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Abstract—To offer a large variety of products while maintaining 

low costs, high speed, and high quality in a mass customization 
product development environment, platform based product 
development has much benefit and usefulness in many industry fields. 
This paper proposes a product configuration strategy by similarity 
measure, incorporating the knowledge engineering principles such as 
product information model, ontology engineering, and formal concept 
analysis.  
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I. INTRODUCTION 
N a today’s highly competitive market, mass customization 
is of great importance for companies to achieve greater 

success as in Fortune Magazine declared that “mass 
customization will do for manufacturers the 21st century [1].” 
The challenge facing the realization of mass customization is to 
offer a large variety of products while maintaining low costs, 
high speed, and high quality. To cope with it, many companies 
consider platform-based product development, sharing 
components, modules, assemblies, or parts in a product family 
or even similar product family groups. In general a product 
family is a set of related products deriving from a platform to 
satisfy the mass customization, and product family can be 
defined as: “a set of common components, modules, or parts 
from which a stream of derivative products can be effectively 
developed and launched [2].”  

The benefit and usefulness of platform-based product 
development has been proved in many industry fields and a 
considerable amount of platforms have been defined during the 
decade, and the primary benefit in platform-based product 
development is providing economical product variety, that is, 
product and process excellence to achieve the cost advantage. 
A platform-based product development approach, however, 
looks like heavily dependent on the subjective experience and 
skills of company’s individual designers and engineers due to 
the intrinsic characteristics of platform design.  

Therefore the purpose of this paper is to provide the designer 
and engineers with the appropriate information and knowledge, 
and takes the knowledge engineering methods to find the 
correspondent modules between semantically related entities of 
the products. These correspondences can be used for 
leveraging product family and platform-based product 
development. 
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II. THEORETICAL BACKGROUND 

A. Product Platform 
For many years companies have exploited opportunities to 

create product families by developing and coordinating 
modular components. The term “platform” can be reviewed in 
three distinct fields: product development, technology strategy, 
and industrial economics [3]. Product development researchers 
introduced the term platform to describe the product family that 
“meet the needs of a core group of customers for easy 
modification into derivatives through the addition, substitution, 
or removal of features [4]”, technology strategists used the term 
platforms as valuable points of control in any industry [5], and 
industrial economists used the term platforms to characterize 
products, services or organizations solving the transaction 
mediation problem [6]. Because the concept of platform has 
been widely used in various fields, this paper adopts the 
platform concept as product development flavor which has a 
root in engineering design.  

Simpson et al suggested two approaches to product family 
design [7]: top-down and bottom-up approach. A top-down 
approach means that the company will develop the core or 
common product and its derivatives from the platform, while 
the company will fix up similar products to standardize 
components and modularize in a bottom-up approach. Both 
approaches have effort to define the appropriate product 
platform from which many products should be derived in an 
efficient and effective way.  

On the other hand, optimizing method to define appropriate 
platform has been widely used for decades during product 
development and there are also many methods for optimizing 
product family and product platform design. There are not 
appear to be a preferred algorithm, however, among classical 
optimization algorithm – Branch and Bound, Simulated 
Annealing, Genetic Algorithm, and Pattern Search [7], while 
artificial intelligence techniques for product family and product 
platform design have been relatively successfully employed. 
Rosen developed the product module reasoning systems, which 
reasons about product architectures and suggests the all 
feasible module combinations [8]. Other researchers attempted 
to develop the reasoning techniques or systems such as product 
family reasoning systems [9], agent-based systems [10], and 
case-based reasoning systems [11]. Recently, knowledge-based 
approaches to infer platform design were attempted by 
combination of formal concept analysis and ontology [12]. , 
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B. Ontology  
In today’s highly knowledge society, myriad of information 

systems use many different individual schemas to represent the 
product configuration. An ontology is the one of promising 
solutions for represent product knowledge in a formal way. The 
word ontology means a particular theory of the nature of being 
or existence, and is used with different meanings in different 
applications [13], [14]. Gruber originally defined an ontology 
as a “explicit specification of a conceptualization [13],” Borst 
defined an ontology as a “formal specification of a shared 
conceptualization [15],” and Studer, Benjamin, and Fensel 
merged these two definitions stating an ontology as a “formal, 
explicit specification of a shared conceptualization [16].”  

Therefore, an ontology specify the semantics of terminology 
systems of a domain of interest and the meanings of domain 
data formally and explicitly, thereby providing a shared 
understanding of a domain of interest to support 
communication among human beings and applications. One 
main advantage of applying ontologies is the ability to support 
the sharing and reuse of formally represented knowledge by 
explicitly stating concepts, relations, and axioms in a domain. 
Ontologies have been widely applied in a variety of domains to 
represent information or knowledge models, such as product 
data models, owing to the fact that its formal semantic can be 
unambiguously interpreted by humans and machines.  

In general, an ontology provides a taxonomy describing a 
domain of interest of any things in a formal language. In 
addition, ontologies can be practical means to represent and 
conceptualize the product data models in a computer format of 
today’s digital or internet era.  

C. Formal Concept Analysis 
Formal Concept Analysis (FCA) has been introduced by 

Wille [17], and used for analyzing data and modeling semantic 
structures in many different research areas. In this section, we 
briefly describe important terminologies for FCA. Formal 
Context is a triple (C, P, R), where C is a finite set of objects, P 
is a finite set of properties and R is a binary relation between C 
and P, i.e. R ⊑ C×P. given two sets C1 ⊑ C and P1⊑ P, we can 
consider the dual sets C1’ and P1’ such as the sets defined by 
the properties applying to all the objects belonging to C1 and 
the objects having all the properties belonging to P1, 
respectively, that is: 

 
C1’ = {p∈ P |∀ c∈ C1: (c, p)∈ R}  

P1’ = {c∈ C |∀ p∈ P1: (c, p)∈ R} 
 
Formal Concept is a pair (C1, P1), such that C1 ⊑ C, P1 ⊑ P 

and the following conditions holds: C1’ = P1, P1’ = C1. The 
sets C1 and P1 are referred to as the extent and the intent of the 
formal concepts (or briefly concept), respectively. Therefore, a 
concept is a pair consisting of two parts, the extent and the 
intent. In general, a concept (C1, P1) is a subconcept of a 
concept (C2, P2) if the extent C1 is a subset of the extent C2 or 
equivalently if the intent P1 is a superset of the intent P2.  

III.  PRODUCT PLATFORM DESIGN 

A. Types of Heterogeneity  
The first step of product platform design is to reduce 

heterogeneity among the languages or terminologies for 
engineering, marketing, and product functions. There have 
been many different types of heterogeneity: i) syntactic 
heterogeneity, which occurs when two or more product 
concepts are not expressed in the same language, ii) 
terminological heterogeneity, which occurs due to variations in 
names when referring to the same entities in different products, 
e.g., car vs. automotive, and iii) semantic heterogeneity, which 
stands for the differences in product configuration or modeling 
for the same concept or function. Ontology-based approach is a 
promising solution to this heterogeneity situation problem by 
finding correspondences among different products but having 
semantically related modular components.  

B. Product Information Model 
In a heterogeneous environment, the collaborative product 

development activities involve proprietary product information 
and the major barrier to effective collaboration is the lack of 
formal and explicit semantics in the product information model 
(PIM) that would facilitate semantic interoperability. Over the 
years, a wide range of researches have been conducted and the 
ontology-based approach is likely to be the most suitable for 
integrating diverse heterogeneous engineering applications, as 
the semantic of the product structure data built in formal 
logic-based ontology languages, such as Description Logic, can 
be specified in a well-defined and unambiguous manner.  

Description logic (DL) [18], restricted subsets of First 
Order Logic, is one of the knowledge representation languages 
that can be used to capture the knowledge of an application 
domain in a structured and formally well-understood way. The 
name description logic is motivated by the fact that the 
important notions of the domain are described by concept 
descriptions, i.e., expressions that are built from atomic 
concepts (unary predicates) and atomic roles (binary 
predicates) using the concept and role constructors provided by 
the particular DL. In general, a concept denotes the set of 
individuals that belongs to it, and a role denotes a relationship 
between concepts. ). Consider the main layers of the DL family 
bottom-up, ALC is a basic and simple language, permitting 
concept descriptions via C  D, ¬ C, ∀ P.C, and ∃ P.C where C, 
D are concepts and P is a property. Augmented by transitive 
properties, ALC becomes ALC R+ in the following denoted by 
S. SI is an extension to S with inverse properties, followed by 
SHI with property hierarchies. It becomes SHIF if extended by 
functional restrictions, SHIN if extended by cardinality 
restrictions, and SHIQ if extended by qualified number 
restrictions. Support for data type predicates (e.g., string, 
integer) leads to the concrete domain of D, and using nominals 
O allows to construct concepts from singleton sets. 

On the other hand, the OWL (Web Ontology Language) [19] 
is an ontology language designed for use by applications that 
need to process the content of information instead of just 
presenting information to humans. Notations or names of OWL 
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about the same notions are different from DLs, although OWL 
is mainly based on DLs. In OWL syntax, class is referred to 
concept, individual to constant and property to role. Also, DL 
inferences including concept classification, concept 
satisfiability, and realization are implemented by DL reasoning 
systems providing classification, consistency checking, and 
realization. Therefore, this paper refers to them 
interchangeably because originally the different names indicate 
the same notion in both OWL and DL. 

A PIM can be defined as a DL-based logical language 
consisting of a set of concepts and their relations. The concept 
Part is defined as Thing, and Product_Part is defined as the set 
of something that is Part and has no isDirectComponentOf 
relation with Part. Likewise, Primitive_Part is defined as the 
set of something that is Part and has no hasDirectComp 
relation with Part individual. In contrast, Assembly_Part is 
defined as the set of something that is Part and has at least two 
hasDirectComp relations with Part individual. Except the 
previous three concepts, the rest just have has super-concept 
relation because their definitions are not critical in this paper. In 
Table I, there are some basic relations which account for 
product structural information. In addition, the properties have 
some typical axioms such as ‘transitivity’, ‘inverse(-)’, 
‘symmetric’, ‘inclusion’, etc. The property hasComponent has 
‘transitivity’ characteristics and the ‘inverse(-) property of 
isComponentOf, and the property hasDirectComp has 
‘inclusion’ relationship with is the sub-property of 
hasComponent and the ‘inverse(-)’ property of 
isDirectCompOf. The property isCompatibleWith is used when 
two parts have compatible parts to each other so that they can 
be assembled. The property isNotCompatWith has the opposite 
meaning. The two properties, isCompatibleWith and 
isNotCompatWith have ‘transitivity’ and ‘symmetric’. Table I 
shows the above mentioned relations. 

 
TABLE I 

PRODUCT STRUCTURE RELATIONS 
Name  Domain Range  Type  

hasComponent Part  Part Object 
hasDirectComp Part  Part Object 
isComponentOf Part Part Object 
isDirectCompOf Part part Object 

isCompatibleWith Part  Part Object 
isDirectCompatWith Part Part  Object 

 
In addition to the product structure relations, we should also 

consider the product attribute relations for each specific 
product.  The range of this product attribute relations can be 
another class (e.g. a range of an attribute relation hasFeature is 
a class Chipset), and also be a primitive data type (e.g. a range 
of an attribute relation hasRAMSize is an Integer). We define 
the following primitive datatypes: String, Integer, Float, and 
Boolean.  

C. Basic Techniques 
An important success factor of a platform development 

strategy is how effectively and efficiently new products can be 

developed from the platform. The goal of this section is to 
provide how to find the relations between different PIMs and 
suggest the platform design and customization alternatives. For 
this we present here the basic method for assessing the 
similarity between different. 

When analyzing similarities between PIMs, we examine at 
the property levels that are directly related to these concepts. 
The following is at the heart of the approach: Given a set (Class, 
Property, Relation), we can consider that the classes and 
properties are referred to as the product and specification in the 
product development application, respectively. Therefore, a 
product group can be defined as the concept consisting of a set 
of products and a set of specifications.  

For instance, consider a PIM set called Project X where,  
   
C = {C1, C2, C3, C4} 
P = {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10} 

 
and R is specified by Table II. In this set, four products are 
provided, each corresponding to some of four specifications. A 
sample product group is, for instance, the pair ((C3, C4), (P1, 
P4, P8, P9)). We can also consider another product group ((C4), 
(P1, P4, P8, P9, P10)), as a sub-set of pair ((C3, C4), (P1, P4, 
P8, P9)). We can notice here that by adding the specification 
P10 to the former product group, the cardinality of its extent 
decreases, and by adding products to a product group the 
cardinality of its intent also decreases.  

For this example, the following description logic formulae 
can be derived from the Project X. 

 
C1 ≡ ∃ hasFeature.P1  ∃ hasFeature.P2  ∃ hasFeature.P3 

 ∃ hasFeature.P5  ∃ hasFeature.P6  ∃ hasFeature.P7. 
C2 ≡ ∃ hasFeature.P1  ∃ hasFeature.P2  ∃ hasFeature.P5. 
C3 ≡ ∃ hasFeature.P1  ∃ hasFeature.P4  ∃ hasFeature.P8 

 ∃ hasFeature.P9. 
C4 ≡ ∃ hasFeature.P1  ∃ hasFeature.P4  ∃ hasFeature.P8 

 ∃ hasFeature.P9  ∃ hasFeature.P10. 
 
These formulae were implemented in Protégé 3.5 

(http://protege.stanford.edu), which is a widely used ontology 
development tool. Ontology classification reasoning is one of 
the most commonly performed activities and Pellet is a built-in 
reasoner in Protégé 3.5. There are many tools implementing 
algorithms for Formal Concept Analysis and we can obtain the 
same FCA solution by doing the classification with a Pellet 
reasoner. Using the running example, Fig. 1 shows the 
ontology classification reasoning results, which are the same as 
FCA solutions, that is, C1 ⊑ C2 and C4 ⊑ C3.  
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TABLE II 
PRODUCT-PROPERTY RELATIONS EXAMPLE 

Products  
Properties 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

C1 ⅹ  ⅹ  ⅹ   ⅹ  ⅹ  ⅹ     

C2 ⅹ  ⅹ    ⅹ       

C3 ⅹ    ⅹ     ⅹ  ⅹ   

C4 ⅹ    ⅹ     ⅹ  ⅹ  ⅹ  

 

 

Fig. 1 FCA reasoning using Protégé 3.5 
 
Given this, we apply the product family similarity [20] 

between two product groups such as:  
 

Sim(PGi, PGj) = w* |Ci ∩  Cj| / a + (1-w)*|Pi ∩  Pj| / b. 
 
where the PGi stands for the two different PIM sets such as PGi 
= (Ci, Pi), PGj = (Cj, Pj), Ci and Cj are extents of PGi and PGj, 
Pi and Pj are intents of PGi and PGj, respectively, and a is the 
greatest number of cardinalities of the Ci or Cj, and b is greatest 
number of  Pi  or Pj. Finally w is a weight such that 0 ≤ w ≤ 1, 
that can be established by the user.  

For instance, take two PGs of our running example and 
assume that w = 1/2. Let us start by evaluating the Sim 
randomly, that is, PG1 = ((C3, C4), (P1, P4, P8, P9)) and PG2 
= ((C4), (P1, P4, P8, P9, P10)). Since a = 2, b = 5, Sim(PG1, 
PG2) = 0.5*1/2 + 0.5*4/5 = 13/20. 

Now we consider another product family, PG3 = ((C1, C2), 
(P1, P2, P5, P6)). Since a = 2, b = 5, Sim(PG2, PG3) = 0.5*0/2 
+ 0.5*1/5 = 1/10. 

This result shows that PG1 and PG2 groups are more directly 
related each other than PG2 and PG3. Note that Sim is always a 
value between zero and one and, for any pair of product groups, 
PGi and PGj, and Sim(PGi, PGj) = Sim(PGj, PGi). Of course, 
Sim increases in the case of product groups that are related, and 
vice versa, Sim decreases in the case of product groups that are 
not directly related.  

D. Determining Product Configuration 
From the basic techniques we will have the similarity 

database for platform configuration strategy. Now questions 
that need to be answered are: what is the optimal configuration 
of product group? And what criteria should be used to decide 
on product configuration design? 

The underlying idea in answering this problem is to 
maximizing the average of total product family similarity. The 
product group is considered as product context, thus the 
average for our configuration will be: ∑ Sim(PGi, PGj) / 
number_of_context.  

IV. CONCLUSION 
This paper incorporates the knowledge engineering 

principles, which provide product configuration guideline 
based on formal semantics, and proposed method of measuring 
similarity for assessing product families will be often the 
starting point when designing the new product (families or 
groups) or when analyzing the existing family. The 
well-designed product family will improve the design to 
achieve better similarity in the family and reduce costs and 
lead-times. This works provides the guidelines on designing the 
better product family.  
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