of Hung and Senturia [19] for various values of step 
DC voltage. The pull-in time is found by monitoring the beam 
response over time for a sudden rise in the displacement; at 
that point the time is reported as the pull-in time [20]. As 
figure 2 illustrates, calculated results are in excellent 
agreement with the theoretical and experimental results. It is 
shown that for no damping case before V= 8.18 V the pullin 
instability dos not occur, so this step DC voltage can be 
introduced as dynamic pull-in voltage for the microbeam. 

Figure 4 illustrates the frequency response of the system for 
various DC voltages. It is shown that increasing the DC 
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voltage shifts left the frequency diagram. Because, increasing 
the DC voltage decreases the stiffness and consequently the 
fundamental frequency of the system. Also due to the 
decreasing of the stiffness, maximum amplitude of the 
microbeam increases. Also, the rate of the frequency shifting 
and amplitude increasing is raised near the pull-in voltage. 
This can be due to the higher rate of stiffness decreasing near 
the pull-in voltage     

 
Fig. 4. the frequency response of the system for various Vdc 
 
 
Figure 5 shows the phase diagram of the system versus 

various damping ratio. It is shown that the higher damping 
shifts right the diagram. In figure 6, it is illustrated that by 
increasing the applied DC voltage phase diagram shifts left. 

 
 

 
Fig. 5. Phase Diagram for Various Damping Ratios 

 
 

 
Fig. 6. Comparison of the pull-in time for no damping case 

without the stretching effects. 

 
IV. CONCLUSION 

In the presented work static and dynamic response of a 
micro-vaactor of a phase shifter to DC, step DC and AC 
voltages were studied. By presenting a mathematical modeling 
Galerkin-based step by step linearization method (SSLM) and 
Galerkin-based reduced order model were used to solve the 
governing static and dynamic equations, respectively. Then by 
applying these methods static and dynamic pull-in voltages 
were obtained and validated by previous experimental and 
theoretical results and a good agreement were achieved. It was 
shown that applying a DC voltage shifts left the frequency 
response. It was concluded that it can be due to the decreasing 
of the total stiffness of the system.  Finally, the effects of the 
applied DC voltage and damping on the phase diagram were 
studied. It was illustrated that the DC voltage and damping 
ratio shifts down and up this diagram, respectively.  

Then the frequency response and phase diagram of the 
system has been studied. It has been shown that applying the 
DC voltage shifts down the phase diagram and frequency 
response. Also increasing the damping ratio shifts up the 
phase diagram. 
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