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Abstract—A new technique of topological multi-scale analysis is 

introduced. By performing a clustering recursively to build a 
hierarchy, and analyzing the co-scale and intra-scale similarities, an 
Iterated Function System can be extracted from any data set. The study 
of fractals shows that this method is efficient to extract 
self-similarities, and can find elegant solutions the inverse problem of 
building fractals. The theoretical aspects and practical 
implementations are discussed, together with examples of analyses of 
simple fractals. 
 

Keywords—hierarchical clustering, multi-scale analysis, 
Similarity hashing. 

I.  INTRODUCTION 

A. Multi-scale analysis 

 
ULTISCALE analysis is the mathematical modeling of 
phenomena from the point of view of scales. The growing 

interest in non-linear equations has created a need to understand 
how systems react to scaling. Multiplying all coefficients by a 
ratio in a linear equation does not change the over whole 
behaviour; whereas scaling a non-linear equation may lead to 
drastic changes: as scale increases, dynamical systems may be 
subject to chaotic behaviours on complex attractors. 

In order to simplify the representation of these systems, 
models have incorporated conditions of their stability 
(Hyperbolic systems with stable and unstable manifolds[1]), or 
conditions of plural stability (bifurcation theory[2]) , their 
geometric properties in their phase space [3], and finally, of 
their statistical multi-scale behaviour[4]. Current efforts aim 
toward the interpretation of geometric properties at multi-scales 
(notably multi-fractals[5]). 

 
Multiscale also refers to systems which are the result of the 

interaction of a large number of agents, as in multi-physics 
phenomena. To model a physical problem of higher complexity, 
at each scale is applied a corresponding physical model. This 
technique has been used extensively in weather forecast[6]. 
Multi-scale analysis appears to be a transversal approach to 
numerous scientific domains, from complex networks, with 
small-world networks[7] and fractal machines[8], to the extent 
of the unification theory, with the invariant set postulate[9]. 

In this paper, a new technique of geometrical multiscale 
similarities will be introduced, performing a recursive similarity 
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hashing, based on the hierarchical clustering of data set. This 
method can solve the inverse problem of building fractals, and 
be applied more generally to any data, in order to extract 
co-scale similarities (redundant patterns in a given scale), and 
trans-scale dependencies (the variation of properties according 
to the scale); which provides a theoretical framework to study a 
vast horizon of phenomena. 

B. Related work 

Wavelet analysis, by finding the repetition of intensity in the 
plan, and taking into account the scale factor, have a practical 
application in image compression [11]. For the study of 
multi-fractals[12], wavelets can find a spectrum of the 
self-similar intensities; not taking into account the geometrical 
features of sub elements. 

In terms of similarity analysis applied to fractal data set, 
similarity hashing [13] explores the frequency of all possible 
transformations (as translations, rotations between all pairs of 
elements); which provides a spectrum with a majority of 
redundant or hardly representative mappings coding 
self-similarities. All other attempts of solving the inverse 
problem of building fractals, ranging from the “moments 
method”[14], wavelet analysis[15], to genetic algorithm[16], do 
not provide an analysis depending on the scale; they however 
provide prototypes of models to understand fractals. 

More recently[17], a hierarchical decomposition of data set 
achieved by a succession of dilatations and contractions have 
yielded interesting results, showing that the self-similar parts of 
a fractal can be identified, or clustered. The optimal method to 
achieve this clustering is one of the topics of this paper. 
Clustering techniques, as SVM-RFE[18], density clustering[19] 
do not provide the right answer for a recursion analysis of 
geometrical self-similarities. A clustering based on simple rules, 
and its heuristic implementation (to some extent similarly to the 
k-means[20] algorithm)  run recursively on self-similar data, 
can be used to rebuild a hierarchical structure and compute a 
simple representation of its self-similarities. 

In next section will be defined the Recursive Similarity 
Hashing technique, and introduced the Context-Dependant IFS, 
from which the conditions on the clustering in its 
implementation will be based. In section 4 are described the 
results of the analysis of fractal data. 
  

II.  RECURSIVE SIMILARITY HASHING 

A. Motivations and basic concepts 
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In the field of databases, hashing is the act of extracting, 
usually from a large amount of data, a smaller representation, of 
fixed sized, in order to organize this data. The data “hashed” is 
then classified according to a discriminating function, which 
will use a “key”, the hash key, to find the proper tables to 
distribute the data. Entries which are “closer” to one another are 
grouped in common tables. For example, a database storing 
clients according to their address, could use as a hash function 
the postal code, and as a discriminating function to put in the 
same table the clients with identical postal code. 

 
Similarity hashing (definition which differs from [13]) is 

based on a similar idea. Applied to a target data set, the hashing 
is applied to all possible combinations of groups of elements, 
and the “key” can be used to select the combinations of groups 
that have a potentiality to present similarities. 

Formerly, the data studied is represented by a vector space 

associated to a metric ),( dX n  (it could be for example the 

phase space of dynamical system, in  nℜ  with the Euclidian 

distance, ℵ∈n  the dimension). The hash function h  
operates on a combination of data points, and outputs a key, 
which could be a scalar, or more generally a vector: 

 
mnn YHXh e ⊂→)(:                       (1) 

 

Usually, the space Y is ℜ , nm < , and en  is the number 

of elements on which a key is defined. The term “hash 
function”, not just morphism, is used to emphasize the role of 
this function: to classify the data into groups. The grouping 

depends on the degree of similarity of two groups 1
~x  and 2

~x , 

where ennXx )(~∈  is a group of cardinal enxcard =)~( . 

The keys are then used to calculate a discriminating value, by 
applying a discriminating function D , comparing all the 

possible combinations of gn  keys, where gn  is the number of 

groups (of clusters) into which the data will be partitioned. If the 
combination has a potential to be a good one (under some 
criteria which will be detailed further), that is to say its partition 
into groups would contain similarities, then the discriminating 
value is higher: 

 

ℜ∈∈ )(: hDHhD gn
�

֏
�

          (2) 

 
It is important to note here that the discriminating function 

does not compare two groups, but the keys of a combination of 
groups which would be the best decomposition of the data into 
similar sets. The reason is subtle: if a kind a similarity function 
could be calculated, comparing two groups and returning a 
similarity indicator (a correlation), this would mean that there 
was a priori some knowledge about their similarities, in order to 
define this function. The discriminating function is of another 
kind: its definition is based on assumptions about the topology 

(in the space of the hash key) where similarities can be found, 
not about the similarities themselves. The key should (as in 
classical hashing) extract the relevant information to prepare the 
groups to be classified. The discriminating function should 
select the set of keys that have the best potentials. 

Before moving to the real application, a practical example 
will illustrate the concept of similarity hashing. A librarian is 
asked to classify cooking books. The wrong method would be 
for this librarian to compare pair by pair all the books, and 
decide on their resemblance:  all contain very different recipes, 
and even if some elements may be similar (two versions of an 
identical recipe for example), two books are hardly similar. The 
right method is to first decide on a hash function. For instance, 
select only the nationality of the author. Then the discriminating 
function would be to put on the same shelf books with identical 
culinary origins. Now that the books which are candidate to 
contain features of similarity have been selected, the librarian 
can find real similarities: fusion cuisine is similar to Californian 
and Japanese cuisine etc. 

B. Hierarchical clustering 

Before detailing the form of the hash and discriminating 
function, what criterion should be used to quantify the potential 
of containing features of similarities (the nationality of the 
author from the example above) ought to be determined.  

The archetype of a self-similar data is a fractal. In order to 
remain in the most general case, nothing about the aspect of the 
self-similarities will be implied; rather the topological aspects 
of where they could be found will be discussed. A fractal has the 
property to contain smaller parts (subparts) identical to larger 
ones. In this sense, a fractal is a multi-scale invariant (whereas a 
multifractal is a multi-scale variant). Therefore, selecting from a 
scale of a fractal will provide the elements of its similarities. 

In order to select from a scale, the fractal (which is a set a 
vector, with no organization in scale) must be decomposed into 
a hierarchy, with each level representing a scale. 

Supposing that there was a method to select the groups with 
best potential to carry similarity features. Recursively grouping 
these groups will generate a hierarchical clustering of the set 
studied. 

 

Fig. 1: hierarchical grouping of the Sierpinski gasket 
 

In the figure 1, from the 9 smaller triangles composing a 
Sierpinski gasket, 3 parent groups are formed, which are 
similar, then a parent group again similar. This decomposition 
creates a classification of the points into a tree, called hash tree. 
The red triangle has the coordinate )1,1,1(  in the tree of figure 
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2. The coordinate on the tree, at a scale l of a certain data point 

of index i is noted ),( ilc . 

 

 

Fig. 2: tree representing the hierarchical clustering of the Sierpinski 
gasket 

 

C. Conditions on the clustering, Hash and discriminative 
function 

 
To identify the groups with best potential of carrying 

similarity features, two properties of fractals are used: (1) Each 
parent group is composed of neighboring groups; (2) Groups 
are not overlapping, i.e. there are as far as possible from one 
another. 

By applying these conditions on the grouping, or clustering 
method, the potentiality of these clusters to contain features of 
self-similarity is optimized. 

The hash function of this Recursive Similarity Hashing is to 

compute the center of masses n
g Xx ∈  of all groups 

ennXx )(~∈ : 

 

∑
⊂

==
xx

eg xnxxh
~

)./1()~(  (3) 

 
The discriminative function is the calculation of the Root 

Mean Square (RMS) of the distances between centers for a 

configuration of grouping; all the data points are grouped by en  

tuplets, for all possible combinations of tuplets of size en  each:  

 

=)(hD
�

)),((
,)~(),~( jgigjiHxhxh

xxdRMS gn
ji ≠∈

 (4) 
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n
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 is one of the 

possible combinations of  gn  keys. 
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. 

(5) 
 
It is the RMS of the distances between the centers of masses 

for all possible combinations of groups. 

D. Center of Masses Optimization 

To accomplish the type of clustering described in the 
previous section, a technique called Center of Mass 

Optimization (CMO) is used. It consists in selecting gn  groups 

{ } { }g

e

ni
nn

i Xxx ,..,1)(~~
∈∈=

�
 for which the centers of masses 

gnHxh ∈)~(
��

 of all the group ennXx )(~∈  of en  elements 

are the furthest from one another: 
 

)))~(((maxarg ~ xhD
x

��
�=Κ ,            (6) 

 
The term maxarg is the argument of the maximum, i.e., the 

groups for which the discriminative function is maximal. The 
condition “is maximal” in the definition of Κ  means that the 

gn  groups respecting this condition are selected (and thus 

gnnX )(∈Κ ).  

In real applications, it is very unlikely that two combinations 
obtain an identical value from the discriminating function (due 
to noise in the observation at least). Therefore, the choice of the 
argument of the maximum is always unique in practical cases. 

The choice of en  and gn  will be discussed in the next section. 

E. Recursive clustering 

The process of selecting groups via CMO clustering is then 
recursively applied on the children groups found, to generate the 
next generation of groups. Step by step, an organization in 
hierarchy is constructed. 

The relation between parent groups (represented by the 
center of masses of the cluster) and children can be modeled by 
a weighted (directed from parent to child) graph ),( VEG = , 

where the edges E are the positions of the center of masses (or 
vectors themselves in the cases on singletons); the vertices V  
represent the relation parent-child. The weight function 

)(: VwVw →  returns in simple cases the distance between 

the parent and children nodes: 
 

),()),(( 2121 EEdEEVw =               (7) 

 
In more general cases, the weight function can return a cost 

function: in complex networks, the cost can be the band switch 
between the nodes (servers) etc. It is in fact a correlation 
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indicator between the parent and child node. 
The graph built has the shape of a Cayley Tree: starting from 

a point (the ancestor node), children nodes spread across the 
space, at each generation as far as possible from one another. 

 

 
 

Fig. 3: Cayley tree representing the hierarchy of the Sierpinski 
Gasket (the nodes are yellow dots, the vertices green lines) 

 
In the figure 3, all n  elements can be equally distributed 

between groups at each scale (or generation), each containing 

en  elements. In this particular case, due to the topology of the 

Sierpinski gasket, the number of elements  is lnn 3= , where 

ln  is the number of generations (in figure 3, 5=ln ); the 

choice 3=en  distributes all elements. In other cases, the data 

must be truncated in order to be formatted into a power of en . 

The case of not equally distributed groups will not be discussed 
here in further details. 

 

F. Context-Dependant IFS 

 
The decomposition in a hierarchy of fractals, achieved by 

Recursive Similarity Hashing, is the reverse process of building 
fractals in a hierarchy. A Context-Dependant Iterated Function 
System[22] is an operator building, from a starting point, a 
fractal organized in a hierarchy, or equivalently, an associated 
Cayley tree. This novel method differs from traditional Iterated 
Function Systems used to build fractals[10] by taking in 
consideration the context of the construction of a fractal set. 

Formerly, the definition of a Context-Dependant IFS Ψ  is 
the following: 

 

{ } { } { } ℵ⊂∈=⊂=
=Ψ

KkNMjNiji kkf
,,...,1,,...,1,' ,               (8) 

 

with N  being the number of initial mappings jif ,' . This 

operator is applied to a starting point nXx ∈0  to build a 

sequence of growing cardinal defined by the relation: 
 

ℵ∈+=∪
+ lxfxx j

lji
j

l
ji

l ),(' ,1             (9) 

The index i  represents the index of the mapping used to 

construct the vector 
ji

lx ∪
+1 , j  is the set composed of the 

indexes of the k  previous transformations iteratively 

composed to form the vector 
j

lx . The sequence built is thus 

indexed by their context in the recursion. The index k  

represents the memory of the system. In the case of ℵ=K , the 

IFS keeps memory of all the context, and consequently Ψ  is 
composed of an infinity of mappings. The upper apostrophe is 
used to differentiate the mappings of the Context-Dependant 
IFS, to the ones of the usual IFS.  

The fractalian is the union of all vectors built after l  
iterations, and the leaves is the union of these from a certain 

generation lnl = . The fractalian converges towards the fractal 

when ln  tends to infinity, under certain conditions of 

convergence (the mappings must have a decreasing 
progression, see [22] for more details). A Cayley tree is 
associated to the Context-Dependant IFS: the vectors are the 
edges, and the vertices link vectors which are related by their 

context. Vectors of generations l  and 1+l  are in a 
Parent-Child relation if they share the same context j . 

The interesting properties of such constructions are plural: 
(1) the associated Cayley tree, or fractalian, can preserve the 
organization in a hierarchy of the fractal under conditions which 
make the fractalian “invertible”; and thus the fractalians can be 
inverted in order to compute rigorously the Context-Dependant 
IFS associated; (2) the error with which the fractalian built 
describes a fractal structure is detailed precisely. 

A Context-Dependant IFS building a Sierpinski gasket 
(shown in figure 4) is the following (with a complex notation 

representing the space 2ℜ ): 
 

)6/5(
2

6/
2

2/
1

.)2/1()('

.)2/1()('

.)2/1()('

π

π

π

in

in

in

enf

enf

enf

−

−

=

=

=
                              (10) 

 

 
Fig. 4: fractalian of the Sierpinski gasket built with the 

Context-Dependent IFS of relation (13) 
 
The conditions used for the clustering of the Recursive 

Similarity Hashing are in fact derived from the conditions which 
make fractalians “invertible”. The latter conditions are: (i) the 
children vectors are closer and closer to their parent as their 
generation increases; (ii) children from common parent are 
closer to each other than to children from another parent. These 
conditions are exactly equivalent to the conditions (1) and (2) 
described previously. 
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The conditions on the clustering of the Recursive Similarity 
Hashing aim to extract a Context-Dependant IFS from the target 
data set. In this sense, Context-Dependant IFS and Similarity 
Hashing are complementary; the former being the construction 
process, and the latter the formalization. If the target data 
respects (1) and (2) rigorously an associated 
Context-Dependant IFS can be extracted with ease. In more 
difficult cases, the best compromise between these two 
conditions will provide the best hierarchy from which 
similarities can be recognized, in order to decide of the most 
representative Context-Dependant IFS. 

G. Pyramidal tensor 

Once the organization in a hierarchy is extracted (which is 
itself an interesting indicator of similarity), proper similarities 
can be identified. From this point, the forms of the similarities 
have to be restricted according to the problem. In order to find a 
simplifying representation of the target data, based on the 
analysis of its self-similarities, the next step is to analyze which 
transformations (mappings) relate a parent node to a child node, 
in two situations: for all pairs of parent to child mappings from 
an identical scale (or generation for the associated 
Context-Dependant IFS), the co-scale similarities; for all pairs 
of parent to child across all generations, the trans-scale 
similarities. 

Fractals (mono-fractals) should exhibit co-scale invariance 
and trans-scale contractions, while multi-fractals should be 
more generally trans-scale uniformly variant. By analyzing 
both types of similarities, the Recursive Similarity Hashing is 
truly a multiscale analysis. 

 

 
Fig. 5: co-scale and trans-scale similarities of the hierachized 

Sierpinski Gasket fracalian 
 
The formalization of the Context-Dependant IFS focuses on 

mappings jif ,'  which are the shifts from the position of a 

parent to the position of its child. From the relation (12), the 

position of a vector of generation ln  can be expressed as the 

sum of all the shifts impacted by the previous generations: 
 

∑
−

=

=
1

0

)(
)(),(

)( )('
l

l

l

n

l
shift

lj
lljli

nj
n xfx

�� ��� ��
            (11) 

 
In order to study, from the organization in a hierarchy found 

by the recursive clustering, the shifts impacted at each 

generation, a pyramidal tensor Ρ  of size ln  is defined as: 

 

},...,1{),(')( )(
)(),(

)(
l

lj
ljjii

lj
l nlxfx ==Ρ           (12) 

 
It is tensor containing all the shifts (which are vectors) at all 

the generations },...,1{ lnl = . The term pyramidal is used, 

because there are fewer shifts at a generation 1−l  than at the 

next one l . Indeed, at 1=l , there are N  shifts, at 2=l , 
2N  shifts (cf. the fractalian built after 2 iterations on the figure 

4 has 16422 ==N  shifts), etc. A graphical interpretation of 
this tensor is given in figure 6. 

 

 
Fig. 6: pyramidal tensor of the shifts impacted on vectors of 

generations 0, 1, and 2 (with 4=N ) 

 
This formalization exhibit clearly the multiscale behaviour of 

the Context-Dependant IFS: a vector 
)( l

l

nj
nx  from the leaves 

of a fractalian are built by the composition of the shifts from the 
previous generations, the ones which share the same 
context },...,1{),( lnllj l −= , that is to say all the shift encountered 

by starting from the top of the pyramid through the shifts of 
same context (see the red arrow of figure 6). 

From the organization in a hierarchy found by Recursive 
Similarity Hashing, a similar pyramidal tensor can be 
constructed, by decomposing the positions of the target data 
points in all the shifts of the centers of masses of the groups, at 
each scale, in which the points are included. Formerly: 

 

},...,1{),()()),(( ),(
l

ilc
lg nlxixilcx =Ρ=−            (13) 

 

The index i  is the index of the data point x , )),(( ilcxg   

represents the center of masses of the group of coordinate 

),( ilc  in the tree created by hierarchical clustering of the data 

(see section 2.2).  
By comparing formula (16) and (17), the equivalence 

between a Recursive Similarity Hashing and a 
Context-Dependant IFS appears clearly. The hierarchical 
clustering of the data creates a pyramidal tensor from which the 
shifts of the Context-Dependant IFS can be defined. 

Shift at generation 0 

Shifts at generation 1 

Shifts at generation 2 
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H. Reduction of the pyramidal tensor 

The final step in finding a simple representation (the 
Context-Dependant IFS) from the data is to simplify the number 
of parameters of the pyramidal tensor. Initially, from a data set 

of size ln
enn = , there should be ∑

=

ln

l

l
en

`

 different shifts in the 

pyramidal tensor (which is more than the initial data of the 
systems studied). The process of finding a model is to simplify 
the tensor, by statistical assumptions, so that there are as few 
parameters as possible. 

In order to do so, co-scale frequency analysis (which can now 
be defined rigorously as the frequency analysis of the shifts of 
an identical generation l ), and trans-scale frequency analysis 
(on the shifts sharing an identical context) is conducted. 

Contrary to other multi-scale analysis, it is possible to refine 
the precision of this frequency analysis for each scale. 

Before moving to the implementation itself, an illustration of 
what are co-scale and trans-scale similarities could be the 
following: if one should study the behaviors of families through 
generations, one should focus on two aspects: the role of a 
member of the family for all families of a given generation (for 
example, the role of the father in archaic latin society, tha 
pater); and the changing of the role of this member through the 
generations (from the pater to the Japanese good-father). 

Searching for a co-scale similarity is equivalent to looking at 
the local behaviors, which should be identical whatever the 
context; trans-scale similarities are the variations (if any) of 
these similarities with the context, or scale. The latter should be 
continuous in real data, since there are no rupture between the 
behaviors from two close scales; while there could be between 
two very different scales. The over whole scheme of the 
Recursive Similarity Hashing is presented in figure 7. 
 

  

Fig. 7: Recursive Similarity Hashing process flow 

III.  IMPLEMENTATION AND APPLICATIONS 

Our implementation of a prototype for the Recursive 
Similarity Hashing was done in C++. The difficulty of its 
practical development is that at all steps in the process the 
structures should be trees; and therefore, the method to skim 
across them should be recursive. 

A. Agglomerative or divisive hierarchical clustering 

The choice of the clustering technique is crucial, since it is the 
first step that will determine the next ones. Prior attempts to 
cluster fractals, based on the fractal dimension to define the 
cluster[23], the definition of balances boxes[24] (boxes 
containing an equal cardinal of elements) were not considering 
the conditions (1) and (2) described previously, vector 
machines, or simply the grid of a fractal compression[25], are 

not suited for such a clustering. 
There are two ways to proceed, by an agglomerative or 

divisive approach. The agglomerative starts from the data 
points, and groups them step by step to their nearest neighbors, 
so that the groups formed are as far as possible from one another 
(according to condition (2)). This naïve approach is efficient if 
the data is well formatted (if for example it has been generated 
by an Context-Dependant IFS respecting conditions (i) and (ii)); 
however, and this is a common problem, early mistake in the 
clustering creates problem in higher clusters. Isolated points 
appear which induce a large deviance on the condition (2) at 
higher generation (see figure 8). 

 

 
Fig.  8: Cayley tree result of the hierarchical clustering: if the initial 

clustering is false (left); otherwise (right) 
 
The divisive approach is less subject to error in the early steps 

of the recursion.  

B. Implementation of CMO 

The problem to be solved by the Center of Masses 
Optimization described in section 2.4 is in a way similar to the 
k-means clustering[26]; however, instead of selecting the 
combination of groups for which the distance to the center of 
masses is minimal, groups which are as far as possible from the 
others are chosen. This is in ad equation with the condition (2) 
of section 2.3 described previously. Moreover, the number of 
elements per group is fixed (whereas it is the number of groups 
in k-means), and the clustering should be done recursively on 
the groups obtained. 

The combinatronics problem behind the CMO is 
computationally very expensive. Similarly to K-means, the 
heuristic implementation of CMO is designed to start with a 
random combination of vectors, and iteratively correct the 
groups chosen; which reduces the complexity of the algorithm. 

The complexity of the algorithm is not the purpose of this 
paper, and therefore CMO can be simply understood as a 
selection all possible combinations of vectors to form all 
possible groups, and then all possible combinations of groups to 
calculate the discriminative function. 

C. Implementation the reduction of pyramidal tensor 

To reduce the number of parameters of the pyramidal tensor 
Ρ , it is assumed that the drifts (which are vectors) are simple 

affine transformations. Therefore, the contraction ratio rC   and 

angle α  between two drifts can be defined. By constructing a 
frequency spectrum of the contraction ratios and angles, for 
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each generation (co-scale) and for the all the drifts sharing the 
same context (trans-scale), the self-similarities at multi-scales 
can be analyzed. 

IV. RESULTS AND DISCUSSION 

To illustrate the efficiency of Recursive Similarity Hashing 
on real fractals, results on a tree fractal with 3 branches are 
detailed here. Through the paper, results on the Sierpinski 
Gasket were also given. The experiment is based on the 
Recursive Similarity Hashing of 9 points of the fractal, built so 
that all the points of a common generation are drawn (this 
implicitly means that the fractal has not been built with the 
Chaos game, but with by the growth approach[22]). In the two 
cases, the data is minimal: the minimum number of points is 
drawn so that the IFS can be determined from them (9 points to 
find the 3 mappings of the Sierpinski gasket and tree with 3 
branches). In both cases, a least two generations (in the sense of 
the Context-Dependant IFS) are needed to understand the 
trans-scale similarities. By doing so: (a) groups containing 
features of similarities can be found, recursively, so that a 
hierarchical organization of the fractal can be extracted by the 
CMO analysis (see figure 9 for the result of the CMO analysis, 
figure 10 for the associated Cayley tree of the organization in a 
hierarchy), (b) the pyramidal tensor computed, (c) a simple 
Context-Dependant IFS that builds the fractal (see figure 11) 
can be extracted. 

 
 
Fig. 9: CMO analysis on 9 points of a tree with 3 branches fractal 

(choice of the clusters (cf. figure 9) on the right, 3 clusters determined 
by CMO on the left) 

 

 
 
Fig. 10: Associated Cayley tree constructed with the result of the 

hierarchical clustering (right) and frequency spectrum in angle and 
contraction ratio of the mappings between clusters (left) 

 

 
 
Fig. 11: Reconstructed tree with 3-branches fractal after 2 iterations 

(right) and 4 iterations (left) 
 
The Recursive Similarity Hashing has found a 

Context-Dependant IFS, different from the one used to build the 
fractal, which can reconstruct the original fractal with in theory 
no error. This examples illustrate how can Recursive Similarity 
Hashing can “invert” many usual fractals, and find a 
Context-Dependant IFS to rebuild them. 

V. CONCLUSION 

Recursive Similarity Hashing and the Context-Dependant 
Iterated Function Systems are complementary tools to study 
self-similarities at multi-scale. By decomposing an object into 
its scales, these methods have the promising properties to be 
able to find self-similarities from fractal-data, and more 
generally from any data exhibiting self-similarities. It has been 
shown that, contrary to other methods to solve the inverse 
problem of building fractals, this novel approach finds a 
rigorous inversion, which puts into a simpler relationship the 
spaces where fractals and Context-Dependant IFS lie. 

Possible real world applications are numerous (from growth 
phenomena, to information coding). Moreover, the similarity of 
Context-Dependant IFS with dynamical systems is a topic to be 
explored more in details in further research. 
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