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Abstract—Principle component analysis is often combined with 

the state-of-art classification algorithms to recognize human faces. 
However, principle component analysis can only capture these 
features contributing to the global characteristics of data because it is a 
global feature selection algorithm. It misses those features 
contributing to the local characteristics of data because each principal 
component only contains some levels of global characteristics of data. 
In this study, we present a novel face recognition approach using 
non-negative principal component analysis which is added with the 
constraint of non-negative to improve data locality and contribute to 
elucidating latent data structures. Experiments are performed on the 
Cambridge ORL face database. We demonstrate the strong 
performances of the algorithm in recognizing human faces in 
comparison with PCA and NREMF approaches. 
 

Keywords—classification, face recognition, non-negative 
principle component analysis (NPCA) 

I. INTRODUCTION 
ACE recognition is an important research problem which 
can be formulated as verifying or determining of the person 

in the input image in the given database of face images. 
Biometric-based technologies include identification based on 
physiological characteristics (such as face, fingerprints, finger 
geometry, hand veins, palm, iris, retina, ear and voice) and 
behavior traits (such as gait, signature and keystroke dynamics) 
[1]. Face recognition appears to offer several advantages over 
other biometric methods such as it can be done passively 
without any explicit action or participation on the part of the 
user since face images can be acquired from a distance by a 
camera, therefore it is a totally non-intrusive and does not carry 
any health risks. There have been numerous practical 
applications used for two primary tasks: verification 
(one-to-one matching) and identification (one-to-many 
matching). A few of the applications can be outlined as: 
security (access control, airports/seaports, ATM machines and 
border checkpoints [2, 3]; network security [4]; email 
authentication on multimedia workstations); surveillance; 
general identity verification (national IDs, passports, drivers' 
licenses); criminal justice systems; video indexing etc. In 
addition to these applications, the underlying techniques in the 
current face recognition technology have also been modified 
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and used for related applications such as gender classification 
[5-7], expression recognition [8, 9] and facial feature 
recognition and tracking [10]. 

In [11], a formal method of classifying faces was first 
proposed. Great progress has been made and the methods fall 
into two main categories: feature-based and holistic [12-14].  

Feature-based approaches first identify and extract 
distinctive facial features such as the eyes, mouth, nose, etc., as 
well as other c marks, and then compute the geometric 
relationships among those facial points, thus reducing the input 
facial image to a vector of geometric features. Standard 
statistical pattern recognition techniques are then employed to 
match faces using these measurements. Wiskott etc. proposed 
the elastic bunch graph matching method which is based on 
Dynamic Link Structures [15]. Recent variations of this 
approach replace the Gabor features by a graph matching 
strategy [16] and HOGs (Histograms of Oriented Gradients) 
[17]. The major disadvantage of these approaches is the 
difficulty of automatic feature detection and the fact that the 
implementer of any of these techniques has to make arbitrary 
decisions about which features are important [18]. 

Numerous variations on and extensions to the standard 
eigenfaces and the Fisherfaces approaches have been suggested 
since their introduction. As a well-established dimension 
reduction technique, Principal Component Analysis (PCA) 
projects data in an orthogonal subspace generated by the 
eigenvectors of the data covariance matrix. Some recent 
advances in PCA-based algorithms include multi-linear 
subspace analysis [19], symmetrical PCA [20], 
two-dimensional PCA [21], weighted modular PCA [22], 
Kernel PCA [23], and diagonal PCA [24]. However, PCA can 
only capture these features contributing to the global 
characteristics of data because it is a global feature selection 
algorithm. It misses those features contributing to the local 
characteristics of data because each principal component only 
contains some levels of global characteristics of data [25]. This 
global feature selection mechanism not only leads to difficulty 
in interpreting each principal component but also prevents 
subtle data local latent structure discovery in the following 
classification. 

One important reason for the global nature of PCA is that 
data representation in the classic PCA is not "purely additive," 
i.e., each principal component consists of both negative and 
positive entries. The linear combination in the PCA subspace 
mixes with both positive and negative weights which are likely 
to cancel each other partially in the data representation. In fact, 
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it is more likely that weights from local features are partially 
canceled out than the weights from global features for their 
frequencies. Therefore, the partial cancellations lead to PCA's 
loss of data locality in the feature selection [26].  

Imposing non-negative constraints on PCA, restricting each 
entry of a principal component to be non-negative, can entirely 
prevent the partial cancellations because each input data 
variable is represented by only additive components, therefore, 
it will improve data locality and contribute to elucidating latent 
data structures. In fact, that is the reason why non-negative 
matrix factorization has been shown to be a useful 
decomposition for multivariate data. Moreover, non-negativity 
also causes each principal component to be sparse, which 
contributes to the intuitive interpretation of each principal 
component [27]. 

In the following sections, we formulate the non-negative 
principal component analysis (NPCA) as a constraint 
optimization problem and present a NPCA-based face 
recognition algorithm. In section II, we introduce the PCA and 
demonstrate the NPCA. Furthermore, we present a 
NPCA-based face recognition algorithm. Finally, we discuss 
the generalizations and limitations of the NPCA-based face 
recognition algorithm and conclude the paper. 

II. METHODS 

A. Principal Component Analysis 
Principal component analysis (Karhunen-Loeve or Hotelling 

transform) - PCA , providing a powerful tool for data analysis 
and pattern recognition which is often used in signal and image 
processing, belongs to linear transform based on the statistical 
techniques.  

Principle component analysis in signal processing can be 
described as a transform of a given set of n  input vectors 
(variables) with the same length K formed in the n-dimensional 
vector 1 2[ , , ]TnX x x x= L  into a vector y according to 
                                 ( )xy A X m= −                                          (1) 

This point of view enables to form a simple formula (1) but it 
is necessary to keep in the mind that each row of the vector X  
consists of K values belonging to one input. The vector xm in 
Eq. (1) is the vector of mean values of all input variables 
defined by relation 

                           
1

1{ }
K

x k
k

m E X X
K =

= = ∑                               (2) 

Matrix A in Eq. (1) is determined by the covariance 
matrix xC . Rows in the A matrix are formed from the 
eigenvector e of xC ordered according to corresponding 
eigenvalues in descending order. The evaluation of 
the xC matrix is possible according to relation 

    
1

1{( )( ) }
K

T T T
x x x k k x x

k

C E X m X m X X m m
K =

= − − = −∑      (3) 

As the vector X of input variables is n-dimensional it is 
obvious that the size of xC is n n× . The elements ( , )xC i i  
lying in its main diagonal are the variances 

                            2( , ) {( ) }x i iC i i E X m= −                                  (4) 

of X and the other values ( , )xC i j determine the covariance 
between input variables ,i jX X . 

                     ( , ) {( )( )}x i i j jC i j E X m X m= − −                      (5) 

The rows of A in Eq. (1) are orthonormal so the inversion of 
PCA is possible according to relation 
                                 T

xX A y m= +                                               (6) 
The kernel of PCA defined by Eq. (1) has some other 
interesting properties resulting from the matrix theory which 
can be used in the signal and image processing to fulfil various 
goals as mentioned below. 

Matrix factorization is described as follows: given a 
matrix X , with m rows and n columns, and a positive 
integerγ , ( )rank Xγ ≤ , find matrix factorsW and H such that 
                              

ia aj
a

X WH W H≈ = ∑                               (7) 

where W , H are matrices with rows ,m r and 
columns ,r n respectively. ≈ means that you may choose your 
own objective function to measure the distance 
between X andWH and minimize it to findW and H .  
The objective function of PCA is 
   2

, , ,
,

( ) ( ( ) ) ( )T
i j i j i j

i j i j

D X WH X WH W Wα
≠

= − +∑ ∑              (8) 

subject to 
                                ,( ) 1T

i iW W = ,         0α >                              (9) 

The second term is used to make the basesW near to orthogonal 
bases. It is evident that 
                   2

, ,
,

( ) ( ( ) )i j i j
i j

D X WH X WH> −∑                          (10) 

According to the properties of the singular value decomposition, 
from Eq. (10), we have that if W U= , 

TH V=∑ where U and V are the first γ eigenvectors of 
the TXX and TX X matrices respectively, 

1( , , )diag γλ λΣ = L , 

1, , γλ λL are the first γ positive eigenvalues of TXX , 
then ( , )W H is the minimum solutions of Eq. (8). 

B. Non-negative Principal Component Analysis 
The objective function of NPCA is: 

          2
, , ,

,

( ) ( ( ) ) ( )T
i j i j i j

i j i j

D X WH X WH W Wα
≠

= − +∑ ∑        (11) 

subject to 
                       

, , ,( ) 1, 0, , 0T
i i i j i jW W W H α= ≥ ≥                       (12) 

which is used to make the baseW near to orthogonal bases, so 
that there is little redundancy information inW . α is chosen to 
make the scalar of the second term be near to the first term in Eq. 
(11). 

We can derive the iterative formulae by so-called auxiliary 
functions [28]. The auxiliary function ( , )HG H H ′ with respect 
to ,H H ′ and ( , )WG W W ′ with respect to ,W W ′are: 
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According to the property that the minimum of the auxiliary 
function is just the minimum of the corresponding objective 
function, then the iterative formulae are: 

1 arg min ( , )n n
H HH G H H+ = and 1 arg min ( , )n n

W WW G W W+ = . In 
fact, we can obtain the local minimum of 

( , )n
HG H H and ( , )n

WG W W through some different calculation. 
Thus iterative formulae are as follows: 
 
                

0 0 0 0 0 0 0 0

1
, , , ,( ) /( )n n nT nT n n

i j i j i j i jH H W X W W H+ =            (15) 
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∗ ∗ +
       (16)  

 
It is reasonable to require the corresponding dimension 

reduction data of the matrix to be positive or at least 
nonnegative to maintain data locality in the feature selection 
since the matrices themselves can be nonnegative in many 
applications.   

III. EXPERIMENTS 
The experiments are performed on the Cambridge ORL face 

database, which contains 40 distinct persons. Each person has 
ten different images of the size of 112×92, taken at different 
times. There are variations in facial expressions such as 
open/closed eyes, smiling/nonsmiling, and facial details such as 
glasses/no glasses. All the images were taken against a dark 
homogeneous background with the subjects in an up-right, 
frontal position, with tolerance for some side movements. 
There is also some variations in scale. We show four 
individuals in the ORL face images in Fig. 1. 

 
Fig. 1 Four individuals in the ORL face database. 

 
Fig. 2, Fig. 3 and Fig. 4 shows the basis images of the 

training set learnt by PCA, Non-negative Relative Entropy 
Matrix Factorization (NREMF) [29, 30], and NPCA 
approaches respectively. They show 49 basis images of each 
approach on the ORL face database. It can be seen that the basis 
of all methods are additive except for PCA. Moreover, the 
greater number of basis image is, the more localization is learnt 
in NMF-based approaches. 

 
Fig. 2 The basis images of PCA on ORL database results. 

 

 
Fig. 3 The basis images of NREMF on ORL database results. 
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Fig. 4 The basis images of NPCA on ORL database results. 

 
We randomly select n (n=2, 4, 6) images from each person 

for training, while the rest of images of each individual for 
testing. The average accuracies of training samples ranging 
from 2 to 5 are recorded in Table�. The recognition accuracies 
of PCA, NREMF, and NPCA are 34.1%, 66.7%, and 67.2%, 
respectively, with 2 training images. The performance for each 
method is improved when the number of training images 
increases. The recognition accuracies of PCA, NREMF, and 
NPCA are 92.8%, 93.5%, and 96.3%, respectively, with 6 
training images. The recognition ratio of the test set reached 
100% in each approach. 

IV. CONCLUSION 
In this study, we present a novel face recognition approach 

using non-negative principal component analysis. We 
demonstrate the strong performances of the algorithm in 
recognizing human faces in comparison with PCA and NREMF 
approaches. 

Since feature selection algorithms are widely employed in 
analyzing all types of expression data, it would be interesting to 
further investigate the potentials of the NPCA-related 
techniques in the classifications and biomarker captures for the 
proteomics, SNP, and array-based CGH data [31, 32]. 
Furthermore, we are also interested in investigating the 
applications of the sibling algorithm of NPCA: non-negative 
independent component analysis [33, 34] and the other classic 
or novel feature selection algorithm such as kernel independent 
component analysis [35], convex and seminonnegative matrix 
factorizations [36] in microarray data analysis. These will be 

further investigated in future work. 
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