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Abstract—In this paper we address a multi-objective scheduling 
problem for unrelated parallel machines. In unrelated parallel 
systems, the processing cost/time of a given job on different 
machines may vary. The objective of scheduling is to simultaneously 
determine the job-machine assignment and job sequencing on each 
machine. In such a way the total cost of the schedule is minimized. 
The cost function consists of three components, namely; machining 
cost, earliness/tardiness penalties and makespan related cost. Such 
scheduling problem is combinatorial in nature. Therefore, a 
Simulated Annealing approach is employed to provide good solutions 
within reasonable computational times. Computational results show 
that the proposed approach can efficiently solve such complicated 
problems. 
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I. INTRODUCTION 
CHEDULING of parallel machines is one of the most 
important subjects in multi-machine manufacturing 
environments. Generally this problem consists of jobs 

allocation (which are simultaneously available) to machines 
with similar, but not necessarily identical, capabilities. 
Efficient scheduling leads to increased efficiency; thereby 
reducing the time required to complete jobs and consequently 
increasing the profitability of the organization in today’s 
extremely competitive environment.  

Traditional scheduling algorithms are mainly concerned 
with completion-time-related objectives (e.g., makespan), and 
aim to reduce production time and increase facility utilization. 
In modern manufacturing management, On-time delivery is 
also a critical factor towards realizing customer satisfaction. 
Hence, scheduling problems with due-date-related objectives 
have attracted increasing attention from managers and 
researchers [1]. Widely used performance measures in due-
date-related scheduling problems include maximum tardiness, 
total or mean tardiness, total weighted tardiness and the 
number of tardy jobs [2-3]. In this regard, a rich body of 
research exists for single criterion. However, very few studies  
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deal with multi criteria objectives in general scheduling 
problems [4-5].  

Generally, machine scheduling falls into two main 
categories, single machine and multi-machine problems. Many 
scheduling algorithms for single machines proved to be 
effective and/or optimum. The most important of these 
algorithms are SPT and EDD orders that optimize such 
performance measures as mean flow time and maximum 
tardiness, respectively. Although, single machines are easier to 
solve, they hardly happen in real manufacturing systems. On 
the other hand, most scheduling problems for parallel 
machines have real occurrences in industrial systems. It's 
proved that scheduling problems for parallel machines is NP-
hard [6]. The parallel machines scheduling is a growing area 
of research in recent years, and many papers have been 
published in this field [5, 7-9]. As due-date-related problems, 
especially for multi-machine environments, are usually 
computationally complex, most existing results are typically 
for problems with small sizes or simple settings, such as 
identical parallel machines [9-11]. As an example, the shifting 
bottleneck method which was originally designed to minimize 
makespan has been revised to decompose the multi-machine 
problems into a series of single-machine problems [12-13].  

Researches on unrelated parallel-machine scheduling 
problems are very limited. Among the few papers, Li and 
Yang [8], proposed a research on non-identical parallel 
machine. Their single-criterion objective was to minimize the 
total weighted completion time on unrelated machines. Also 
Gurel and Akturk [14] proposed an improved branch and 
bound algorithm to solve a bi-criteria allocation and 
processing time problem for unrelated parallel CNC machines.  

Reducing the makespan may results in increasing other costs 
such as machining cost or JIT related penalties [15-16]. Given 
the above, it may be necessary to consider more than one 
objective in manufacturing scheduling. Relative to scheduling 
problems that optimize makespan or flow time, due-date-
related problems are usually much more computationally 
complex and are classified as strongly NP-hard [6]. Such 
complicated problems are difficult to solve optimally. In many 
situations, a ‘‘good’’ solution obtained by a heuristic 
algorithm in reasonably short computational time is often 
desirable. Currently the most widely used heuristic techniques 
in combinatorial optimization are Simulated Annealing (SA), 
Tabu Search (TS), Genetic Algorithms (GAs), and Ant Colony 
Optimization (ACOs) algorithms.  

In this paper, an efficient procedure has been developed to 
solve a multi-criteria scheduling problem for unrelated parallel 
machines. The objective is to simultaneously minimize the 
total machining costs, JIT related costs (earliness and tardiness 
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penalties) and the cost associated with the system utilization, 
i.e., makespan.  

It is notable that, this study consists of jobs allocation to 
machines with similar, but not necessarily identical, 
capabilities.  

II. PROBLEM DESCRIPTION 

In this study, we investigate a system with M unrelated 
machines with similar capabilities which can process either of 
the N jobs. For such a problem there is (n!)m possible 
schedule. All jobs and machines are available at time zero. 
Each job has a distinct due date. However, the processing time 
(and cost) of a job may vary on different machines. This 
generalized property of the problem, to a large extend, makes 
it more realistic. In turn, all machines are capable of 
processing either of the N jobs, although with different 
processing costs and times. Each job can be assigned to one 
machine only and no preemption of jobs is allowed.   

Given the above system description, the objective is to 
simultaneously determine the job-machine assignments and 
the jobs sequencing on each machine so as to minimize the 
total weighted processing cost. Here, the processing cost 
consists of three components as follows:  

a) Earliness and tardiness penalties: Completing a job 
before its due date will lead to increasing inventory cost, shop 
floor congestion, etc. The tardiness penalty usually occurs due 
to the loss of goodwill if the job is to be delivered to the 
customer or due to the waiting time if the job is to be 
processed by the next manufacturing stage. Whereas these 
criterions have different importance, they are weighted. 
Usually, the earliness penalty is considered less than the 
tardiness penalty.  

b) Makespan cost: Makespan is one of the most widely 
studied objectives in the literatures and reducing it is of great 
interest. Also makespan is a measure of utilization and relates 
directly to the system's efficiency. In multi-machine 
environment makespan is sequence dependent. Since reducing 
makespan results in increased system utilization, it may be one 
of the main objectives in process scheduling.  

c) Machining cost: This is the most obvious cost 
components which is directly proportional to the time taken by 
each job on a given machine. In multi-machine manufacturing 
systems, the unit-time value of different processors may quite 
vary because of the technology differences, energy or labor 
requirements, tool usage and failure rates. Therefore, the job-
machine assignment is very important and can affect the total 
processing costs. 

III. THE SOLUTION PROCEDURE-SIMULATED ANNEALING 
APPROACH 

For real and large size optimization problems, the 
traditional optimization methods are often inefficient and time 
consuming. With the advent of computer technology and 
computational capabilities in the last few decades, the 
applications of heuristic algorithms are widespread.  

The annealing process, used in metal working, involves 
heating the metal to a high temperature and then letting it 
gradually cools down to reach a minimum stable energy state. 

If the metal is cooled too fast, it won't reach the minimum 
energy state. Kirkpatrick and his colleagues [17] used this 
concept to develop a search algorithm called Simulated 
Annealing (SA). Among different heuristic algorithms, SA is 
one of the most powerful optimization methods that simulates 
the cooling process of a molten metal. The general stages of 
the SA algorithm for the job scheduling on parallel machines 
are as follows:  

1. Initialization: determining the temperature parameter T0 and 
the cooling schedule:  r (0 < r < 1) and also the termination 
criterion (in this study, number of iterations    k = 1… K). 
Generate and evaluate an initial candidate solution 
(perhaps at random); call this the current solution, c.  

2. Generate a new neighboring solution, m, by making a small 
change in the current permutation of jobs and evaluate this 
new solution. 

3. Accept this new solution as the current solution if:  
a. The objective value of new solution, f (m), is better 

than of the current solution, f (c). 
b. If f (m) is worse than f (c), the value of acceptance is 

determined by probability function given by       
(exp (f (m) – f (c)) / T k ) which must be greater than 
a uniformly generated random number “rand”; 
where 0 < rand < 1.  

4.  Check the stop criteria and update the temperature 
parameter (i.e., T k = r * T k-1) and return to Step 2. 
(0<r<1) 

The algorithm is flexible, it needs fewer tuning parameters, 
and it can be adapted to a wide range of problems as well as 
ability to escape local optima. In addition, for any heuristic 
optimization procedure, the algorithm parameters should be 
tuned to enhance its performance. Therefore, the ease of 
tuning a given algorithm is an important feature in selecting a 
proper solution technique. In SA there are only two major 
tuning parameters: the initial temperature and cooling 
schedule. As a result, SA can easily be "tuned" with minimum 
trial runs. 

Simulated annealing can avoid local optima by accepting a 
non-improving neighbor (see Step 3.b).Thus, at the start of SA 
most worsening moves are accepted, but at the end only 
improving ones are likely to be accepted. This, to a large 
extend, helps the algorithm jump out of local optima. 

IV. NUMERICAL EXAMPLE AND RESULTS 

In this study, we consider a hypothesis problem with 80 
jobs and 5 unrelated parallel machines. The ranges of data 
related to the costs and times of performing the operations are 
as follows: processing times, 1–30(time unit); due dates, 12–
240(time unit); tardiness penalties, 1.3–2.8($/time unit), 
earliness penalties, 0.1–1($/time unit); machining costs, 1.5–
18($/time unit).The algorithm was coded in MATLAB 7.0 
software and was executed on a Pentium 4 computer with 1.70 
GHz CPU and 512 MB of RAM. The best set of search 
parameters, found through several trial runs, is as follow: 
initial temperature (C 0) = 20000; cooling rate (α) =0.99; and 
termination criteria = 20000 iterations or temperature less than 
0.01.  

Computational time, the time taken to reach final solution, is 
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an important criterion in the performance of any solution 
techniques; especially when we need a day-to-day scheduling. 
The convergence curve of cost function for SA algorithm, 
using best parameters is plotted in Figure 1. This curve shows 
that the algorithm converges towards final solution very 
quickly. The fluctuation of the curve in the beginning of the 
search due to high initial temperature is great. However, as the 
temperature decreases by cooling rate α, algorithm would 
select only the improving solutions. 

 

 
Fig. 1 The convergence curve of the SA algorithm (total cost)  

As it shows, at first SA algorithm accepts some non-
improving solutions, but by increasing number of iterations 
and reducing temperature probability of transition to better 
solutions increases, therefore, after some iterations algorithm 
converges to the optimal solution.  

Diagrams of machining costs, earliness and tardiness 
penalties are shown in Figure 2 and 3. 
 

 
Fig. 2 The convergence diagram of the SA algorithm (earliness and 

tardiness penalties) 

 
Fig. 3 The convergence diagram for SA algorithm         (machining 

costs) 

 As they show, by decreasing makespan and Just-In-Time 
production costs, machining costs slightly increase which 
shows the importance of combinatorial optimization. The 
computational results for this case are summarized in Tables 
1. As shown, sum of the weighted costs is improved by more 
than 46% from 2295 to 1227 unit cost. In this problem, 
lateness cost is improved by more than 56% and the 
improvement of makespan cost is 34% while machining cost 
is decreased about 1.5%. 

The weighted penalties are assigned to different cost 
components to show their relative importance's in the 
objective function. Since there are no exact solution 
procedures for such complex problems in reasonable 
computational times, a SA algorithm is employed. 
Computational experiments demonstrate that the SA method, 
in terms of both convergence speed and solution quality is an 
effectiveness method towards solving large-size and multi-
criteria scheduling problems. The results and high 
convergence rate of objective function along with very short 

TABLE I 
THE RESULT OBTAINED BY SA ALGORITHM FOR THE SCHEDULING PROBLEM 

 Initial 
production 

plan 

Final 
production 

plan 

Percent of 
improvement 

Machining cost 
( /$ time unit)       637.5        647.2 -%1.5 

Lateness 
penalties 
( /$ time unit) 

      6485       2816 %56.5 

Makespan  
(time unit)         376            247 %34 

Sum of the 
weighted costs 
($) 

          2295       1227 %46.5 
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computational time, shows the capability of suggested 
algorithm for solving the combinatorial optimization of 
sequencing and scheduling problem. 

V. CONCLUSION 
 In this study, a manufacturing scheduling problem for 

unrelated parallel machines has been investigated and solved 
by Simulated Annealing (SA) algorithm. The objective of the 
model was to simultaneously minimize  the total machining 
costs, JIT related costs (earliness and tardiness penalties) and 
the cost associated with system utilization; i.e. total makespan. 
The objective function is the linear weighted combination of 
the above mentioned costs. The assigned weights to each 
parameter is determined according to the type of industry, 
products, amount of supply and demand, time limitations due 
to deterioration; such as food products. The multi-machine 
scheduling problems are combinatorial in nature whose 
solution space, for a problem with n independent jobs and m 
unrelated machines, may reach (n!)m. Using the proposed 
solution procedure, the cost function has been minimized with 
respect to manufacturing resources and system specifications. 
Computational results showed that the proposed algorithm is 
quite capable of providing fast and high-quality solutions for 
such complicated problems. 
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