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Wiener Filter as an Optimal MMSE Interpolator
Tsai-Sheng Kao

Abstract—The ideal sinc filter, ignoring the noise statistics, is often
applied for generating an arbitrary sample of a bandlimited signal by
using the uniformly sampled data. In this article, an optimal interpo-
lator is proposed; it reaches a minimum mean square error (MMSE)
at its output in the presence of noise. The resulting interpolator is
thus a Wiener filter, and both the optimal infinite impulse response
(IIR) and finite impulse response (FIR) filters are presented. The
mean square errors (MSE’s) for the interpolator of different length
impulse responses are obtained by computer simulations; it shows that
the MSE’s of the proposed interpolators with a reasonable length are
improved about 0.4 dB under flat power spectra in noisy environment
with signal-to-noise power ratio (SNR) equal 10 dB. As expected,
the results also demonstrate the improvements for the MSE’s with
various fractional delays of the optimal interpolator against the ideal
sinc filter under a fixed length impulse response.

Keywords—Interpolator, minimum mean square error, Wiener fil-
ter.

I. INTRODUCTION

INTERPOLATION of a bandlimited discrete-time signal [1] has
found numerous applications in the fields of signal pro-

cessing, including communications, speech processing, and
music technology [2]-[5]. The impulse response of an ideal
interpolator is basically the sinc function, which is noncausal
and of infinite length; it is not physically realizable [6].
Thus, one practical design class of an interpolation filter is
either by directly truncating or by windowing the ideal sinc
function [2], [7], [8]. These interpolators only approximate the
frequency response of the ideal one, and they are in general
not optimal. However, few researchers have studied on the
design of an interpolator in the presence of noise. In this study,
we propose an optimal interpolator that minimizes the mean
square error (MSE) with the knowledge of the signal and noise
characteristics. The resulting interpolator is thus a Wiener
filter, and both the optimal infinite impulse response (IIR) and
finite impulse response (FIR) filters are presented. It is also
shown that the optimal interpolator is a scaled version of the
ideal one when the signal and noise have flat power spectral
densities (PSD’s). Finally, computer simulations show the
benefits of the proposed interpolator under noisy environments
and with different fractional delays.

II. OPTIMAL IIR INTERPOLATOR

For bandlimited signal processing, a fractional delay 0 ≤
μ < 1 of a discrete-time signal x(n) can be interpolated by
the ideal filter with impulse response given by

h(n;μ) =
sinπ(n − μ)

π(n − μ)
= sinc(n − μ), for all n (1)
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The corresponding frequency response is thus denoted by

H(ω;μ) = e−jωμ (2)

where the magnitude response |H(ω;μ)| = 1 for all ω

and the group delay defined by −∂arg{H(ω;μ)}
∂ω equals μ.

However, as shown in Fig. 1, the received data r(n) is
always noise-corrupted, and it is impossible to access the
noise-free data x(n) to produce its delayed version xid(n)
through the ideal filter h(n;μ). Hence, an optimal interpolator
c(n) is proposed to minimize the output mean square error
E[e2(n)] = E[(y(n) − xid(n))2], where E[·] denotes the
expectation operation and y(n) is the convoluted output of
r(n) and c(n).

μ

            Fig. 1 Block diagram of the MMSE interpolator

Assume the data x(n) and noise v(n) are statistically
independent and stationary, and the PSD ε(ω) of the output
error e(n) is given by

ε(ω) = Sx(ω)||C(ω)− H(ω;u)||2 + V (ω)||C(ω)||2 (3)

where Sx(ω) and V (ω) are respectively the PSDs of x(n)
and v(n), and C(ω) is the Fourier transformation of c(n). Via
Parseval relation, the MSE E[e2(n)] can be further expressed
by

E[e2(n)] =
1
2π

∫ π

−π

ε(ω)dω (4)

The optimal frequency response C(ω) that minimizes (4) is
obtained by using a technique known as calculus of variations
[9], and it is obtained as

C(ω) =
Sx(ω)H(ω;μ)
Sx(ω) + V (ω)

(5)

The minimum mean square error (MMSE) εmmse is computed
by substituting (5) into (3-4) and is expressed as

εmmse =
1
2π

∫ π

−π

1
1

Sx(ω)
+ 1

V (ω)

dω (6)

Notably, when the noise is negligible, i.e., Sx(ω) � V (ω),
the optimal frequency response of the interpolator is given by
C(ω) = H(ω;μ), which is identical to the ideal one in (2).
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Ideally, the MMSE is contributed by the noise and is given by
εmmse = 1

2π

∫ π

−π
V (ω)dω. Furthermore, when x(n) and v(n)

have flat PSD’s with σ2x = E[x2(n)] and σ2v = E[v2(n)], the
frequency response given in (5) is reduced to σ2x

σ2x+σ2v
H(ω;μ)

and the optimal impulse response is thus written as

c(n) =
σ2x

σ2x + σ2v
h(n;μ), for all n (7)

It is a scaled version of the ideal sinc filter described in (1).
Physically, either the proposed IIR interpolator or the ideal
one can not be directly implemented. Hence, a realizable
interpolator of finite length is mandatory and is derived in
the following section.

III. OPTIMAL FIR INTERPOLATOR

To be physically realizable, the optimal FIR interpolator
ĉ(n) is assumed to be finite length of 2N and its frequency
response is given by Ĉ(ω) =

∑I2
n=−I1

ĉ(n)e−jωn, where
I1 = N and I2 = N − 1 [2]. The MSE is consequently
defined as E[ê2(n)] = E[(ŷ(n) − xid(n))2], where ŷ(n) is
the convolution of r(n) and ĉ(n). By orthogonal principle,
the minimization problem turns out to solving the following
normal equations [10].

I2∑
k=−I1

ĉ(k)Rr(k − m) = hμ(m), for − I1 ≤ m ≤ I2 (8)

where Rr(k) = Rx(k) + Rv(k) and hμ(m) =∑∞
k=−∞ h(k;μ)Rx(k−m) = 1

2π

∫ π

−π
ejω(m−μ)Sx(ω)dω. The

terms Rx(k) = E[x(n)x(n+ k)] and Rv(k) = E[v(n)v(n+
k)] are the autocorrelation functions of x(n) and v(n), respec-
tively. In a matrix form, (8) is rewritten as

Rrĉ = hμ (9)

where the (i, j) element of Rr is given by Rr(i − j) for
1 ≤ i, j ≤ 2N , ĉ = [ĉ(−I1), . . . , ĉ(I2)]T , and hμ =
[hμ(−I1), . . . , hμ(I2)]T (the superscript T denotes the trans-
pose of a vector). Hence, the coefficients of the optimal FIR
interpolator is solved by

ĉ = Rr
−1hμ (10)

The MMSE ε̂mmse, by substituting (10) into (3-4), is obtained
by

ε̂mmse =
1
2π

∫ π

−π

Sx(ω)||Ĉ(ω)− H(ω;u)||2 + V (ω)||Ĉ(ω)||2dω (11)

We observe that the FIR interpolator with a smaller length of
impulse response can not well reconstruct the delayed sam-
pled, and the MSE could be mainly contributed by the inter-
polation error in (11), i.e., the term Sx(ω)||Ĉ(ω)−H(ω;u)||2.
Compared with the ideal sinc filter, an optimal interpolator
of a longer impulse response can, however, obtain a lower
mean square error. Similarly, when the signal and noise have
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           Fig. 2 Mean square errors for the different parameter settings of N

flat PSD’s, it can be easily verified that equation (10) can be
expressed as

ĉ(n) =
σ2x

σ2x + σ2v
h(n;μ), for − I1 ≤ n ≤ I2 (12)

It is also a scalar version of the ideal one when the
noise power is taken into account.

IV. SIMULATION RESULTS

For simplicity, we assume x(n) and v(n) have flat power
spectra and the signal-to-noise power ratio (SNR) is defined
by 10 log σ2x

σ2v
. The parameter settings are σ2x = 1, SNR=10 dB,

and μ = 0.5. Fig. 2 shows the output mean square errors for
increasing the parameter N , where the ideal FIR interploator
is depicted in solid line and the optimal one in dased line.
When N ≤ 3, the MSE’s of the both interpolators are almost
the same, and the errors could be mainly contributed by the
interpolation errors. However, these filters are more capable
of reconstructing the delayed signal for a large setting of
the parameter N ; the MSE’s of these proposed interpolators
are 0.4 dB less than those of the ideal one’s. Since the
fractional delay μ is time-variant, the MSE’s for different μ’s
are simulated for SNR=10 dB and N = 6. The results are
depicted in Fig. 3, which illustrates the MSE’s are improved,
on average, about 0.35 dB.

V. CONCLUSIONS

We have proposed an optimal interpolator that minimizes
the output mean square error in the presence of noise. The
MSE of the proposed interpolator is improved about 0.4 dB
under flat power spectra in noisy environments. Although
it is verified for flat PSD’s of the signal and noise, it can
still be applied to a system with nonflat spectra when the
characteristics can be empirically obtained. Analytic power



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:6, 2007

925

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10.6

−10.4

−10.2

−10

−9.8

−9.6

−9.4

−9.2

−9

−8.8

−8.6

u

dB

mean square errors under SNR=10 dB and N=6

ideal FIR interpolator
optimal FIR interpolator

                 Fig. 3 Mean square errors for various fractional delays μ’s

spectral densities, for example, noise shaping or quantization
error, can often be obtained or be modeled in the application.
Unfortunately, most applications assume flat power spectral
densities due to the difficulties of identifying the spectra.
Nevertheless, the proposed interpolator can be applied in both
cases.
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