
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:4, 2010

384

Abstract—A new technique of topological multi-scale analysis is

introduced. By performing a clustering recursively to build a
hierarchy, and analyzing the co-scale and intra-scale similarities, an
Iterated Function System can be extracted from any data set. The study
of fractals shows that this method is efficient to extract
self-similarities, and can find elegant solutions the inverse problem of
building fractals. The theoretical aspects and practical
implementations are discussed, together with examples of analyses of
simple fractals.

Keywords—hierarchical clustering, multi-scale analysis,
Similarity hashing.

I. INTRODUCTION

A. Multi-scale analysis

ULTISCALE analysis is the mathematical modeling of
phenomena from the point of view of scales. The growing

interest in non-linear equations has created a need to understand
how systems react to scaling. Multiplying all coefficients by a
ratio in a linear equation does not change the over whole
behaviour; whereas scaling a non-linear equation may lead to
drastic changes: as scale increases, dynamical systems may be
subject to chaotic behaviours on complex attractors.

In order to simplify the representation of these systems,
models have incorporated conditions of their stability
(Hyperbolic systems with stable and unstable manifolds[1]), or
conditions of plural stability (bifurcation theory[2]) , their
geometric properties in their phase space [3], and finally, of
their statistical multi-scale behaviour[4]. Current efforts aim
toward the interpretation of geometric properties at multi-scales
(notably multi-fractals[5]).

Multiscale also refers to systems which are the result of the

interaction of a large number of agents, as in multi-physics
phenomena. To model a physical problem of higher complexity,
at each scale is applied a corresponding physical model. This
technique has been used extensively in weather forecast[6].
Multi-scale analysis appears to be a transversal approach to
numerous scientific domains, from complex networks, with
small-world networks[7] and fractal machines[8], to the extent
of the unification theory, with the invariant set postulate[9].

In this paper, a new technique of geometrical multiscale
similarities will be introduced, performing a recursive similarity

Timothee G. Leleu is with The University of Tokyo (Institute of Industrial

Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505
Japan, email: timothee@sat.t.u-tokyo.ac.jp)

hashing, based on the hierarchical clustering of data set. This
method can solve the inverse problem of building fractals, and
be applied more generally to any data, in order to extract
co-scale similarities (redundant patterns in a given scale), and
trans-scale dependencies (the variation of properties according
to the scale); which provides a theoretical framework to study a
vast horizon of phenomena.

B. Related work

Wavelet analysis, by finding the repetition of intensity in the
plan, and taking into account the scale factor, have a practical
application in image compression [11]. For the study of
multi-fractals[12], wavelets can find a spectrum of the
self-similar intensities; not taking into account the geometrical
features of sub elements.

In terms of similarity analysis applied to fractal data set,
similarity hashing [13] explores the frequency of all possible
transformations (as translations, rotations between all pairs of
elements); which provides a spectrum with a majority of
redundant or hardly representative mappings coding
self-similarities. All other attempts of solving the inverse
problem of building fractals, ranging from the “moments
method”[14], wavelet analysis[15], to genetic algorithm[16], do
not provide an analysis depending on the scale; they however
provide prototypes of models to understand fractals.

More recently[17], a hierarchical decomposition of data set
achieved by a succession of dilatations and contractions have
yielded interesting results, showing that the self-similar parts of
a fractal can be identified, or clustered. The optimal method to
achieve this clustering is one of the topics of this paper.
Clustering techniques, as SVM-RFE[18], density clustering[19]
do not provide the right answer for a recursion analysis of
geometrical self-similarities. A clustering based on simple rules,
and its heuristic implementation (to some extent similarly to the
k-means[20] algorithm) run recursively on self-similar data,
can be used to rebuild a hierarchical structure and compute a
simple representation of its self-similarities.

In next section will be defined the Recursive Similarity
Hashing technique, and introduced the Context-Dependant IFS,
from which the conditions on the clustering in its
implementation will be based. In section 4 are described the
results of the analysis of fractal data.

II. RECURSIVE SIMILARITY HASHING

A. Motivations and basic concepts

Timothee G. Leleu

Recursive Similarity Hashing of Fractal
Geometry

M

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:4, 2010

385

In the field of databases, hashing is the act of extracting,
usually from a large amount of data, a smaller representation, of
fixed sized, in order to organize this data. The data “hashed” is
then classified according to a discriminating function, which
will use a “key”, the hash key, to find the proper tables to
distribute the data. Entries which are “closer” to one another are
grouped in common tables. For example, a database storing
clients according to their address, could use as a hash function
the postal code, and as a discriminating function to put in the
same table the clients with identical postal code.

Similarity hashing (definition which differs from [13]) is

based on a similar idea. Applied to a target data set, the hashing
is applied to all possible combinations of groups of elements,
and the “key” can be used to select the combinations of groups
that have a potentiality to present similarities.

Formerly, the data studied is represented by a vector space

associated to a metric),(dX n (it could be for example the

phase space of dynamical system, in nℜ with the Euclidian

distance, ℵ∈n the dimension). The hash function h
operates on a combination of data points, and outputs a key,
which could be a scalar, or more generally a vector:

mnn YHXh e ⊂→)(: (1)

Usually, the space Y is ℜ , nm < , and en is the number

of elements on which a key is defined. The term “hash
function”, not just morphism, is used to emphasize the role of
this function: to classify the data into groups. The grouping

depends on the degree of similarity of two groups 1
~x and 2

~x ,

where ennXx)(~∈ is a group of cardinal enxcard =)~(.

The keys are then used to calculate a discriminating value, by
applying a discriminating function D , comparing all the

possible combinations of gn keys, where gn is the number of

groups (of clusters) into which the data will be partitioned. If the
combination has a potential to be a good one (under some
criteria which will be detailed further), that is to say its partition
into groups would contain similarities, then the discriminating
value is higher:

ℜ∈∈)(: hDHhD gn
�

֏
�

 (2)

It is important to note here that the discriminating function

does not compare two groups, but the keys of a combination of
groups which would be the best decomposition of the data into
similar sets. The reason is subtle: if a kind a similarity function
could be calculated, comparing two groups and returning a
similarity indicator (a correlation), this would mean that there
was a priori some knowledge about their similarities, in order to
define this function. The discriminating function is of another
kind: its definition is based on assumptions about the topology

(in the space of the hash key) where similarities can be found,
not about the similarities themselves. The key should (as in
classical hashing) extract the relevant information to prepare the
groups to be classified. The discriminating function should
select the set of keys that have the best potentials.

Before moving to the real application, a practical example
will illustrate the concept of similarity hashing. A librarian is
asked to classify cooking books. The wrong method would be
for this librarian to compare pair by pair all the books, and
decide on their resemblance: all contain very different recipes,
and even if some elements may be similar (two versions of an
identical recipe for example), two books are hardly similar. The
right method is to first decide on a hash function. For instance,
select only the nationality of the author. Then the discriminating
function would be to put on the same shelf books with identical
culinary origins. Now that the books which are candidate to
contain features of similarity have been selected, the librarian
can find real similarities: fusion cuisine is similar to Californian
and Japanese cuisine etc.

B. Hierarchical clustering

Before detailing the form of the hash and discriminating
function, what criterion should be used to quantify the potential
of containing features of similarities (the nationality of the
author from the example above) ought to be determined.

The archetype of a self-similar data is a fractal. In order to
remain in the most general case, nothing about the aspect of the
self-similarities will be implied; rather the topological aspects
of where they could be found will be discussed. A fractal has the
property to contain smaller parts (subparts) identical to larger
ones. In this sense, a fractal is a multi-scale invariant (whereas a
multifractal is a multi-scale variant). Therefore, selecting from a
scale of a fractal will provide the elements of its similarities.

In order to select from a scale, the fractal (which is a set a
vector, with no organization in scale) must be decomposed into
a hierarchy, with each level representing a scale.

Supposing that there was a method to select the groups with
best potential to carry similarity features. Recursively grouping
these groups will generate a hierarchical clustering of the set
studied.

Fig. 1: hierarchical grouping of the Sierpinski gasket

In the figure 1, from the 9 smaller triangles composing a
Sierpinski gasket, 3 parent groups are formed, which are
similar, then a parent group again similar. This decomposition
creates a classification of the points into a tree, called hash tree.
The red triangle has the coordinate)1,1,1(in the tree of figure

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:4, 2010

386

2. The coordinate on the tree, at a scale l of a certain data point

of index i is noted),(ilc .

Fig. 2: tree representing the hierarchical clustering of the Sierpinski
gasket

C. Conditions on the clustering, Hash and discriminative
function

To identify the groups with best potential of carrying

similarity features, two properties of fractals are used: (1) Each
parent group is composed of neighboring groups; (2) Groups
are not overlapping, i.e. there are as far as possible from one
another.

By applying these conditions on the grouping, or clustering
method, the potentiality of these clusters to contain features of
self-similarity is optimized.

The hash function of this Recursive Similarity Hashing is to

compute the center of masses n
g Xx ∈ of all groups

ennXx)(~∈ :

∑
⊂

==
xx

eg xnxxh
~

)./1()~((3)

The discriminative function is the calculation of the Root

Mean Square (RMS) of the distances between centers for a

configuration of grouping; all the data points are grouped by en

tuplets, for all possible combinations of tuplets of size en each:

=)(hD
�

)),((
,)~(),~(jgigjiHxhxh

xxdRMS gn
ji ≠∈

 (4)

The term { } { }
g

g

n

niigi Hxxhh ∈==
∈ ,..,1

)~(
�

 is one of the

possible combinations of gn keys.

=
≠∈

)),((
,)~(),~(jgigjiHxhxh

xxdRMS gn
ji

g

jgig

n

xxd

jign
Hjxhixh

∑
≠∈ ,)~(),~(

2),(

.

(5)

It is the RMS of the distances between the centers of masses

for all possible combinations of groups.

D. Center of Masses Optimization

To accomplish the type of clustering described in the
previous section, a technique called Center of Mass

Optimization (CMO) is used. It consists in selecting gn groups

{ } { }g

e

ni
nn

i Xxx ,..,1)(~~
∈∈=

�
 for which the centers of masses

gnHxh ∈)~(
��

 of all the group ennXx)(~∈ of en elements

are the furthest from one another:

)))~(((maxarg ~ xhD
x

��
�=Κ , (6)

The term maxarg is the argument of the maximum, i.e., the

groups for which the discriminative function is maximal. The
condition “is maximal” in the definition of Κ means that the

gn groups respecting this condition are selected (and thus

gnnX)(∈Κ).

In real applications, it is very unlikely that two combinations
obtain an identical value from the discriminating function (due
to noise in the observation at least). Therefore, the choice of the
argument of the maximum is always unique in practical cases.

The choice of en and gn will be discussed in the next section.

E. Recursive clustering

The process of selecting groups via CMO clustering is then
recursively applied on the children groups found, to generate the
next generation of groups. Step by step, an organization in
hierarchy is constructed.

The relation between parent groups (represented by the
center of masses of the cluster) and children can be modeled by
a weighted (directed from parent to child) graph),(VEG = ,

where the edges E are the positions of the center of masses (or
vectors themselves in the cases on singletons); the vertices V
represent the relation parent-child. The weight function

)(: VwVw → returns in simple cases the distance between

the parent and children nodes:

),()),((2121 EEdEEVw = (7)

In more general cases, the weight function can return a cost

function: in complex networks, the cost can be the band switch
between the nodes (servers) etc. It is in fact a correlation

Scale 1

Scale 2

Scale 3

1

1

1 1 1

2

2 2 2

3

3 3 3

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:4, 2010

387

indicator between the parent and child node.
The graph built has the shape of a Cayley Tree: starting from

a point (the ancestor node), children nodes spread across the
space, at each generation as far as possible from one another.

Fig. 3: Cayley tree representing the hierarchy of the Sierpinski
Gasket (the nodes are yellow dots, the vertices green lines)

In the figure 3, all n elements can be equally distributed

between groups at each scale (or generation), each containing

en elements. In this particular case, due to the topology of the

Sierpinski gasket, the number of elements is lnn 3= , where

ln is the number of generations (in figure 3, 5=ln); the

choice 3=en distributes all elements. In other cases, the data

must be truncated in order to be formatted into a power of en .

The case of not equally distributed groups will not be discussed
here in further details.

F. Context-Dependant IFS

The decomposition in a hierarchy of fractals, achieved by

Recursive Similarity Hashing, is the reverse process of building
fractals in a hierarchy. A Context-Dependant Iterated Function
System[22] is an operator building, from a starting point, a
fractal organized in a hierarchy, or equivalently, an associated
Cayley tree. This novel method differs from traditional Iterated
Function Systems used to build fractals[10] by taking in
consideration the context of the construction of a fractal set.

Formerly, the definition of a Context-Dependant IFS Ψ is
the following:

{ } { } { } ℵ⊂∈=⊂=
=Ψ

KkNMjNiji kkf
,,...,1,,...,1,' , (8)

with N being the number of initial mappings jif ,' . This

operator is applied to a starting point nXx ∈0 to build a

sequence of growing cardinal defined by the relation:

ℵ∈+=∪
+ lxfxx j

lji
j

l
ji

l),(' ,1 (9)

The index i represents the index of the mapping used to

construct the vector
ji

lx ∪
+1 , j is the set composed of the

indexes of the k previous transformations iteratively

composed to form the vector
j

lx . The sequence built is thus

indexed by their context in the recursion. The index k

represents the memory of the system. In the case of ℵ=K , the

IFS keeps memory of all the context, and consequently Ψ is
composed of an infinity of mappings. The upper apostrophe is
used to differentiate the mappings of the Context-Dependant
IFS, to the ones of the usual IFS.

The fractalian is the union of all vectors built after l
iterations, and the leaves is the union of these from a certain

generation lnl = . The fractalian converges towards the fractal

when ln tends to infinity, under certain conditions of

convergence (the mappings must have a decreasing
progression, see [22] for more details). A Cayley tree is
associated to the Context-Dependant IFS: the vectors are the
edges, and the vertices link vectors which are related by their

context. Vectors of generations l and 1+l are in a
Parent-Child relation if they share the same context j .

The interesting properties of such constructions are plural:
(1) the associated Cayley tree, or fractalian, can preserve the
organization in a hierarchy of the fractal under conditions which
make the fractalian “invertible”; and thus the fractalians can be
inverted in order to compute rigorously the Context-Dependant
IFS associated; (2) the error with which the fractalian built
describes a fractal structure is detailed precisely.

A Context-Dependant IFS building a Sierpinski gasket
(shown in figure 4) is the following (with a complex notation

representing the space 2ℜ):

)6/5(
2

6/
2

2/
1

.)2/1()('

.)2/1()('

.)2/1()('

π

π

π

in

in

in

enf

enf

enf

−

−

=

=

=
 (10)

Fig. 4: fractalian of the Sierpinski gasket built with the

Context-Dependent IFS of relation (13)

The conditions used for the clustering of the Recursive

Similarity Hashing are in fact derived from the conditions which
make fractalians “invertible”. The latter conditions are: (i) the
children vectors are closer and closer to their parent as their
generation increases; (ii) children from common parent are
closer to each other than to children from another parent. These
conditions are exactly equivalent to the conditions (1) and (2)
described previously.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:4, 2010

388

The conditions on the clustering of the Recursive Similarity
Hashing aim to extract a Context-Dependant IFS from the target
data set. In this sense, Context-Dependant IFS and Similarity
Hashing are complementary; the former being the construction
process, and the latter the formalization. If the target data
respects (1) and (2) rigorously an associated
Context-Dependant IFS can be extracted with ease. In more
difficult cases, the best compromise between these two
conditions will provide the best hierarchy from which
similarities can be recognized, in order to decide of the most
representative Context-Dependant IFS.

G. Pyramidal tensor

Once the organization in a hierarchy is extracted (which is
itself an interesting indicator of similarity), proper similarities
can be identified. From this point, the forms of the similarities
have to be restricted according to the problem. In order to find a
simplifying representation of the target data, based on the
analysis of its self-similarities, the next step is to analyze which
transformations (mappings) relate a parent node to a child node,
in two situations: for all pairs of parent to child mappings from
an identical scale (or generation for the associated
Context-Dependant IFS), the co-scale similarities; for all pairs
of parent to child across all generations, the trans-scale
similarities.

Fractals (mono-fractals) should exhibit co-scale invariance
and trans-scale contractions, while multi-fractals should be
more generally trans-scale uniformly variant. By analyzing
both types of similarities, the Recursive Similarity Hashing is
truly a multiscale analysis.

Fig. 5: co-scale and trans-scale similarities of the hierachized

Sierpinski Gasket fracalian

The formalization of the Context-Dependant IFS focuses on

mappings jif ,' which are the shifts from the position of a

parent to the position of its child. From the relation (12), the

position of a vector of generation ln can be expressed as the

sum of all the shifts impacted by the previous generations:

∑
−

=

=
1

0

)(
)(),(

)()('
l

l

l

n

l
shift

lj
lljli

nj
n xfx

�� ��� ��
 (11)

In order to study, from the organization in a hierarchy found

by the recursive clustering, the shifts impacted at each

generation, a pyramidal tensor Ρ of size ln is defined as:

},...,1{),(')()(
)(),(

)(
l

lj
ljjii

lj
l nlxfx ==Ρ (12)

It is tensor containing all the shifts (which are vectors) at all

the generations },...,1{ lnl = . The term pyramidal is used,

because there are fewer shifts at a generation 1−l than at the

next one l . Indeed, at 1=l , there are N shifts, at 2=l ,
2N shifts (cf. the fractalian built after 2 iterations on the figure

4 has 16422 ==N shifts), etc. A graphical interpretation of
this tensor is given in figure 6.

Fig. 6: pyramidal tensor of the shifts impacted on vectors of

generations 0, 1, and 2 (with 4=N)

This formalization exhibit clearly the multiscale behaviour of

the Context-Dependant IFS: a vector
)(l

l

nj
nx from the leaves

of a fractalian are built by the composition of the shifts from the
previous generations, the ones which share the same
context },...,1{),(lnllj l −= , that is to say all the shift encountered

by starting from the top of the pyramid through the shifts of
same context (see the red arrow of figure 6).

From the organization in a hierarchy found by Recursive
Similarity Hashing, a similar pyramidal tensor can be
constructed, by decomposing the positions of the target data
points in all the shifts of the centers of masses of the groups, at
each scale, in which the points are included. Formerly:

},...,1{),()()),((),(
l

ilc
lg nlxixilcx =Ρ=− (13)

The index i is the index of the data point x ,)),((ilcxg

represents the center of masses of the group of coordinate

),(ilc in the tree created by hierarchical clustering of the data

(see section 2.2).
By comparing formula (16) and (17), the equivalence

between a Recursive Similarity Hashing and a
Context-Dependant IFS appears clearly. The hierarchical
clustering of the data creates a pyramidal tensor from which the
shifts of the Context-Dependant IFS can be defined.

Shift at generation 0

Shifts at generation 1

Shifts at generation 2

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:4, 2010

389

H. Reduction of the pyramidal tensor

The final step in finding a simple representation (the
Context-Dependant IFS) from the data is to simplify the number
of parameters of the pyramidal tensor. Initially, from a data set

of size ln
enn = , there should be ∑

=

ln

l

l
en

`

 different shifts in the

pyramidal tensor (which is more than the initial data of the
systems studied). The process of finding a model is to simplify
the tensor, by statistical assumptions, so that there are as few
parameters as possible.

In order to do so, co-scale frequency analysis (which can now
be defined rigorously as the frequency analysis of the shifts of
an identical generation l), and trans-scale frequency analysis
(on the shifts sharing an identical context) is conducted.

Contrary to other multi-scale analysis, it is possible to refine
the precision of this frequency analysis for each scale.

Before moving to the implementation itself, an illustration of
what are co-scale and trans-scale similarities could be the
following: if one should study the behaviors of families through
generations, one should focus on two aspects: the role of a
member of the family for all families of a given generation (for
example, the role of the father in archaic latin society, tha
pater); and the changing of the role of this member through the
generations (from the pater to the Japanese good-father).

Searching for a co-scale similarity is equivalent to looking at
the local behaviors, which should be identical whatever the
context; trans-scale similarities are the variations (if any) of
these similarities with the context, or scale. The latter should be
continuous in real data, since there are no rupture between the
behaviors from two close scales; while there could be between
two very different scales. The over whole scheme of the
Recursive Similarity Hashing is presented in figure 7.

Fig. 7: Recursive Similarity Hashing process flow

III. IMPLEMENTATION AND APPLICATIONS

Our implementation of a prototype for the Recursive
Similarity Hashing was done in C++. The difficulty of its
practical development is that at all steps in the process the
structures should be trees; and therefore, the method to skim
across them should be recursive.

A. Agglomerative or divisive hierarchical clustering

The choice of the clustering technique is crucial, since it is the
first step that will determine the next ones. Prior attempts to
cluster fractals, based on the fractal dimension to define the
cluster[23], the definition of balances boxes[24] (boxes
containing an equal cardinal of elements) were not considering
the conditions (1) and (2) described previously, vector
machines, or simply the grid of a fractal compression[25], are

not suited for such a clustering.
There are two ways to proceed, by an agglomerative or

divisive approach. The agglomerative starts from the data
points, and groups them step by step to their nearest neighbors,
so that the groups formed are as far as possible from one another
(according to condition (2)). This naïve approach is efficient if
the data is well formatted (if for example it has been generated
by an Context-Dependant IFS respecting conditions (i) and (ii));
however, and this is a common problem, early mistake in the
clustering creates problem in higher clusters. Isolated points
appear which induce a large deviance on the condition (2) at
higher generation (see figure 8).

Fig. 8: Cayley tree result of the hierarchical clustering: if the initial

clustering is false (left); otherwise (right)

The divisive approach is less subject to error in the early steps

of the recursion.

B. Implementation of CMO

The problem to be solved by the Center of Masses
Optimization described in section 2.4 is in a way similar to the
k-means clustering[26]; however, instead of selecting the
combination of groups for which the distance to the center of
masses is minimal, groups which are as far as possible from the
others are chosen. This is in ad equation with the condition (2)
of section 2.3 described previously. Moreover, the number of
elements per group is fixed (whereas it is the number of groups
in k-means), and the clustering should be done recursively on
the groups obtained.

The combinatronics problem behind the CMO is
computationally very expensive. Similarly to K-means, the
heuristic implementation of CMO is designed to start with a
random combination of vectors, and iteratively correct the
groups chosen; which reduces the complexity of the algorithm.

The complexity of the algorithm is not the purpose of this
paper, and therefore CMO can be simply understood as a
selection all possible combinations of vectors to form all
possible groups, and then all possible combinations of groups to
calculate the discriminative function.

C. Implementation the reduction of pyramidal tensor

To reduce the number of parameters of the pyramidal tensor
Ρ , it is assumed that the drifts (which are vectors) are simple

affine transformations. Therefore, the contraction ratio rC and

angle α between two drifts can be defined. By constructing a
frequency spectrum of the contraction ratios and angles, for

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:4, 2010

390

each generation (co-scale) and for the all the drifts sharing the
same context (trans-scale), the self-similarities at multi-scales
can be analyzed.

IV. RESULTS AND DISCUSSION

To illustrate the efficiency of Recursive Similarity Hashing
on real fractals, results on a tree fractal with 3 branches are
detailed here. Through the paper, results on the Sierpinski
Gasket were also given. The experiment is based on the
Recursive Similarity Hashing of 9 points of the fractal, built so
that all the points of a common generation are drawn (this
implicitly means that the fractal has not been built with the
Chaos game, but with by the growth approach[22]). In the two
cases, the data is minimal: the minimum number of points is
drawn so that the IFS can be determined from them (9 points to
find the 3 mappings of the Sierpinski gasket and tree with 3
branches). In both cases, a least two generations (in the sense of
the Context-Dependant IFS) are needed to understand the
trans-scale similarities. By doing so: (a) groups containing
features of similarities can be found, recursively, so that a
hierarchical organization of the fractal can be extracted by the
CMO analysis (see figure 9 for the result of the CMO analysis,
figure 10 for the associated Cayley tree of the organization in a
hierarchy), (b) the pyramidal tensor computed, (c) a simple
Context-Dependant IFS that builds the fractal (see figure 11)
can be extracted.

Fig. 9: CMO analysis on 9 points of a tree with 3 branches fractal

(choice of the clusters (cf. figure 9) on the right, 3 clusters determined
by CMO on the left)

Fig. 10: Associated Cayley tree constructed with the result of the

hierarchical clustering (right) and frequency spectrum in angle and
contraction ratio of the mappings between clusters (left)

Fig. 11: Reconstructed tree with 3-branches fractal after 2 iterations

(right) and 4 iterations (left)

The Recursive Similarity Hashing has found a

Context-Dependant IFS, different from the one used to build the
fractal, which can reconstruct the original fractal with in theory
no error. This examples illustrate how can Recursive Similarity
Hashing can “invert” many usual fractals, and find a
Context-Dependant IFS to rebuild them.

V. CONCLUSION

Recursive Similarity Hashing and the Context-Dependant
Iterated Function Systems are complementary tools to study
self-similarities at multi-scale. By decomposing an object into
its scales, these methods have the promising properties to be
able to find self-similarities from fractal-data, and more
generally from any data exhibiting self-similarities. It has been
shown that, contrary to other methods to solve the inverse
problem of building fractals, this novel approach finds a
rigorous inversion, which puts into a simpler relationship the
spaces where fractals and Context-Dependant IFS lie.

Possible real world applications are numerous (from growth
phenomena, to information coding). Moreover, the similarity of
Context-Dependant IFS with dynamical systems is a topic to be
explored more in details in further research.

ACKNOWLEDGMENT

This work was supported by the Global Center for Excellence
program (GCOE), Secure Life Electronics and the school of
Engineering of the University of Tokyo.

REFERENCES

[1] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and

Chaos, (Texts in Applied Mathematics 2, Springer-Verlag)
[2] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical

systems and Bifurcations of Vector Fields (Springer, 1983)
[3] Pavliotis GA, Stuart AM, Multiscale Methods Averaging and

Homogenization (New York , Springer, 2007 , ISBN: 9780387738284)
[4] F. Takens, Detecting strange attractors in turbulence (Dynamical

Systems and Turbulence, Lecture Notes in Mathematics, vol. 898.
Springer-Verlag. pp. 366–381)

[5] H. E. Stanley and P. Meakin, Multifractal Phenomena in Physics and
Chemistry, Nature 335, 405-409 (1988).

[6] Tim Palmer, Paul Williams, Stochastic Physics and Climate Modelling
(Royal Society Publishing, 2008, ISBN 9780854036950)

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:4, 2010

391

[7] L. A. N. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley, Classes of
Behavior of Small-World Networks (Proc. Natl. Acad. Sci. 97,
11149-11152 (2000))

[8] G. Binnig et al., Will machines start to think like humans? (Europhysics
News (2002) Vol. 33 No. 2)

[9] Palmer, T. N., The Invariant Set Postulate: a new geometric framework
for the foundations of quantum theory and the role played by gravity
(Proceedings of the Royal Society a Mathematical Physical and
Engineering Sciences 465: 3165. doi:10.1098/rspa.2009.0080)

[10] Michael F. Barnsley, Fractal Everywhere (second edition, Hawley
Rising)

[11] Paul S. Addison, The Illustrated Wavelet Transform Handbook (Institute
of Physics, 2002, ISBN 0-7503-0692-0)

[12] P. Abry, P. Gonçalvès & J. Lévy-Véhel, Scaling Fractals And Wavelets
(iSTE Publishing Company, 2005)

[13] John C. Hart, Wayne O. Cochran, Patrick J. Flynn, Similarity Hashing: A
Computer Vision Solution to the Inverse Problem of Linear Fractals
(Washington State University, 2008)

[14] C.R Handy and G. Mantica, Inverse problems in fractal construction:
moment method solution (Physica D 43 (1990) 17-36)

[15] R. Rinaldo and A. Zakhor, Inverse and Approximation Problem for
Two-Dimensional Fractal sets (IEEE trans. on image processing, Vol.3,
No. 6)

[16] R. Shonkwiler, F.Mendivil, A.Deliu, Genetic Algorithms for the 1-D
Fractal Inverse Problem (Georgia Institute of Technology)

[17] Timothee Leleu, Akito Sakurai, Recurrent self-similarties and machine
learning: the inverse problem of buiding fractals (Proceedings of Mendel
2009)

[18] Xin Zhou and David P. Tuck, MSVM-RFE: extensions of SVM-RFE for
multiclass gene selection on DNA microarray data (Bioinformatics 2007
23(9):1106-1114)

[19] Jörg Sander, Martin Ester, Hans-Peter Kriege, Hans-Peter Kriegel,
Xiaowei Xu, Density-Based Clustering in Spatial Databases: The
Algorithm GDBSCAN and Its Application (Data Mining and Knowledge
Discovery archive, Volume 2 , Issue 2 , ISSN:1384-5810 (June 1998))

[20] T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and
A. Y. Wu, A Local Search Approximation Algorithm for k-Means
Clustering (Computational Geometry: Theory and Applications, 28
(2004), 89-112.))

[21] Sloan's A008277, The On-Line Encyclopedia of Integer Sequences
[22] Timothee G. Leleu, Building “invertible” fractals: Introduction to

Context-Dependant Iterated Function Systems, Proc. 2010 International
Joint Conference on Neural Networks (IJCNN 2010)

[23] D Barbará, P Chen, Using the fractal dimension to cluster datasets
(Proceedings of the sixth ACM SIGKDD, 2000)

[24] CA Duncan, MT Goodrich, SG Kobourov, Balanced aspect ratio trees
and their use for drawing very large graphs (Lecture Notes in Computer,
Springer, 1998)

[25] Michael F. Barnsley and Lyman P. Hurd, Fractal Image Compression,
ISBN 0-86720-457-5

[26] T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and
A. Y. Wu, An efficient k-means clustering algorithm: Analysis and
implementation (IEEE Trans. Pattern Analysis and Machine
Intelligence, 24 (2002), 881-892)

[27] Chris Ding and Xiaofeng He, K-means Clustering via Principal
Component Analysis (Proc. of Int'l Conf. Machine Learning (ICML
2004), pp 225-232. July 2004)

[28] T. Vicsek, Fractal Growth Phenomena, 2nd ed. (World Scientific,
Singapore 1991).

[29] H. A. Makse, J. S. de Andrade, M. Batty, S. Havlin, and H. E. Stanley,
Modeling Urban Growth Patterns with Correlated Percolation (Phys. Rev.
E, 1 December, 1998)

