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Abstract— Many factors affect the success of Machine Learning 

(ML) on a given task. The representation and quality of the instance 
data is first and foremost. If there is much irrelevant and redundant 
information present or noisy and unreliable data, then knowledge 
discovery during the training phase is more difficult. It is well known 
that data preparation and filtering steps take considerable amount of 
processing time in ML problems. Data pre-processing includes data 
cleaning, normalization, transformation, feature extraction and 
selection, etc. The product of data pre-processing is the final training 
set. It would be nice if a single sequence of data pre-processing 
algorithms had the best performance for each data set but this is not 
happened. Thus, we present the most well know algorithms for each 
step of data pre-processing so that one achieves the best performance 
for their data set. 
 

Keywords—Data mining, feature selection, data cleaning.  

I. INTRODUCTION 
HE data preprocessing can often have a significant impact 
on generalization performance of a supervised ML 

algorithm. The elimination of noise instances is one of the 
most difficult problems in inductive ML [48]. Usually the 
removed instances have excessively deviating instances that 
have too many null feature values. These excessively 
deviating features are also referred to as outliers. In addition, a 
common approach to cope with the infeasibility of learning 
from very large data sets is to select a single sample from the 
large data set. Missing data handling is another issue often 
dealt with in the data preparation steps.  

The symbolic, logical learning algorithms are able to 
process symbolic, categorical data only. However, real-world 
problems involve both symbolic and numerical features. 
Therefore, there is an important issue to discretize numerical 
(continuous) features. Grouping of values of symbolic 
features is a useful process, too [18]. It is a known problem 
that features with too many values are overestimated in the 
process of selecting the most informative features, both for 
inducing decision trees and for deriving decision rules.  

Moreover, in real-world data, the representation of data 
often uses too many features, but only a few of them may be 
related to the target concept. There may be redundancy, where 
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certain features are correlated so that is not necessary to 
include all of them in modelling; and interdependence, where 
two or more features between them convey important 
information that is obscure if any of them is included on its 
own [15]. Feature subset selection is the process of identifying 
and removing as much irrelevant and redundant information 
as possible. This reduces the dimensionality of the data and 
may allow learning algorithms to operate faster and more 
effectively. In some cases, accuracy on future classification 
can be improved; in others, the result is a more compact, 
easily interpreted representation of the target concept. 
Furthermore, the problem of feature interaction can be 
addressed by constructing new features from the basic feature 
set. Transformed features generated by feature construction 
may provide a better discriminative ability than the best subset 
of given features 

This paper addresses issues of data pre-processing that can 
have a significant impact on generalization performance of a 
ML algorithm. We present the most well know algorithms for 
each step of data pre-processing so that one achieves the best 
performance for their data set. 

The next section covers instance selection and outliers 
detection. The topic of processing unknown feature values is 
described in section 3. The problem of choosing the interval 
borders and the correct arity (the number of categorical 
values) for the discretization is covered in section 4. The 
section 5 explains the data normalazation techniques (such as 
scaling down transformation of the features) that are important 
for many neural network and k-Nearest Neighbourhood 
algorithms, while the section 6 describes the Feature Selection 
(FS) methods. Finally, the feature construction algorithms are 
covered in section 7 and the closing section concludes this 
work.  

II.   INSTANCE SELECTION AND OUTLIERS DETECTION 
Generally, instance selection approaches are distinguished 

between filter and wrapper [13], [21]. Filter evaluation only 
considers data reduction but does not take into account 
activities. On contrary, wrapper approaches explicitly 
emphasize the ML aspect and evaluate results by using the 
specific ML algorithm to trigger instance selection.  

Variable-by-variable data cleaning is straightforward filter 
approach (those values that are suspicious due to their 
relationship to a specific probability distribution, say a normal 
distribution with a mean of 5, a standard deviation of 3, and a 
suspicious value of 10). Table I shows examples of how this 
metadata can help on detecting a number of possible data 
quality problems. Moreover, a number of authors focused on 
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the problem of duplicate instance identification and 
elimination, e.g., [16].  

 
TABLE I  

EXAMPLES FOR THE USE OF VARIABLE-BY-VARIABLE DATA CLEANING 
Problems Metadata Examples/Heuristics 

cardinality e.g., cardinality (gender)> 2 
indicates problem 

max, min max, min should not be 
outside of permissible range Illegal 

values 
variance, 
deviation 

variance, deviation of 
statistical values should not 
be higher than threshold 

Misspellings feature 
values 

sorting on values often 
brings misspelled values 
next to correct values 

 
An inlier is a data value that lies in the interior of a 

statistical distribution and is in error.  Because inliers are 
difficult to distinguish from good data values they are 
sometimes difficult to find and correct. Multivariate data 
cleaning is more difficult, but is an essential step in a 
complete analysis [43]. Examples are the distance based 
outlier detection algorithm RT [22] and the density based 
outliers LOF [3].  

Brodley and Friedl [4] focus on wrapper approach with 
improving the quality of training data by identifying and 
eliminating mislabelled instances prior to applying the chosen  
ML algorithm. Their first step is to identify candidate 
instances by using m learning algorithms to tag instances as 
correctly or incorrectly labelled. The second step is to form a 
classifier using a new version of the training data for which all 
of the instances identified as mislabelled are removed. 
Filtering can be based on one or more of the m base level 
classifiers’ tags. 

However, instance selection isn’t only used to handle noise 
but for coping with the infeasibility of learning from very 
large data sets. Instance selection in this case is an 
optimization problem that attempts to maintain the mining 
quality while minimizing the sample size [33]. It reduces data 
and enables a learning algorithm to function and work 
effectively with huge data. There is a variety of procedures for 
sampling instances from a large data set. The most well 
known are [6]: 
• Random sampling that selects a subset of instances 

randomly. 
• Stratified sampling that is applicable when the class 

values are not uniformly distributed in the training sets. 
Instances of the minority class(es) are selected with a 
greater frequency in order to even out the distribution.  

Sampling is well accepted by the statistics community, who 
observe that “a powerful computationally intense procedure 
operating on a sub-sample of the data may in fact provide 
superior accuracy than a less sophisticated one using the entire 
data base” [12]. In practice, as the amount of data grows, the 
rate of increase in accuracy slows, forming the familiar 
learning curve. Whether sampling will be effective depends 
on how dramatically the rate of increase slows. Oates and 

Jensen [37] studied decision tree induction for nineteen data 
sets, and looked specifically at the number of instances 
necessary before the learning curves reached a plateau. 
Surprisingly, for these nineteen data sets, a plateau was 
reached after very few training instances. 

Reinartz [42] presents a unifying framework, which covers 
individual state of the art approaches related to instance 
selection. First, an application of a statistical sampling 
technique draws an initial sample. In the next step, a 
clustering technique groups the initial sample into subsets of 
similar instances. For each of these subsets, the prototyping 
step selects or constructs a smaller set of representative 
prototypes. The set of prototypes then constitutes the final 
output of instance selection. 

In many applications learners are faced with imbalanced 
data sets, which can cause the learner to be biased towards one 
class. Classes containing few examples can be largely ignored 
by learning algorithms because the cost of performing well on 
the over-represented class outweighs the cost of doing poorly 
on the smaller class. Imbalanced data sets have recently 
received attention in the ML community. Common solutions 
of instance selection include: 
• Duplicating training examples of the under represented 

class [30]. This is in effect re-sampling the examples and 
will be referred to in this paper as over-sampling. 

• Removing training examples of the over represented class 
[26]. This is referred to as downsizing to reflect that the 
overall size of the data set is smaller after this balancing 
technique has taken place. 

III. MISSING FEATURE VALUES 
Incomplete data is an unavoidable problem in dealing with 

most of the real world data sources. The topic has been 
discussed and analyzed by several researchers in the field of 
ML [5], [14]. Generally, there are some important factors to 
be taken into account when processing unknown feature 
values. One of the most important ones is the source of 
’unknownness’: (i) a value is missing because it was forgotten 
or lost; (ii) a certain feature is not applicable for a given 
instance, e.g., it does not exist for a given instance; (iii) for a 
given observation, the designer of a training set does not care 
about the value of a certain feature (so-called don’t-care 
value). 

Analogically with the case, the expert has to choose from a 
number of methods for handling missing data [27]: 
• Method of Ignoring Instances with Unknown Feature 

Values: This method is the simplest: just ignore the 
instances, which have at least one unknown feature value. 

• Most Common Feature Value: The value of the feature 
that occurs most often is selected to be the value for all 
the unknown values of the feature. 

• Concept Most Common Feature Value: This time the 
value of the feature, which occurs the most common 
within the same class is selected to be the value for all the 
unknown values of the feature. 

• Mean substitution: Substitute a feature’s mean value 
computed from available cases to fill in missing data 
values on the remaining cases. A smarter solution than 
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using the “general” feature mean is to use the feature 
mean for all samples belonging to the same class to fill in 
the missing value 

• Regression or classification methods: Develop a 
regression or classification model based on complete case 
data for a given feature, treating it as the outcome and 
using all other relevant features as predictors. 

• Hot deck imputation: Identify the most similar case to the 
case with a missing value and substitute the most similar 
case’s Y value for the missing case’s Y value. 

• Method of Treating Missing Feature Values as Special 
Values: treating “unknown” itself as a new value for the 
features that contain missing values. 

IV. DISCRETIZATION 
Discretization should significantly reduce the number of 

possible values of the continuous feature since large number 
of possible feature values contributes to slow and ineffective 
process of inductive ML. The problem of choosing the 
interval borders and the correct arity for the discretization of a 
numerical value range remains an open problem in numerical 
feature handling.  

Generally, discretization algorithms can be divided into 
unsupervised algorithms that discretize attributes without 
taking into account the class labels and supervised algorithms 
that discretize attributes by taking into account the class-
attribute [34]. The simplest discretization method is an 
unsupervised direct method named equal size discretization. It 
calculates the maximum and the minimum for the feature that 
is being discretized and partitions the range observed into k 
equal sized intervals. Equal frequency is another unsupervised 
method. It counts the number of values we have from the 
feature that we are trying to discretize and partitions it into 
intervals containing the same number of instances. 

Most discretization methods are divided into top-down and 
bottom-up methods. Top down methods start from the initial 
interval and recursively split it into smaller intervals. Bottom-
up methods start from the set of single value intervals and 
iteratively merge neighboring intervals. Some of these 
methods require user parameters to modify the behavior of the 
discretization criterion or to set up a threshold for the stopping 
rule. Boulle [2] presented a recent discretization method 
named Khiops. This is a bottom-up method based on the 
global optimization of chi-square. 

Moreover, error-based methods, for example Maas [35], 
evaluate candidate cut points against an error function and 
explore a search space of boundary points to minimize the 
sum of false positive and false negative errors on the training 
set. Entropy is another supervised incremental top down 
method described in [11]. Entropy discretization recursively 
selects the cut-points minimizing entropy until a stopping 
criterion based on the Minimum Description Length criterion 
ends the recursion.  

Static methods, such as binning and entropy-based 
partitioning, determine the number of partitions for each 
feature independent of the other features. On the other hand, 
dynamic methods [38] conduct a search through the space of 
possible k partitions for all features simultaneously, thereby 

capturing interdependencies in feature discretization. Kohavi 
and Sahami [23] have compared static discretization with 
dynamic methods using cross-validation to estimate the 
accuracy of different values of k. However, they report no 
significant improvement in employing dynamic discretization 
over static methods. 

V.  DATA NORMALIZATION  
Normalization is a "scaling down" transformation of the 

features. Within a feature there is often a large difference 
between the maximum and minimum values, e.g. 0.01 and 
1000. When normalization is performed the value magnitudes 
and scaled to appreciably low values. This is important for 
many neural network and k-Nearest Neighbourhood 
algorithms. The two most common methods for this scope are: 
• min-max normalization: 

:
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where v is the old feature value and v’ the new one. 

VI. FEATURE SELECTION 
Feature subset selection is the process of identifying and 

removing as much irrelevant and redundant features as 
possible. This reduces the dimensionality of the data and 
enables learning algorithms to operate faster and more 
effectively. FS algorithms in general have two components 
[20]: a selection algorithm that generates proposed subsets of 
features and attempts to find an optimal subset; and an 
evaluation algorithm that determines how ‘good’ a proposed 
feature subset is, returning some measure of goodness to the 
selection algorithm. However, without a suitable stopping 
criterion the FS process may run exhaustively or forever 
through the space of subsets. Stopping criteria can be: (i) 
whether addition (or deletion) of any feature does not produce 
a better subset; and (ii) whether an optimal subset according to 
some evaluation function is obtained. 

Langley [28] grouped different FS methods into two broad 
groups (i.e., filter and wrapper) based on their dependence on 
the inductive algorithm that will finally use the selected 
subset. Filter methods are independent of the inductive 
algorithm, whereas wrapper methods use the inductive 
algorithm as the evaluation function. The filter evaluation 
functions can be divided into four categories: distance, 
information, dependence and consistency. 
• Distance: For a two-class problem, a feature X is 

preferred to another feature Y if X induces a greater 
difference between the two-class conditional probabilities 
than Y [24]. 

• Information: Feature X is preferred to feature Y if the 
information gain from feature X is greater than that from 
feature Y [7].  

• Dependence: The coefficient is a classical dependence 
measure and can be used to find the correlation between a 
feature and a class. If the correlation of feature X with 
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class C is higher than the correlation of feature Y with C, 
then feature X is preferred to Y [20].  

• Consistency: two samples are in conflict if they have the 
same values for a subset of features but disagree in the 
class they represent [31]. 

Relief [24] uses a statistical method to select the relevant 
features. Relief randomly picks a sample of instances and for 
each instance in it finds Near Hit and Near Miss instances 
based on the Euclidean distance measure. Near Hit is the 
instance having minimum Euclidean distance among all 
instances of the same class as that of the chosen instance; 
Near Miss is the instance having minimum Euclidean distance 
among all instances of different class. It updates the weights 
of the features that are initialized to zero in the beginning 
based on an intuitive idea that a feature is more relevant if it 
distinguishes between an instance and its Near Miss and less 
relevant if it distinguishes between an instance and its Near 
Hit. After exhausting all instances in the sample, it chooses all 
features having weight greater than or equal to a threshold.  

Several researchers have explored the possibility of using a 
particular learning algorithm as a pre-processor to discover 
useful feature subsets for a primary learning algorithm. Cardie 
[7] describes the application of decision tree algorithms to the 
task of selecting feature subsets for use by instance based 
learners. C4.5 is run over the training set and the features that 
appear in the pruned decision tree are selected. In a similar 
approach, Singh and Provan [45] use a greedy oblivious 
decision tree algorithm to select features from which to 
construct a Bayesian network. BDSFS (Boosted Decision 
Stump FS) uses boosted decision stumps as the pre-processor 
to discover the feature subset [9]. The number of features to 
be selected is a parameter, say k, to the FS algorithm. The 
boosting algorithm is run for k rounds, and at each round all 
features that have previously been selected are ignored. If a 
feature is selected in any round, it becomes part of the set that 
will be returned.  

FS with neural nets can be thought of as a special case of 
architecture pruning, where input features are pruned, rather 
than hidden neurons or weights. The neural-network feature 
selector (NNFS) is based on elimination of input layer weights 
[44]. The weights-based feature saliency measures bank on 
the idea that weights connected to important features attain 
large absolute values while weights connected to unimportant 
features would probably attain values somewhere near zero. 
Some of FS procedures are based on making comparisons 
between the saliency of a candidate feature and the saliency of 
a noise feature [1].  

LVF [31] is consistency driven method can handle noisy 
domains if the approximate noise level is known a-priori. LVF 
generates a random subset S from the feature subset space 
during each round of execution. If S contains fewer features 
than the current best subset, the inconsistency rate of the 
dimensionally reduced data described by S is compared with 
the inconsistency rate of the best subset. If S is at least as 
consistent as the best subset, replaces the best subset. LVS 
[32] is a variance of LVF that can decrease the number of 
checkings especially in the case of large datasets. 

In Hall [17], a correlation measure is applied to evaluate the 
goodness of feature subsets based on the hypothesis that a 

good feature subset is one that contains features highly 
correlated with the class, yet uncorrelated with each other. Yu 
and Liu [50] introduced a novel concept, predominant 
correlation, and proposed a fast filter method which can 
identify relevant features as well as redundancy among 
relevant features without pairwise correlation analysis. 

Generally, an optimal subset is always relative to a certain 
evaluation function (i.e., an optimal subset chosen using one 
evaluation function may not be the same as that which uses 
another evaluation function). Wrapper methods wrap the FS 
around the induction algorithm to be used, using cross-
validation to predict the benefits of adding or removing a 
feature from the feature subset used. In forward stepwise 
selection, a feature subset is iteratively built up. Each of the 
unused variables is added to the model in turn, and the 
variable that most improves the model is selected. In 
backward stepwise selection, the algorithm starts by building a 
model that includes all available input variables (i.e. all bits 
are set). In each iteration, the algorithm locates the variable 
that, if removed, most improves the performance (or causes 
least deterioration). A problem with forward selection is that it 
may fail to include variables that are interdependent, as it adds 
variables one at a time. However, it may locate small effective 
subsets quite rapidly, as the early evaluations, involving 
relatively few variables, are fast. In contrast, in backward 
selection interdependencies are well handled, but early 
evaluations are relatively expensive. Due to the naive Bayes 
classifier’s assumption that, within each class, probability 
distributions for features are independent of each other, 
Langley and Sage [29] note that its performance on domains 
with redundant features can be improved by removing such 
features. A forward search strategy is employed to select 
features for use with naïve Bayes, as opposed to the backward 
strategies that are used most often with decision tree 
algorithms and instance based learners. 

Sequential forward floating selection (SFFS) and sequential 
backward floating selection (SBFS) are characterized by the 
changing number of features included or eliminated at 
different stages of the procedure [46]. The adaptive floating 
search [47] is able to find a better solution, of course at the 
expense of significantly increased computational time.  

The genetic algorithm is another well-known approach for 
FS [49]. In each iteration, a feature is chosen and raced 
between being in the subset or excluded from it. All 
combinations of unknown features are used with equal 
probability. Due to the probabilistic nature of the search, a 
feature that should be in the subset will win the race, even if it 
is dependent on another feature. An important aspect of the 
genetic algorithm is that it is explicitly designed to exploit 
epistasis (that is, interdependencies between bits in the string), 
and thus should be well-suited for this problem domain. 
However, genetic algorithms typically require a large number 
of evaluations to reach a minimum. 

Piramuthu [39] compared a number of FS techniques 
without finding a real winner. To combine the advantages of 
filter and wrapper models, algorithms in a hybrid model have 
recently been proposed to deal with high dimensional data 
[25]. In these algorithms, first, a goodness measure of feature 
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subsets based on data characteristics is used to choose best 
subsets for a given cardinality, and then, cross validation is 
exploited to decide a final best subset across different 
cardinalities. 

VII. FEATURE CONSTRUCTION 
The problem of feature interaction can be also addressed by 

constructing new features from the basic feature set. This 
technique is called feature construction/transformation. The 
new generated features may lead to the creation of more 
concise and accurate classifiers. In addition, the discovery of 
meaningful features contributes to better comprehensibility of 
the produced classifier, and better understanding of the 
learned concept.  

Assuming the original set A of features consists of a1, a2, ..., 
an, some variants of feature transformation is defined below. 
Feature transformation process can augment the space of 
features by inferring or creating additional features. After 
feature construction, we may have additional m features an+1, 
an+2, ..., an+m. For example, a new feature ak (n < k ≤  n + m) 
could be constructed by performing a logical operation of  ai 
and aj from the original set of features.   

The GALA algorithm [19] performs feature construction 
throughout the course of building a decision tree classifier. 
New features are constructed at each created tree node by 
performing a branch and bound search in feature space. The 
search is performed by iteratively combining the feature 
having the highest InfoGain value with an original basic 
feature that meets a certain filter criterion. GALA constructs 
new binary features by using logical operators such as 
conjunction, negation, and disjunction. On the other hand, 
Zheng [51] creates at-least M-of-N features. For a given 
instance, the value of an at-least M-of-N representation is true 
if at least M of its conditions is true of the instance while it is 
false, otherwise.  

Feature transformation process can also extract a set of new 
features from the original features through some functional 
mapping. After feature extraction, we have b1, b2,..., bm (m <  
n), bi = fi(a1, a2,...,an), and fi is a mapping function. For 
instance for real valued features a1 and a2, for every object x 
we can define b1(x) = c1*a1(x) + c2*a2(x) where c1 and c2 are 
constants. While FICUS [36] is similar in some aspects to 
some of the existing feature construction algorithms (such as 
GALA), its main strength and contribution are its generality 
and flexibility. FICUS was designed to perform feature 
generation given any feature representation specification 
(mainly the set of constructor functions) using its general-
purpose grammar. 

The choice between FS and feature construction depends on 
the application domain and the specific training data, which 
are available. FS leads to savings in measurements cost since 
some of the features are discarded and the selected features 
retain their original physical interpretation. In addition, the 
retained features may be important for understanding the 
physical process that generates the patterns. On the other 
hand, transformed features generated by feature construction 
may provide a better discriminative ability than the best subset 

of given features, but these new features may not have a clear 
physical meaning. 

VIII. CONCLUSION 
If the data is inadequate, or contains extraneous and 

irrelevant information, ML algorithms may produce less 
accurate and less understandable results, or may fail to 
discover anything of use at all. Thus, data pre-processing is an 
important step in the ML process. The pre-processing step is 
necessary to resolve several types of problems include noisy 
data, redundancy data, missing data values, etc. All the 
inductive learning algorithms rely heavily on the product of 
this stage, which is the final training set. 

By selecting relevant instances, experts can usually remove 
irrelevant ones as well as noise and/or redundant data. The 
high quality data will lead to high quality results and reduced 
costs for data mining. In addition, when a data set is too huge, 
it may not be possible to run a ML algorithm. In this case, 
instance selection reduces data and enables a ML algorithm to 
function and work effectively with huge data. 

In most cases, missing data should be pre-processed so as to 
allow the whole data set to be processed by a supervised ML 
algorithm. Moreover, most of the existing ML algorithms are 
able to extract knowledge from data set that store discrete 
features. If the features are continuous, the algorithms can be 
integrated with a discretization algorithm that transforms them 
into discrete attributes. A number of studies [23], [20] 
comparing the effects of using various discretization 
techniques (on common ML domains and algorithms) have 
found the entropy based methods to be superior overall. 

Feature subset selection is the process of identifying and 
removing as much of the irrelevant and redundant information 
as possible.  Feature wrappers often achieve better results than 
filters due to the fact that they are tuned to the specific 
interaction between an induction algorithm and its training 
data. However, they are much slower than feature filters. 
Moreover, the problem of feature interaction can be addressed 
by constructing new features from the basic feature set 
(feature construction). Generally, transformed features 
generated by feature construction may provide a better 
discriminative ability than the best subset of given features, 
but these new features may not have a clear physical meaning. 

It would be nice if a single sequence of data pre-processing 
algorithms had the best performance for each data set but this 
is not happened. Thus, we presented the most well known 
algorithms for each step of data pre-processing so that one 
achieves the best performance for their data set. 
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