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Abstract—Owing to extensive use of hydrogen in refining or
petrochemical units, it is essentia to manage hydrogen network in
order to make the most efficient utilization of hydrogen. On the other
hand, hydrogen is an important byproduct not properly used through
petrochemical complexes and mostly sent to the fuel system. A few
works have been reported in literature to improve hydrogen network
for petrochemical complexes. In this study a comprehensive analysis
is carried out on petrochemical units using a modified automated
targeting technique which is applied to determine the minimum
hydrogen consumption. Having applied the modified targeting
method in two petrochemical cases, the results showed a significant
reduction in required fresh hydrogen.
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|. INTRODUCTION

PROCESS integration methodologies in hydrogen networks
consist of pinch based conceptua approaches and
superstructure based mathematical optimization techniques.
Pinch andysis is amed to minimize the fresh hydrogen
consumption and off-gases discharge while maximizing the
recovery and reuse of hydrogen by variety of purification
techniques.

Alves and Towler [1] first proposed a graphical targeting
approach to identify the hydrogen pinch and the minimum
hydrogen demand using hydrogen purity and hydrogen surplus
profiles. Later, El-Halwagi et al. [2] developed a rigorous and
non-iterative graphical method, to minimize the fresh resource
consumption. Foo and Manan [3] put forward a numerical
targeting method named the gas cascade andysis (GCA) to
calculate the utility target.

However, these graphical techniques cannot efficiently
consider all possible practical constraints, which lead to the
devel opment of various design approaches. Hallale and Liu [4]
proposed a mathematical optimization method based on a
superstructure to address the pressure constraints in optimizing
hydrogen networks. Liu and Zhang [5] developed a detailed
model of purification units into the hydrogen network to
evaluate possible purification scenarios. Ahmad et al. [6]
extended a new approach for multi-period operation. These
mathematical methods are preferred to address problems such
as optimum cost, flexible operation, specific process
constraints, etc.
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Both insight-based and mathematics-based optimization
techniques have their own advantages. Mathematical methods
are preferred to address large-scale problems with complex
process constraints. On the other hand, the conceptua
methods provide insightful understanding for network
synthesis. So, it is worthwhile to take advantages of both
methods. Recently, the pinch based automated targeting
techniques have been extended to the resource conservation
problem including water and hydrogen network by Ng et al.
[7], [8]. Flexibility in changing the objective function allows
adopting this pinch-based optimization approach to case-
specific problem.

In this study the automated targeting technique presented by
Ng et a. [7] is modified to consider the pressure swing
adsorption (PSA) units or other purification units through the
hydrogen network.

I1.AUTOMATED TARGETING TECHNIQUE

Pinch analysis technique is less complicated than solving
the mathematical model. However, the combination of the
pinch concepts and the mathematical model has infrequently
been addressed. The automated targeting first proposed mass
exchange network synthesis [9] was extended to the resource
conservation network (RCN) by Ng et al. [7]. Being flexiblein
defining an objective function, this approach is superior to the
conventional pinch-based techniques. This technique would be
used in this study with some modifications.

A. Model for Conventional RCN Problem

According to Ng et al. [7], the first step in conducting the
automated targeting technique is to build a resource
conservation cascade diagram (RCCD), as shown in Fig. 1.
As shown, the sinks and sources are first arranged in a
descending order, from the highest purity level (k = 1) to the
lowest level (k = n). Next, material flow rate cascading and
load cascading are performed across al purity level.
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Fig. 1 Resource conservation cascade diagram, RGIQRt al. [7])
Net material flow rate of each purity levék) is given by There is also a purification unit which purifiesdnggen
stream leaving catalytic reformer. Prior to desitargeting
Ok = Okt (ZiFsri- 2jFskk kK (1) assists to figure out the scope for the currentwost
potentials. Fig. 2 shows the hydrogen network floset
The load balance at théh purity ) is given as extracted from this petrochemical complex. Tabland I,
summarize stream data and sources/sinks data fstingx
ek = ek1 T Oka(Yer— ) kK (2) network, respectively. It should be noted thatpghege stream

of regeneration unit is not used due to processtcaints.
The residual load;, must take a positive value to achieve a -
feasible RCN. Therefore, Equation (3) is includesl & A.Modified Model For RCN Problem

constraint in the formulation model. In current network, no hydrogen recovery is doneoffh
gases purged from various units except outlet streCRU.
20 koK @3 Catalytic reforming provides network with a relatiy pure

hydrogen stream as a by-product. Based on Fig.®rtion

A pinch purity is obtained when the residual loa jof this stream is directly sent to several consismand
determined to be zero in the model solution attpuevel k '€Maining is sent to a PSA to be purified and theed in
(e =0). This is similar to the pinch point in the hydrage Other consumers. Therefore, one sink (PSA feed)
surplus diagram in the graphical targeting appreacithere SOUTCeS (PSA product and residue) are added toetveork.

the hydrogen surplus is zero [1]. The product stream of PSA is regarded as fresh oggulr
resource through the network because of its higlitypun
. CASEA order to reduce the overall hydrogen consumptiothéu, it is

worth to apply residue stream from PSA unit to ltydrogen
network due to its relatively high purity.

However, PSA feed flow rate and PSA residue flote axe
no longer constant, and have linear relationship wie PSA
product flow rate earlier considered as fresh resauAs a
result, one sink and two sources added to the mktare new
variables and modification of mentioned model tdrads this
problem is inevitable.

Case A is representative of a real petrochemicaipbex.
This typical aromatics complex contains severat@ss units
to produce primarily paraxylene. Hydrogen plays an
important role through this complex sintieere are several
processes which consume hydrogen such as hydigt(ett),
hydrogenation (HG), arofining (AF), isomerizatiorS),
regeneration (RG), transalkylation (TA) and
disproportionation (DP). Required hydrogen is sigupfrom
a catalytic reformer.
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Fig. 2 The existing hydrogen network

The overall flow rate balance of the purificationituis as
follow:
Fin = FptFg

resource flow rate

Where F, F» and R are PSA feed, product and residue
flowrates.
The relation between feed flow rate and residue flate is
shown as
Fin = Fp (Yo/YinxR)
cost.
Where R is PSA recovery and ¥nd Y,, are PSA product and
feed purities.
It is assumed thafs/Y;,xR = a = constan{ so

Obijective function = minimize~

resource (PSA product). The combination of (1)Xpand (7)
form a linear programming (LP). An objective furctineeds
(4) to be defined. Here, the objective function is mmizing fresh

(8)

As previously mentioned, this approach is flexitbetake
(5) any other objective functions such as minimizingeragting

Minimizing Equation (8) subject to the constraiimng1) to
(7) is performed by GAMS [10] and the resulted RCCD
shown in Fig. 4.

The existing fresh hydrogen consumption is 231.¥snés

Fin=axFp

(6) shown in Fig. 4, the minimum fresh hydrogen andgaf§es

discharge flow rates £k and kp) for this case are targeted as

Using (6), the overall balance across purificationt (4)
can be simplified as

192.45 and 160.25 mol/s, respectively, with thechpipurity
located at 67 mol % (). It means 16.7% reduction in fresh

hydrogen consumption compared to last required hfres

FR = (0('1) X Fp

(7) hydrogen of 231.1 mol/s. In addition, the catalytdormer

production is decreased from 526.4 to 466.25 mtlfs. also

Equation (7) represents the linear relationshipybenh a environmentally precious as

source of network (PSA residue) and the fresh tyeino produced.

less greenhouse gases a
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TABLE |
STREAM DATA OF EXISTING HYDROGENNETWORK

Process Make-UP Purge Recycle

Flow rate Purity Flow rate Purity Flow rate

(mol/s) (mol%) (mol/s) (mol%) (mol/s)
Hydrogenation 51.9 91.45 0.3 85.04 157.2
Hydrotreating 36.5 91.45 0.0 92.42 369.7
Disproportionation 21.6 99.99 0.0 79.66 1399.4
TransAlkylation 156.5 99.90 73.0 67 1553.3
Isomerization 73.0 67.00 31.2 50.31 42355
Arofining 40.0 91.45 50.00 60.00
Regeneration 53.0 99.90 50.0 99.90

28.0 91.45

Feed Product Residue

(mol/s) (mol%) (molfs) (mol%) (mol/s) (mol%)
PSA unit 370 91.45 231.1 99.90 138.9 78.00
H, Supply

Flow rate Max flow Purity

(mol/s) (mol/s) (mol%)
Catalytic Reforming 526.4 526.4 91.45

TABLE Il
SOURCE/ SINK DATA FOR EXISTING HYDROGENNETWORK

Source Sink

Flow rate Purity Flow rate Purity

(mol/s) (mol%) (mol/s) (mol%)

369.7 92.42 53.0 99.90

526.4 91.45 406.2 92.33

157.5 85.04 438.0 91.45

1399.4 79.66 209.1 86.63

1626.3 67.00 1421.0 80.00

50.0 60.00 1709.8 70.00

4266.7 50.31 4308.5 50.60

Purification unit

| |
| | 99.9%
Catalytic o I 2311
N y »  PSA I 3
etorming 91.45% | |
370 | |
| | 78%
| | 138.9
[ [ 4
- |
91.45%
156.4
L

Fig. 3 Catalytic Reforming Unit and its associgpedification unit
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Fig. 4 RCCD for case A
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IV. CAseB

As shown in Fig. 6, the minimum fresh hydrogen amcte

The hydrogen network for an ammonia petrochemichSChafge flow rates £k and kp) for this case are targeted as

complex shown in Fig. 5 is integrated to the prasioetwork
in case A. As a matter of fact, case B consiststvad
petrochemical complexes. This complex includes talytc

174.3 and 352.5 mol/s, respectively, which mean$%4
reduction in fresh hydrogen consumption. The pipciity
level is moved to 61.4 mol % ¢Y). Therefore, it is observed

reformer and also an ammonia synthesize unit. $m, t that integrating these twp petrochemical complevazhices
sources and one sink are added to the previousoretw frésh hydrogen consumption even further.

Sources/sinks data for existing network in caseeBshown in
table Ill. Modified automated targeting is againpkgd for
new network, and the results are represented in &idt is
observed that minimum resource flow rate is furtieztuced.
Moreover, pinch point moves to new purity level.

CRU
3013.9
74.03%
\ 4
Ammonia
7074.8 Synthesis
61.4%
221.2
v 61.4%

Fig. 5 Hydrogen network of ammonia complex

TABLE Il

SOURCE ANDSINK DATA FOR CASE B
Source Sink
Flow rate  Purity Flow rate  Purity
(mol/s) (mol%) (mol/s) (mol%)
369.7 92.42 53 99.9
526.4 91.45 406.2 92.33
157.5 85.04 438 91.45
1399.4 79.66 209.1 86.63
3013.9 74.03 1421 80
1626.9 67 1709.8 70
7296 61.4 10088.7 65.17
50 60 4308.5 50.6

4266.7 50.31

V.CONCLUSION

In this study, an automated targeting approacippdied to
minimize the fresh hydrogen consumption in petrocical
complexes. For cases considered here, the freshodmstal
resource is PSA product stream. Consequently, elative
sink (PSA feed) and source (PSA residue) are chgngi
according to the obtained target. Therefore, thtoraated
targeting approach is modified to cope with thisdfic case.
Having incorporated the modified automated targgtin
method, the results showed 16.7% reduction in frgglogen
consumption. Moreover, integration of two petrocimh
complexes is led to more reduction (24.6%) in fregtirogen
consumption.

NOMENCLATURE

i index for source

j index for sink

k index for purity level

Fsri flowrate of SRi

Fsk; flowrate of SKj

Fer fresh resource flowrate
Fo waste discharge flowrate
Fin PSA inlet (feed) flowrate
Fp PSA product flowrate

Fr PSA residue flowrate

R purifier recovery

Y hydrogen purity

Yin PSA inlet (feed) purity

Yp PSA product purity

Yr PSA residue purity

Ok net material flowrate from level k
&k residue of the hydrogen load at lével
PSA....... pressure swing adsorption
HG hydrogenation

HT hydrotreating

IS isomerization

TA transalkylation

DP disproportionation

RG regeneration

AF arofining
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