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Abstract The conventional GA combined with a local search

algorithm, such as the 2-OPT, forms a hybrid genetic algorithm (HGA)

for the traveling salesman problem (TSP). However, the geometric

properties which are problem specific knowledge can be used to

improve the search process of the HGA. Some tour segments (edges)

of TSPs are fine while some maybe too long to appear in a short tour.

This knowledge could constrain GAs to work out with fine tour

segments without considering long tour segments as often.

Consequently, a new algorithm is proposed, called intelligent-OPT

hybrid genetic algorithm (IOHGA), to improve the GA and the 2-OPT

algorithm in order to reduce the search time for the optimal solution.

Based on the geometric properties, all the tour segments are assigned

2-level priorities to distinguish between good and bad genes. A

simulation study was conducted to evaluate the performance of the

IOHGA. The experimental results indicate that in general the IOHGA

could obtain near-optimal solutions with less time and better accuracy

than the hybrid genetic algorithm with simulated annealing algorithm

(HGA(SA)).

Keywords Traveling salesman problem, hybrid genetic

algorithm, priority selection, 2-OPT.

I. INTRODUCTION

HE traveling salesman problem (TSP) is: Given a number

of cities and the distances (costs) of traveling from any city

to any other city, find a minimum-length closed tour that visits

each city exactly once and then returns to the starting city. The

TSP has been known to be NP-hard that can not be solved

within polynomial time [4]. However, heuristic algorithms such

as the genetic algorithm (GA), could obtain near-optimal

solutions within reasonable time. The GA searches feasible

solutions with global perspective based on an analogy to the

evolutionary principle of natural chromosomes. The

conventional GA incorporates with a local search heuristic

algorithm, such as 2-OPT, is called the hybrid genetic algorithm

(HGA) [6]-[8], which makes the GA more powerful. The 2-OPT

proposed by Croes [3] is a simple and widely used local search

algorithm for TSP based on edges (tour segments). The

algorithm starts with an arbitrary tour and gradually improves

this tour by exchanging two of the tour segments with two other
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ones in the tour.

Cities of the TSP have some geometric properties which are

problem specific knowledge [2], [5], [10]. The properties can be

utilized to improve the search process of the GA. Because most

of the tour segments are too long to appear in short tours, this

information can guide the GA to focus more on short tour

segments than long ones. Thus, all the tour segments are divided

into two separate sets: the candidate set and the non-candidate

set. The tour segments in the candidate set would have higher

priorities than those in the non-candidate set.

For solving TSPs more efficiently, the proposed

intelligent-OPT hybrid genetic algorithm (IOHGA) consists of

three strategies: the skewed production (SP), the fine subtour

crossover (FSC), and the intelligent-OPT (IOPT) in addition to

the exchange mutation (EM) [1]. The three strategies are

devised based on the concept of the 2-level priority scheme. The

SP is a construction heuristic which produces initial tours with

lower costs. The FSC is a crossover operator which finds the

candidate fine tour segments in parents and preserves them for

descendants. The IOPT is a local search algorithm which

implements the 2-OPT search process more efficiently.

A simulation study was conducted to evaluate the

performance of the IOHGA. The experimental results show that

in general the IOHGA can provide near-optimal solutions with

less time and much better accuracy than the hybrid genetic

algorithm with simulated annealing algorithm (HGA(SA)) [8].

The remainder of this paper is organized as follows. Section

II introduces the concept of the minimal tour segment. The

proposed IOHGA is presented in Section III. The simulation

results are provided in Section IV followed by some concluding

remarks in Section V.

II. MINIMAL TOUR SEGMENT

It is difficult to identify the possible tour segments that are

short for different TSP problems. According to the analysis, a

high percentage, about 45%, of the tour segments in an optimal

tour of the benchmark instances in TSPLIB [10] is local optimal.

Therefore, the local optimal tour segment can be utilized to

identify whether tour segments are candidate fine tour segments

or not. A tour segment Si,j with the minimum cost of all the tour

segments emanating from city i is called the minimal tour

segment (MTS); otherwise, it is called the non-minimal tour

segment (NMTS). Thus, an MTS Si,j is a local optimal tour

segment for city i. The tour segments of the candidate set are

MTSs and those of the non-candidate set are NMTSs.

A Genetic Algorithm with Priority Selection for

the Traveling Salesman Problem

Cha-Hwa Lin and Je-Wei Hu

T



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2203

Fig. 1 The architecture of the proposed intelligent-OPT HGA

MTSs ought to have higher priority of appearing in a tour

than NMTSs because MTSs might offer more contribution for

the fitness of a tour than NMTSs. In the selection of tour

segments, therefore, MTSs are considered first. Based on this

idea, the conventional GA and 2-OPT local search algorithm

can be improved.

III. THE INTELLIGENT-OPT HYBRID GENETIC ALGORITHM

An intelligent-OPT hybrid genetic algorithm (IOHGA) for

TSPs is proposed in this study. Generally, GAs starts from a

population of chromosomes (solutions) at random as the first

generation of candidate solutions and evolves toward better

solutions by producing a new generation of chromosomes using

crossover and mutation operators based on the population of the

previous generation. In IOHGA (Fig. 1), chromosomes of the

first generation is generated in favor of low tour cost by the

skewed production (SP) in order to have better possible

solutions than random selection at the beginning. The fine

subtour crossover (FSC) is applied instead of the crossover

operator of the GA in an attempt to preserve worthy subtours for

offspring. The exchange mutation (EM) is utilized [1] to

provide maximal variations after mutation. Then, the

intelligent-OPT (IOPT) local search algorithm is implemented

by modifying 2-OPT to search feasible solutions in a more

efficient way.

A. The Skewed Production

The purpose of skewed production is to produce low cost

tours for the first generation and hence better offspring. If

chromosomes of the first generation with higher quality can be

produced in an intelligent way, much of the search time might be

saved to find an optimal solution. The SP is thus proposed to

increase the quality of population for the first generation and

accelerate search processes based on geometric properties of the

MTS. A comparison between a random production and a

skewed production of the first generation is depicted in Fig. 2.

The quality of a chromosome is evaluated by the fitness function

f(), which can be defined as

)(/1)( TcTf

where T is a complete tour and c(T) is the cost of a tour T. The

fitness of a tour increases while the cost of it decreases.
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Fig. 2 Distribution of the chromosomes produced at random and in a

skewed way in the solution space of a TSP
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Fig. 3 The flowchart of the skewed production

Fig. 4 An example of collecting MTSs in the SP

In the SP, individuals should be produced to favor some

characteristics in order to have higher fitness, but can not be

generated without randomness because the genetic evolution

needs difference among them. The preference of SPs is to

select tour segments with low cost to form complete tours. The

detail of how to create an individual with the preference is

described in the following.

A tour is composed of several tour segments. In order to

create a tour of lower cost, the determination of which tour

segment is worthy to be selected to form a complete tour is

needed. Because the minimal tour segments (MTS) are local

optimal tour segments, MTSs might offer more contribution for

the fitness of a tour than non-minimal tour segments (NMTS).

For a tour to have lower cost, therefore, MTSs might be worthy

to be selected as candidate tour segments. Namely, numbers of

MTSs in a tour might bring it a lower cost. According to this

reason, the number of MTSs in a tour is maximized to increase

the probability of producing a tour of lower cost. The proposed

skewed production (SP) attempts to control a GA searching the

global optimum by exploiting the local optimal tour segments.

The flowchart of the skewed production is shown in Fig. 3.

The Selection of MTSs

In the SP, MTS_Pool is a set of MTSs, tourPool is a

temporary storage keeping track of a set of subtours which

would become a complete tour where any two tour segments

having a same city number are joined together at that city, and

NMTS_Pool is a set of NMTSs. In the beginning, all the MTSs

are stored into MTS_Pool. MTSs are repeatedly picked from

MTS_Pool which have not been considered yet, and then

inserted into tourPool until there is no more MTSs in

MTS_Pool in order to maximize the number of MTSs in a tour.

Moreover, MTSs would be picked up randomly to keep the

variation among the resulting tours created by the SP.

An example of the selection of MTSs is shown in Fig. 4. The

MTSs S9,1, S8,2, S3,8, S7,3, S4,5, and S5,6 are inserted into tourPool

from MTS_Pool (Fig . 4a), respectively. After the insertion of

S5,6 (Fig . 4b), the tourPool is kept unchanged because that the

insertions of S0,2, S1,2, S2,1, S4,8, S6,5, S7,5, and S9,2 will result in a

cyclic subtour of the tourPool and these MTSs are ignored in

the following iterations. But there is still no complete tour in

the tourPool. The subtours in the tourPool have to be

connected to form a complete tour by NMTSs. The candidate

tour segments for tourPool to form a complete tour would be

- Searching direction
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- An individual of the skewed production

- An individual of the random production
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added into NMTS_Pool, which are all the NMTSs, because all

the MTSs have been considered.

The Selection of NMTSs

For the selections of NMTSs, three objective functions are

investigated. A tour might consist of not only MTSs but also

NMTSs as in the example mentioned above. How to choose

NMTSs which are worthy to be inserted into tourPool from

NMTS_Pool? In the SP, an objective function is used to

evaluate whether an NMTS is a fine tour segment worthy to be

inserted into tourPool or not. Conventionally, the objective

function o1() is defined as

NjiandScSo jiji ,)()( ,,1

where Si,j is a tour segment from city i to city j, c(Si,j) is the cost

of Si,j, and N is the set of all cities. An NMTS with a minimal

cost from city i would be chosen to be inserted into tourPool.

In this greedy manner the resulting tour might not be optimal

in the end. The NMTS chosen to be inserted into tourPool

might not contribute to form a complete tour of a lower cost as

expected. Therefore, o1() has to be modified in order to

evaluate NMTSs more accurately for a better selection and a

lower cost complete tour. More geometric properties could be

considered for the modification of o1(). Let us consider what

problems this greedy manner would encounter first. In order to

simplify the illustration of the non-optimal problem of this

greedy manner, the sample data of tourPool in Fig. 4b would

be used as in Fig. 5a. In the example, STi,j:c denotes that the

cost of subtour STi,j is c and T represents a complete tour. The

example illustrates how subtours ST4,6, ST7,2, and ST9,1 in

tourPool (Fig. 5a) are connected with the NMTSs selected

from NMTS_Pool (Fig. 5b) to form a complete tour based on

the cost of NMTSs. The number beneath a tour segment Si,j in

Fig. 5 is the value of o1(Si,j), which equals the cost of Si,j, c(Si,j).

The selection process using o1() is listed as follows.

1. Because o1(S2,0) = 5 is the minimal cost among the tour

segments in NMTS_Pool (Fig. 5b) and would not result in

a cyclic subtour, S2,0 would be chosen from NMTS_Pool

and inserted into tourPool. Then, ST7,2 is connected with

S2,0 to form ST7,0 having the cost of 23 (Fig. 5c). The tour

segments S1,0, S2,0, S2,4, S2,9, and S6,0 either emanating from

city 2 or terminating at city 0 are deleted from

NMTS_Pool after processing S2,0. The new tourPool

contains subtours ST4,6, ST7,0, and ST9,1 and the new

NMTS_Pool contains NMTSs S0,4, S0,7, S0,9, S1,4, S1,7, S6,7,

and S6,9.

2. Similarly, S0,7 would be chosen as the candidate tour

segment, but then ignored and deleted from NMTS_Pool

for the insertion of it into tourPool would result in a cyclic

subtour (Fig. 5d). Therefore, tourPool is unchanged.

3. S1,4 would be chosen from NMTS_Pool and inserted into

tourPool (Fig. 5e). Then, subtours ST4,6 and ST9,1 are

connected by S1,4 to form ST9,6 having the cost of 22. The

new tourPool contains subtours ST7,0 and ST9,6 and the

new NMTS_Pool contains NMTSs S0,9, S6,7, and S6,9.

4. S6,7 would be chosen from NMTS_Pool and inserted into

tourPool (Fig. 5f). Then, subtours ST7,0 and ST9,6 are

connected by S6,7 to form ST9,0 having the cost of 55. The

new tourPool contains a subtour ST9,0 and the new

NMTS_Pool contains an NMTSs S0,9.

5. Finally, S0,9 would be chosen from NMTS_Pool and

inserted into tourPool (Fig. 5g), and ST9,0 is connected

with S0,9 to form a T having the cost of 67. The new

tourPool results in a complete tour T with the cost of 67

and the new NMTS_Pool is empty.

In the above example, although the cost of S2,0 is quite low,

S1,4, S6,7, and S0,9 with cost of 7, 10, and 12 respectively, might

increase the cost of the tour much and reduce the quality of a

tour in next steps. In order to solve the problem, another

objective function is examined to evaluate the quality of tour

segments. The objective function o2() is defined as

NjiandScScSo jixi
Nx

ji ,)(/)(min)( ,,,2

where Si,j is an NMTS from city i to city j, Si,x is an MTS from

city i to city x, N is the set of all cities, c(Si,j) is the cost of Si,j,

and the range of o2(Si,j) is (0, 1]. For a city i, o2() is defined to be

the cost ratio of an MTS Si,x to an NMTS Si,j. The larger the

value of o2(), the higher the possibility of an NMTS Si,j being a

candidate fine tour segment and lower probability to be

replaced in the future, because Si,j has less variation between it

and an MTS Si,x. In other words, the NMTS Si,j is worthier to be

inserted into tourPool than the other NMTSs. Therefore, o2()

identifies the tour segment with a better probability to result in

a near-optimal tour.

The concept of o2() is depicted in Fig. 6, where ci,j is the cost

of tour segment emanating from city i to city j and ci is the cost

of the MTS emanating from city i. The NMTS Sw,z with a larger

value of o2() would have a higher probability to be a candidate

fine tour segment and not be replaced by others in the future,

because the variation between Sw,z and
wmwS ,

is smaller than

that between Sx,y and
xmxS ,
. Thus, Sw,z is worthier to be inserted

in tourPool than Sx,y. In Fig. 7, S0,7 is worthier to be chosen than

S2,0 because o2(S0,7) = 0.50 > o2(S2,0) = 0.40.

Fig. 8 shows the tourPool given in Fig. 5a are connected by

tour segments to form a complete tour using o2(). The selection

process is listed as follows.

1. Because o2(S0,7) = 0.50 is the largest value of o2() among

the tour segments in NMTS_Pool (Fig. 8b) and would not

result in a cyclic subtour, S0,7 is chosen from NMTS_Pool

and inserted into tourPool. Then, ST7,2 is connected with

S0,7 to form ST0,2 having the cost of 24 (Fig. 8c). The tour

segments S0,4, S0,7, S0,9, S1,7, and S6,7 either emanating from

city 0 or terminating in city 7 are deleted from

NMTS_Pool after processing S0,7. The new tourPool

contains subtours ST0,2, ST4,6, and ST9,1 and the new

NMTS_Pool contains NMTSs S1,0, S1,4, S2,0, S2,4, S2,9, S6,0,

and S6,9.

2. Similarly, S2,0 would be chosen as the candidate tour

segment, but then ignored and deleted from NMTS_Pool

for the insertion of it into tourPool would result in a cyclic

subtour (Fig. 8d). Therefore, tourPool is unchanged.

3. S6,9 would be chosen from NMTS_Pool and inserted into
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Fig. 5 An example of connecting tour segments to form a complete tour by a greedy manner o1()
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Fig. 6 The concept of the objective function o2()

Fig. 7 An example of the objective function o2()

tourPool (Fig. 8e). Then, subtours ST4,6 and ST9,1 are

connected by S6,9 to form ST4,1 having the cost of 24. The

new tourPool contains subtours ST0,2 and ST4,1 and the

new NMTS_Pool contains NMTSs S1,0, S1,4, and S2,4.

4. S2,4 would be chosen from NMTS_Pool and inserted into

tourPool (Fig. 8f). Then, subtours S0,2 and ST4,1 are

connected by S2,4 to form ST0,1 having the cost of 56. The

new tourPool contains subtour ST0,1 and the new

NMTS_Pool contains an NMTS S1,0.

5. Finally, S1,0 would be chosen from NMTS_Pool and

inserted into tourPool (Fig. 8g). Subtours ST1,0 are

connected with S1,0 to form a tour T having the cost of 64.

The new NMTS_Pool is empty. The new tourPool results

in a complete tour T with a cost smaller than that of using

o1().

Thus, o2() makes the selection of NMTSs better than o1().

However, when NMTSs with different costs have the same

value of o2(), one of them would be randomly selected as the

candidate tour segment which might not contribute to form a

complete tour with a lower cost.

The concept of this overcorrect situation is depicted in Fig.

9. Suppose the NMTSs Sx,y and Sw,z have the same value of o2()

= 2 which means that the variation between Sx,y and

xmxS ,
equals that between Sw,z and

wmwS ,
, but the cost cx,y is

smaller than cw,z. Sx,y should have a higher probability of being

a candidate fine tour segment than Sw,z. However, this

information is not reflected by o2(). To solve the problem, a

new objective function o3() is defined as

NjiandScScSo xi
Nx

jiji ,)(min/)()( ,
2

,,3

where Si,j is an NMTS from city i to city j, Si,x is an MTS from

city i to city x, N is the set of all cities, and c(Si,j) is the cost of

Si,j. The smaller the value of o3(), the better an NMTS to be

selected as a candidate tour segment and inserted into

tourPool.

Although o3() is the inverse of o2() multiplied by the cost of

the tour segment in consideration, the inverse of o2() plays a

different role as the weight for a tour segment. An illustrative

example to form a complete tour using o3() is shown in Fig. 10

and explained in detail as follows.

1. Because o3(S0,7) = 12 is the smallest value of o3() among

the tour segments in NMTS_Pool (Fig. 10b) and would not

result in a cyclic subtour, S0,7 is chosen from the

NMTS_Pool and inserted into tourPool. Then, ST7,2 is

connected with S0,7 to form ST0,2 having the cost of 24 (Fig.

10c). The tour segments S0,4, S0,7, S0,9, S1,7, and S6,7 either

emanating from city 0 or terminating in city 7 are deleted

from the NMTS_Pool after processing S0,7. The new

tourPool contains subtours S0,2, ST4,6, and ST9,1 and the

new NMTS_Pool contains NMTSs S1,0, S1,4, S2,0, S2,4, S2,9,

S6,0, and S6,9.

2. Similarly, S2,0 would be chosen as the candidate tour

segment, but then ignored and deleted from NMTS_Pool

for the insertion of it into tourPool would result in a cyclic

subtour (Fig. 10d). Therefore, the tourPool is unchanged.

3. S2,9 would be chosen from the NMTS_Pool and inserted

into tourPool (Fig. 10e). Then, subtours ST0,2 and ST9,1 is

connected by S2,9 to form ST0,1 having the cost of 39. The

new tourPool contains subtours ST0,1 and ST4,6 and the

new NMTS_Pool contains NMTSs S1,0, S1,4, and S6,0.

4. S6,0 would be chosen from the NMTS_Pool and inserted

into tourPool (Fig. 10f). Then, ST4,6 is connected with S6,0

to form ST4,0 having the cost of 17. The new tourPool

contains subtours ST0,1 and ST4,0 and the new NMTS_Pool

contains an NMTS S1,4.

x
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Fig. 8 The subtours are connected by tour segments to form a complete tour using o2()
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Fig. 9 The concept of the overcorrect situation

5. Finally, S1,4 would be chosen from the NMTS_Pool and

inserted into tourPool (Fig. 10g). Subtours ST0,1 and ST4,0

are connected with S1,4 to form a tour T having the cost of

63. The new NMTS_Pool is empty. The new tourPool

results in a complete tour T with a cost smaller than that of

using o1() or o2().

B. The Fine Subtour Crossover

The fine subtour crossover (FSC) is a genetic operator using

priority selection from a repository of candidate fine subtours. A

candidate tour may consist of both fine and bad tour segments.

The FSC attempts to retain segments worth preserving for the

offspring. The idea behind the strategy is that the probability for

a low cost tour to be a near-optimal solution might be increased

if it contains more fine tour segments. The recognition of fine

tour segments plays an important role in the process of the FSC.

An MTS Si,m has more likelihood of being a fine tour segment

than an NMTS for Si,m is a local optimum of all the tour

segments emanating from city i. To obtain a low cost tour, the

priority of preserving an MTS for the offspring is thus higher

than that of preserving an NMTS.

In addition to MTSs, some NMTSs might be fine tour

segments based on the problem inputs. More information can be

obtained for making decisions from the tour structures. The

structure similarity between lower cost tours that lead to

near-optimal solutions implies that the common tour segments

among tours might worth to be inherited by the offspring. Tour

segments in two distinct tours F and S have the same terminal

cities are called common tour segments; otherwise, they are

non-common tour segments. For example, tour segments Sx,y in

F and Sy,x in S are considered as common tour segments. The

common NMTSs in parents might be fine tour segments for the

next generation.

Therefore during the genetic evolution process, the useful

information by analyzing geometric properties of tour structures

can be obtained to decide whether a tour segment is a candidate

fine tour segment and also their priorities. The priority order of

a tour segment being viewed as a candidate fine tour segment

and inherited by the offspring is listed as: 1. Common MTSs, 2.

Non-common MTSs, 3. Common NMTSs, and 4. Non-common

NMTSs.

How to choose among tour segments if they have the same

order as a candidate fine tour segment? Based on the geometric

properties, non-common MTSs of the two parents are

considered according to their costs while the common NMTSs

and non-common NMTSs of the two parents are considered by

o3() defined in Section III. A.

The FSC is much similar to the complete subtour exchange

crossover (CSEX) [7]. The same purpose of both the FSC and

the CSEX is to find the tour segments which are worthy to be

preserved for descendants. The difference between the FSC and

the CSEX is that the FSC emphasizes on that MTSs have higher

priority than NMTSs to be inherited from parents, while the

CSEX considers all tour segments are equally fair.

C. The Intelligent-OPT

Although some derivations of 2-OPT, such as LK heuristics

[9], are proposed to improve the efficiency of the 2-OPT search

process, the complexities of the algorithms are increased. In

contrast, the proposed intelligent-OPT (IOPT) could not only

improve the efficiency of the 2-OPT search process but also

maintain the simplicity of the algorithm. The flowchart of the

intelligent OPT is shown in Fig. 11.

In 2-OPTs, the recombination would take place only when it

can reduce the cost of the tour. Two tour segments might be

chosen and checked without doing any exchanges. The random

selections might spend a lot of time for nothing. Therefore,

random selections of the 2-OPT search process are considered

less efficient than directed selections. The proposed IOPT

attempts to guide the selection of 2-OPT search process to

promising directions such that the search time of finding a local

optimal solution could be reduced.

The information of geometric properties could be used for

guiding the selection of the two edges in a more intelligent way.

A tour is composed of MTSs and NMTSs. By observation, an

exchange of an MTS with an NMTS in the 2-OPT search

process might be inappropriate because the exchange would

increase the cost of the tour. Furthermore, an exchange of an

MTS with another MTS in the 2-OPT search process would

gain no benefit because an MTS is a local optimum of all the

tour segments emanating from the same city. An NMTS is more

appropriate to be exchanged with some other tour segment

z
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mwwmx

o2(Sxy) = 2 o2(Sxy) = 2

x y

w z

MTS

NMTS Sx,y : cx,y

xmx cS
x

:,

NMTS Sw,z : cw,z

MTS wmw cS
w

:,



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2210

Fig. 10 The subtours are connected by tour segments to form a complete tour using o3()

(a) Subtours ST4,6, ST7,2, and ST9,1 in tourPool without city 0 (same as Fig. 8a)
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Select the worst NMTS A by w()

Select segment B which can

maximize the improvement

B exist?

Any NMTS

not considered?

2-OPT exchange

End

Y

N

Y

N

Start

Fig. 11 The flowchart of the intelligent OPT

which might be an MTS or an NMTS based on this reason. The

IOPT would first find an NMTS which is worthy to be replaced,

and then find some tour segment that could reduce the tour cost

maximally by utilizing the 2-OPT exchange. The process is

repeated until the stopping criterion is reached.

Which NMTS in a tour should be chosen for replacement?

For example, suppose an MTS Sa,m emanates from city a and an

NMTS Sa,b emanating from city a to city b has the highest cost.

That is, the cost variation between Sa,m and Sa,b is maximum in

considering all the tour segments emanating from city a only.

For city a, therefore, the NMTS Sa,b is the worst tour segment

and ought to be displaced in a tour. The NMTS Sa,b if replaced

might make more improvement on the fitness of a tour than any

other tour segments emanating from the same city. Furthermore,

in order to choose the worst tour segment to be replaced among

all the NMTSs of a tour, the cost variation between an MTS Sa,m

and any Sa,b of NMTSs should be normalized. The cost variation

of a tour segment Si,j after normalization, w(Si,j), can be

expressed as

NjiandScScSw mi
Nm

jiji ,)(min/)()( ,,,

where N is the set of all cities, Si,j is a tour segment emanating

from city i to city j, and c(Si,j) is the cost of tour segment Si,j. An

NMTS with the largest value of w() is the worst tour segment

and would be replaced first in the IOPT search process to reduce

the cost of a tour.

The value of w() is the cost ratio of an NMTS to an MTS,

which represents the normalized variation between them. In a

word, the purpose of the IOPT search process is to refine the

worst tour segment of the tour repeatedly towards an optimal

solution.

IV. SIMULATION RESULTS

A prototype system of the proposed IOHGA has been

constructed and implemented. In the simulation study, the

algorithms of the IOHGA written in JAVA were performed on

an Intel 80*86 desktop computer with a Celeron 2.80 GHz

processor and 480 MB RAM, running under Windows XP. To

demonstrate the effectiveness of the IOHGA, 14 benchmark

files (instances) from 51-city to 439-city of TSPLIB [10] were

tested in comparison with the hybrid genetic algorithm with

simulated annealing algorithm (HGA(SA)) proposed by

Katayama and Narihisha [8] using the same parameter settings

as the HGA(SA). The benchmark instances are Euclidean cases

of TSP problems. The HGA(SA) employed the complete

subtour exchange crossover and incorporated with the

simulated annealing algorithm as the metaheuristic.

The error rate of the obtained near-optimal solution is

calculated by

(%)100
optimal

optimalobtained

Cost

CostCost
RateError

In the experiments of the HGA(SA), the population size is set

to be 10, the crossover rate is set to be 1.0, and the number of

generations (NG) is set to be 200. Because the experiments of

HGA(SA) were implemented on an S-4/5workstation

(microSPARC , 110 MHz), the CPU time of the HGA(SA)

has to be adjusted for comparison purpose. An original CPU

time of HGA(SA) is multiplied by 110 and then divided by 2800

to obtain a relative CPU time compatible with the Intel 80*86

desktop computer. The CPU time of instances kroA100,

kroA150, and rd100 is not given in the HGA(SA) .

The comparisons of the minimal, the maximal, the average

error rates, the number of times that obtained the optimal

solution in 10 runs (Opt/10 Runs), and the CPU time between

the two algorithms are shown in Figs. 12 to 16, respectively.

The IOHGA yield better accuracy than those of the HGA(SA) in

general except for pr107. Moreover, the IOHGA spends less

CPU time to obtain best solutions than the HGA(SA) except for

lin318 and pr439.

The CPU time of either IOHGA or HGA(SA) increases

quickly as more cities are considered because the search space

of the TSP problem is much larger. In HGA, most CPU time is

spent by the local search heuristic. Therefore, the HGA(SA)

adopted a small population size in order to reduce the CPU time.

But from the perspective of genetic evolution, a small

population size would make a premature convergence on a local

optimum. Furthermore, if the population size is larger the

premature convergence resulted from the genetic assimilation

problem would not affect the IOHGA search process as much

which might bring even better results.

V. CONCLUSION

In this paper, a new hybrid genetic algorithm using priority

selection is presented for solving the traveling salesman

problem. To improve the search process for the optimal solution

without considering long tour segments as often, the proposed

IOHGA constructs the geometric properties of the problem in a

2-level priority scheme as the underlining concept for devising

three strategies: the skewed production, the fine subtour

crossover, and the intelligent-OPT. Simulation results show that

the accuracy of IOHGA is much better than that of HGA(SA).

By using the 14 problem instances taken from TSPLIB, the

average error rate of IOHGA is reduced from 8.46%/14 =

0.60% to 4.48%/14 = 0.32%; while the average CPU time is

reduced from 322.81/11=29.34s to 295.96/11=26.90s when the
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Fig. 15 The number of times obtaining optimal solution in 10 runs
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Fig. 16 The CPU time

three instances with unknown CPU times in HGA(SA) are

excluded. Thus, the IOHGA improves the accuracy by 47%.

Furthermore, the CPU time of IOHGA is reduced by 8.32%. If

the case is not focused on the optimal solution, the IOHGA can

provide near-optimal solutions more effectively.

The IOHGA might be incorporated with some clustering

algorithm and applied to mobile agent planning problems in a

real-time environment. However, the IOHGA could not handle

large scale TSPs very well. Pruning hopeless expensive tour

segments might reduce the searching space. Besides, more

priority levels for classifying the tour segments could be

considered in future studies.
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