
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:8, 2008

1719

Abstract—Open Agent System platform based on High Level

Architecture is firstly proposed to support the application involving
heterogeneous agents. The basic idea is to develop different wrappers
for different agent systems, which are wrapped as federates to join a
federation. The platform is based on High Level Architecture and the
advantages for this open standard are naturally inherited, such as
system interoperability and reuse. Especially, the federal architecture
allows different federates to be heterogeneous so as to support the
integration of different agent systems. Furthermore, both implicit
communication and explicit communication between agents can be
supported. Then, as the wrapper RTI_JADE an example, the
components are discussed. Finally, the performance of RTI_JADE is
analyzed. The results show that RTI_JADE works very efficiently.

Keywords—Open Agent System, High Level Architecture,
Heterogeneous Agents, Wrapper.

I. INTRODUCTION
ULTI Agent System is emerging as an appealing
paradigm for modeling and developing large, complex

and distributed information systems. With the development of
Multi Agent System, Open Agent System has attracted more
and more researchers’ attention due to the two factors: more
application range and emphasis on supporting openness.
However, research on Open Agent System is currently at the
preliminary stage. Open Agent System belongs to the domain
of Multi Agent System. Luck made the prediction about the
development of agent systems [1]. Agent systems involving
heterogeneous agents will be achieved in a foreseeable future
and not before 2008.

Many agent platforms have been obtained, including JADE
[2], JAMES [3], Aglet [4], JACK [5], RePast [6],
SIM_AGENT [7] and Cougaar [8]. Based on these platforms,
many different agent systems have been developed. Therefore,
it is not advisable to develop from scratch in order to build an
Open Agent System without considering the integration of
these legacy agent systems. However, different types of agents
are difficult to interoperate each other because of lacking in a
standard running platform. Although two communication
standards, FIPA ACL and KQML, partly solve the problem of
interoperation at the semantic level, the running platform
supporting heterogeneous agents still does not appear. Further,

WANG Hong-Bing is with the General Software Laboratory, Institute of

Software, Chinese Academy of Sciences, Beijing 100080, China (phone:
0816-62614140-8107; e-mail: wahobi@chinaacc.com).

FAN Zhi-Hua is with the Institute of Software, Chinese Academy of
Sciences, Beijing 100080, China (e-mail: fan_zhihua@chinaacc.com).

SHE Chun-Dong is with the Institute of Software, Chinese Academy of
Sciences, Beijing 100080, China (e-mail: shrcd@chinaacc.com).

FIPA ACL and KQML are only for explicit communication
and the standard for implicit communication is not considered
in the existing studies.

To support interoperability between heterogeneous agents,
Genesereth proposed a federal architecture [9]. Agents
communicate not directly with each other but indirectly via a
media called facilitator. The correctness of communication is
ensured by the facilitator. The autonomy of agents is sacrificed
to some extent. As for the Client/Server architecture, there are
some distinguished advantages with the federal architecture,
such as dynamic configuration and easy integration [10].
Additionally, agents in different federates can be
heterogeneous by the shielding of facilitator only if all the
agents obey the communication rules built in the facilitator.
This architecture has been applied in the famous agent system
ARCHON [11]. However, the facilitator is application-specific
in ARCHON and so its generality is a great problem.

In order to make much wider use of the federal architecture,
facilitator must accord to a general standard. In this paper, High
Level Architecture (HLA) [12] is taken for this purpose.

HLA is a common standard for distributed modeling and
simulation with the core of the federal architecture.
Interoperability and reusability are two major goals for HLA.
Interoperability is the ability of system components to
exchange data and interpret the data in a consistent way.
Reusability is facilitated by having components with
commonly understood behavior and well defined interfaces.
HLA is composed of three specifications including framework
and rules, interface specification and object model template.
HLA framework and rules outline the responsibilities of
federate and federation to ensure a consistent implementation.
HLA interface specification defines the standard services and
interfaces to be used by the federates in order to support
efficient information exchange. These interfaces are arranged
into six basic service groups as follows: (1) Federation
management services offer basic functions required to create
and operate a federation; (2) Declaration management services
support an efficient management of data exchange through the
information provided by federates; (3) Object management
services provide creation, deletion, identification and other
services for the actual transfer of data, including the updating
and reflecting of object class, and, the sending and receiving of
interaction class; (4) Ownership management services support
the dynamic transfer of ownership of HLA object-instance
attributes during a federation execution; (5) Time management
services support the synchronization of runtime federates; (6)
Data distribution management services support the efficient
routing of data among federates during the course of a

Federal Open Agent System Platform
Hong-Bing Wang, Zhi-Hua Fan, and Chun-Dong She

M

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:8, 2008

1720

federation execution. HLA object model template defines the
format and syntax of object modes.

Although HLA is from the domain of simulation, it has been
applied in a full range of areas successfully, including
education, training, analysis, engineering, and entertainment.
In fact, the six classes of services defined by HLA interface
specification except time management services have a strong
generality.

There have appeared some studies using agents in the
HLA-based application. Dannie discussed the feasibility of
autonomous objects used in the simulation based on HLA [13].
Andersson proposed several different methods in the design of
agent simulation systems based on HLA [14]. Less investigated
the distributed simulation of agent-based systems with HLA
[15]. Minson distributed RePast simulations with HLA [16].
Wang studied agent communication in distributed simulations
[17]. Logan discussed the application of distributed discrete
event simulation techniques to the simulation of Multi Agent
Systems [18]. However, all these studies commonly lack in the
consideration of the fundamental role of federal architecture of
HLA for Open Agent System.

Therefore, Open Agent System platform based on HLA is
especially proposed. This paper is organized as follows:
Section II proposes the platform. Section III discusses the
development of the wrapper RTI_JADE. Section IV analyzes
the performance of RTI_JADE. Section V concludes with our
work and discusses some future research directions.

II. OPEN AGENT SYSTEM PLATFORM

Fig. 1 Open Agent System Platform based on HLA

Open Agent System platform is presented in Fig. 1. The

basic idea is to develop different wrappers for different agent
systems, which are wrapped as federates to join a federation.
The agents in the same federate must be homogeneous and the
agents in different federates can be heterogeneous.

To develop different wrappers for different agent systems
may require much effort. In fact, these wrappers have similar
components. So the experience of developing a wrapper can
easily be used in developing another wrapper. The wrapper
RTI_JADE will be discussed in detail in Section III.

A. Entity Hierarchy
Generally, agent has its own control thread and federate is

always an independent program. If agents are concretely
integrated in the federate, update on the legacy agent systems

may require much work. In this paper, the mapping method
between agents and object class instances in the federate is used
to reduce the coupling between agents and federates as much as
possible. The entity hierarchy in the platform is shown in Fig.
2.

Fig. 2 Entity Hierarchy in the Platform

Not all agents in the legacy agent systems must be introduced
into federates. Those agents, such as Directory Facilitator
Agent and Resource Monitor Agent, working in the local
domain, should not be modified in code because they have not
any communication with remote agents. Therefore, agents are
firstly divided into two types: restricted agents and free agents
according to whether they have the need to communicate with
remote agents. Only restricted agents are introduced into
federates and thus these agents’ autonomy is restricted by HLA.
When a restricted agent is introduced into a federate, not the
agent is concretely introduced into the work space of the
federate, but a mapping object class instance of HLA, a
snapshot storing the corresponding agent’s attributes, is created
in this federate.

Let ES=AS∪FS be the set of all entities. AS=ASR∪ASF is
the set of all agents. ASR is the set of restricted agents. ASF is the
set of free agents. FS is the set of federates. Five types of
relationships are defined as follows:

(1) RFF={<Agi,Agj>|Agi∈ASF,Agj∈ASF}. Both Agi and Agj
run in the legacy agent systems. They are both free and
therefore have not the corresponding object class instances.
The interaction relationship is maintained by the legacy agent
systems and they interact via the communication channel
provided by the agent platform.

(2) RRF={<Agi,Agj>|Agi∈ASR,Agj∈ASF}. Both Agi and Agj
run in the legacy agent systems. Agi is restricted and it has the
corresponding object class instance in the federate. Agj is free.
The interaction relationship is also maintained by the legacy
agent systems and they interact also via the communication
channel provided by the agent platform.

(3) RRR={<Agi,Agj>|Agi∈ASR,Agj∈ASR}. Both Agi and Agj
run in the legacy agent systems. They are both restricted and
have the corresponding object class instances. The relationship

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:8, 2008

1721

is maintained commonly by the wrapper and RTI. When two
restricted agents are located in different federates, they interact
indirectly via RTI.

(4) RRT={<Agi,Fj>|Agi ∈ ASR,Fj ∈ FS}. Agi runs in the
legacy agent systems. Fj runs as the form of federate. Agi is
restricted and has the corresponding object class instance. The
mapping relationship is maintained in the wrapper.

(5) RTT={<Fi,Fj>|Fi∈FS,Fj∈FS}. Both Fi and Fj run as the
form of federate. The interaction relationship is maintained by
RTI and they interact directly via the communication channel
provided by RTI.

RRR and RRT are our focuses as they need to be maintained by
our developed wrappers. In this paper, to satisfy the
requirement of HLA that all exchange of data among federates
will occur via RTI during the federation execution, the
interaction between restricted agents in different federates is
indirectly via RTI instead of directly via the communication
channel provided by the agent platform.

B. Implicit Communication and Explicit Communication
In the above platform, HLA plays the important role of

facilitator. Two types of communication between agents,
implicit communication and explicit communication [19], are
both supported on the basis of object management services of
HLA, as shown in Fig. 3. Implicit communication generally
refers to observation, i.e., the agent to obtain information takes
the initiative to observe some variables in the sharing
information space, while explicit communication means that
the sender agent has the intention to interact with the receiver
agent by the way of message passing. The important difference
between them is that implicit communication has the persistent
property and explicit communication has not. The variables to
be observed in implicit communication have not been removed
after one observation ends. But the message passing in explicit
communication is instant.

Fig. 3 Implicit Communication and Explicit Communication

Generally, two agents interact in the way of explicit

communication. However, explicit communication is not
suitable in some situations. For example, two warring agents in
the battlefield simulation can not communicate explicitly and
implicit communication is required. But it is obvious that this
observation is a partial information observation and the
modeling and reasoning about other agents are needed. This is
out of our scope. In this paper, we assume that implicit
communication is based on complete information.

In the internal RTI, implicit communication is based on the

updating and reflecting of object class and explicit
communication is based on the sending and receiving of
interaction class. They both belong to the class of object
management services of HLA and support group-cast.

III. RTI_JADE WRAPPER
This section will take RTI_JADE as an example to discuss

the development of wrappers. JADE 1.3 and pRTI1516 are
preferably selected. JADE 1.3 is a well-known agent system
platform supporting FIPA specification, a world-wide agreed
agent standard. pRTI1516 has the best performance among the
existing run-time interface softwares of HLA.

Fig. 4 RTI_JADE Wrapper

The wrapper RTI_JADE consists of three components:
Agent Object Management Component (AOMC), Agent
Interaction Management Component (AIMC) and Agent
Synchronization Management Component (ASMC), as shown
in Fig. 4. AOMC’s functions are to maintain the mapping
relationship RRT between restricted agents and object class
instances, and to realize implicit communication between
restricted agents. This mapping relationship is stored in the
local view of the wrapper. AIMC’s function is to realize
explicit communication between restricted agents. Both
implicit communication and explicit communication between
restricted agents involve in maintaining the relationship RRR.
ASMC is to synchronize all the local restricted agents in a
federate when this federate is required to synchronize with
other federates. Finally, a special agent, called mail agent, is
introduced as the message passing inter-media for AIMC and
ASMC.

In order to support implicit communication, individual agent
needs two abilities: sensing and effecting its environment. Two
interface objects, Sensor and Effector, are added [17]. A Sensor
object enables an agent to observe its environment and an
Effector object enables it to output its attributes into the
environment. Both of them are implemented via the
Object-to-Agent (O2A) communication channel provided by
JADE platform. Besides, in order to support explicit
communication, individual agent needs two buffers, InBuffer
and OutBuffer, which respectively store the incoming
messages and the outgoing messages.

In fact, many agent systems provide the two mechanisms of
message-passing and environment-sensing. So the update

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:8, 2008

1722

about restricted agents is very simple when the integration of
heterogeneous agent systems is considered.

A. AOMC
One of AOMC’s functions is to maintain the mapping

relationship RRT between restricted agents and object class
instances. When an agent is introduced into a federate, its
identifier is recorded in the local view and an object class
instance is created in this federate. While an agent is removed
from the federate, its identifier is deleted from the local view
and the corresponding object class instance is deleted.

Fig. 5 Sequence Diagram of Implicit Communication

The more important function about AOMC is to realize
implicit communication between restricted agents. The
sequence diagram of implicit communication is shown in Fig. 5.
In the internal RTI, it is based on the updating and reflecting of
object class, whose routing is defined by data distributed
management services of HLA. In RTI_JADE, the switches at
two ends, observable and observer, are dynamically
controllable, i.e., an agent can invalidate or validate its sensing
or effecting ability at any time. Attributes2Object is to pack
agent’s attributes into object class instances, and to unpack
object class instances into agent’s attributes.

The combination between the switch mechanism at the agent
level and the routing mechanism at the federate level forms a
complete, flexible and hierarchical data filtering mechanism
about implicit communication among restricted agents all over
the federation. The relationship RRR of implicit communication
is maintained by this combinational mechanism.

B. AIMC
AIMC is to realize explicit communication between

restricted agents. The sequence diagram of explicit
communication is shown in Fig. 6. Here, we assume that: (1)
All outgoing messages of a restricted agent are firstly passed to
the local mailbox agent; (2) A mailbox agent can only send

messages directly to local agents which are located in the same
federate.

When a restricted agent sends a message, the message is
firstly passed to the mail agent. The mail agent checks whether
the destination agent of the message is in the local view or not.
If so, the message is directly passed to the destination. If not,
the message is passed to a transformer ACL2Interaction, which
is to realize the transformation between ACLMessages and
interaction classes of HLA. Then, the corresponding interaction
class is received by another federate. The routing depends on
data distributed management services of HLA. The federate
transforms the HLA interaction class into ACLMessage and
check whether the destination agent of the ACLMessage is
located in this local federate. If so, the ACLMessage is passed
to the destination by the mail agent in this federate. If not, the
ACLMessage is discarded.

Fig. 6 Sequence Diagram of Explicit Communication

The combination between the local view mechanism and the
routing mechanism also forms a complete, flexible and
hierarchical data filtering mechanism about explicit
communication between restricted agents all over the
federation. The relationship RRR of explicit communication is
maintained by this combinational mechanism.

C. ASMC
ASMC is to synchronize all the local restricted agents in a

federate. The sequence diagram of agent synchronization
management is shown in Fig. 7. When RTI invoke the callback
announceSynchronizationPoint to inform a joined federate of
the existence of a new synchronization point, it shows that the
request of synchronization has been issued. The federate firstly
passes a SynStart message to the local mail agent. The mail
agent then broadcasts an AgentSyncStart message to all the
local restricted agents in the federate. When these agents have
made ready for synchronization, they all send an

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:8, 2008

1723

AgentSyncAchieve message to the mail agent. When the mail
agent receives all the AgentSyncAchieve messages, it passes a
SyncAchieve message to the federate. The federate then call the
function synchronizationPointAchieved to inform RTI that it
has achieved the registered synchronization.

The combination between the local synchronization
mechanism between restricted agents in the federate and the
global synchronization mechanism between federates in the
federation forms a complete and hierarchic synchronization
mechanism for all restricted agents all over the federation. This
is very important for the simulation of heterogeneous agent
systems.

Fig. 7 Sequence Diagram of Agent Synchronization Management

IV. PERFORMANCE ANALYSIS
The overall communication delay, implicit or explicit,

between restricted agents in the platform can be attributed to
three aspects: (1) the performance of RTI; (2) the performance
of JADE; (3) the performance of the wrapper RTI_JADE. Here,
(1) and (3) are tightly related with the system platforms. (2) is
our focus.

Our experiment proceeds with two restricted agents
respectively located in two federate, PING federate and PONG
federate. The average value every 100 times at the PING
federate is taken as a sample point. The experiment
environment is that two computers with the hardware
configuration P4 2.6GHz/256M RAM are connected by the two
100M network cards.

A. Performance Analysis of Implicit Communication

Fig. 8 Performance Comparision of Implicit Communication

Implicit communication is based on the updating and
reflecting of object class in the internal RTI. The size of object
class attributes is about 100 bytes. Delay of implicit
communication, between agents via RTI_JADE and further
RTI, and between federates via RTI, are compared in Fig. 8.

The delay of implicit communication between federates via
RTI is about 0.95ms and the delay of implicit communication
between agents via RTI_JADE and further RTI is about 2.4ms.
The delay caused by the wrapper can be calculated as follows:
(2.4-0.95)/2=0.725ms. This shows that the performance of
RTI_JADE about implicit communication is very high. This is
because the O2A channel of JADE works very efficiently.

B. Performance Analysis of Explicit Communication

Fig. 9 Performance Comparison of Explicit Communication

Explicit communication is based on the sending and
receiving of interaction class in the internal RTI. The size of
interaction class is also about 100 bytes. Delay of explicit
communication, between federates via RTI, between agents via
RTI_JADE and further RTI, and between agents via JADE, is
compared in Fig. 9.

The delay between federates via RTI is about 0.95ms. The
delay between agents via RTI_JADE and further RTI is about
2.1ms. The delay caused by the wrapper can be calculated as
follows: (2.1-0.95)/2=0.575ms. The interaction delay between
agents directly by JADE is about 10ms. This shows that the
performance of RTI_JADE about explicit communication is
also high. This is because that restricted agents and the mail
agent are both located in the same container of JADE and the
high efficient event mechanism is used. While two agents
located in two different containers of JADE take IIOP as their
interaction way, the delay of explicit communication between
agents via JADE is relatively higher. This shows RTI works
much more efficiently than JADE with respect to explicit
communication.

V. CONCLUSION
Open Agent System platform based on High Level

Architecture is firstly proposed. The basic idea is to develop
different wrappers for different agent systems, which are
wrapped as federates to join a federation. As the platform is
based on High Level Architecture, the advantages for the open
standard are naturally inherited, such as system interoperability
and reuse, especially, the federal architecture allows different
federates to be heterogeneous so as to support the integration of

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:8, 2008

1724

heterogeneous agent systems. Furthermore, both implicit
communication and explicit communication between restricted
agents can be supported based on the object management
services of HLA. Then, as the wrapper RTI_JADE as an
example, the development for three components, AOMC,
AIMC and ASMC is discussed and the performance about
RTI_JADE is comparatively analyzed. The results show that
RTI_JADE works very efficiently.

There are a number of issues for future research. A
paramount issue is the development of other wrappers. Another
issue is the performance analysis of the local synchronization
mechanism. The third issue is to integrate multiple standards
for explicit communication, including FIPA ACL and KQML.
Finally, in order to support transparent delegation, i.e., service
matchmaking, often required by Open Agent System, a general
service description language will be developed and further be
integrated into the object model template of HLA.

REFERENCES
[1] M. Luck, P. McBurney and C. Preist. Agent Technology: Enabling Next

Generation Computing. AgentLink. http://www.agentlink.org/roadmap.
[2] F. Bellifemine, A. Poggi and G. Rimassa. JADE – A FIPA-compliant

agent framework. In: Proc. of PAAM-99. London, UK. 1999, pp. 97-108.
[3] A. M. Uhrmacher, P. Tyschler and D. Tyschler. Modeling mobile agents.

In Proc. of the International Conference on Web-based Modeling and
Simulation, part of the 1998 SCS Western Multiconference on Computer
Simulation. San Diego , California. 1998, pp. 15–20.

[4] Aglet. Tokyo Research Laboratory IBM Corporation.
http://www.trl.ibm.co. jp/aglets/

[5] P. Urlings, J. Tweedale, C. Sioutis, N. Ichalkaranje and L. Jain. Intelligent
Agents as Cognitive Team Members. In Proc. of the 10th International
Conference on Human-Computer Interaction. Crete. Greece. 2003, pp.
723-733.

[6] Nick Collier. RePast: An Extensible Framework for Agent Simulation.
http://repast.sourceforge.net.

[7] A. Sloman and R. Poli. SIM AGENT: A toolkit for exploring agent
designs. In M. Wooldridge, J. Mueller and M. Tambe, editors.: Intelligent
Agents II: Agent Theories Architectures and Languages (ATAL-95).
Springer–Verlag, 1996, pp. 392-407.

[8] Cougaar. Cougaar Open Source Software. http://www.cougaar.org.
[9] M. R. Genesereth and S. P. Ketchpel. Software agents. Communications

of the ACM. 1994, vol. 37, no. 7, pp. 48-53.
[10] N.B. Wang, X.F. Xu, G. Wang and S.C. Deng. Designing Federation

Multi-agent System Based on Ontology. Computer Engineering. 1999,
vol. 25, no. 3, pp. 50-52

[11] N. R. Jennings, L. Varga, R. Aarnts, J. Fuchs and P. Skarek. Transforming
Standalone Expert Systems into a Community of Cooperating Agents.
Engineering Applications of AI. 1993, vol. 6, no. 4, pp. 317-331.

[12] DMSO: High Level Architecture Rules, Interface Specification, Object
Model Template. Version 1.3. 1998. http://www.dmso.nil.

[13] E. Dannie, P. John and A. Stephan. Feasibility and Functionality of
Autonomous Objects in the HLA. In Proc. of the 1997 Spring Simulation
Interoperability Workshop. Orlando, FL. No: 97S-SIW-055, 1997, pp.
3-7.

[14] J. Andersson and S. Lof. HLA as Conceptual Basis for a Multi-Agent
Environment. Technical Report 8th-CGF-033, Pitch Kunskapsutveckling
AB, 1999.

[15] M. Lees, B. Logan, T. Oguara and G. Theodoropoulos. HLA_AGENT:
Distributed Simulation of Agent-Based Systems with HLA. In Proc. of the
International Conference on Computational Science (ICCS'04).
Huntsville, Alabama USA. 2004, pp. 907-915.

[16] R. Minso and G. Theodoropoulos. Distributing Repast agent-based
simulations with HLA. In Proc. of the 2004 European Simulation
Interoperability Workshop, Edinburgh, Simulation Interoperability
Standards Organization and Society for Computer Simulation
International. 2004.

[17] F. Wang, S.J. Turner and L. Wang. Integrating Agents into HLA-based
Distributed Virtual Environments. In Proc. of the Fourth Workshop on
Agent-Based Simulation (ABS2003). Montepellier, France. 2003, pp.
9-14.

[18] B. Logan and G. Theodoropoulos. The Distributed Simulation of
Multi-Agent Systems. In Proc. of the IEEE - Special Issue on
Agent-Oriented Software Approaches in Distributed Modeling and
Simulation. 2001, vol. 89, no. 2, pp.174-185.

[19] Michael Van Wie. Role Selection in Teams of Non-communicating
Agents. Thesis for the Degree Doctor of Philosophy. University of
Rochester. 2001.

