
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1645

Abstract—Today many developers use the Java components

collected from the Internet as external LIBs to design and

develop their own software. However, some unknown security

bugs may exist in these components, such as SQL injection bug

may comes from the components which have no specific check

for the input string by users. To check these bugs out is very

difficult without source code. So a novel method to check the

bugs in Java bytecode based on points-to dataflow analysis is in

need, which is different to the common analysis techniques base

on the vulnerability pattern check. It can be used as an assistant

tool for security analysis of Java bytecode from unknown

softwares which will be used as extern LIBs.

Keywords—Java bytecode, points-to dataflow, vulnerability

analysis

I. INTRODUCTION

ODAy more and more Java applications have been used on

the Internet. For example, many enterprise applications are

developed under the J2EE framework[1]. The reason why

people choose Java is not only for its cross platform ability, but

also for its rich library support. The developers can use these

library functions to design and develop their own products

quickly and easily.

However, some unknown security bugs may exist when too

many external components collected from the Internet have

been used as LIBs in the software by the developers. For

example, the SQL injection[2] bug may comes from the

components which have no specific check for the input string by

users. Some of these components have been provided with

source code, but others have been only given in the form of

bytecode. The users can take a security check on the source code

to confirm the bugs while it is difficult to do so to avoid security

risks without provided source code.

A novel method is introduced in this paper to check the bugs

in the Java bytecode based on points-to dataflow analysis. This

method has the following advantages:

It does not require for source code disclosure.

It can be used more freely for its independence of

those specific predefined patterns.

Its analysis process is global-wide, not just restricted

to local fields or variables. So the analysis is more

powerful.

Hong Tang, Lufeng Zhang, Hua Chen, Jianbo Zhang are with the Beijing

Institute of System Engineering, Beijing, 100101 9702# CHN (phone:

+86-13521120770; e-mail: tanghone@ gmail.com)

It describes the whole process that how the program

exploits the bug with the points-to dataflow.

Therefore, it is more helpful for the developer to

secure the code from the essence of exploited

vulnerability.

II. RELATED WORK

The common vulnerability analysis tools for Java language

are static analysis tools for source code. Knizhnik has

developed Jlint for bugs searching [3], which is focusing on

inconsistencies and synchronization problems by analyzing data

flow and building the lock graph. Jlint runs fast especially for

large projects. Livshits has developed LAPSE (Lightweight

Analysis for Program Security in Eclipse) [4]. LAPSE is

focusing on the analysis of Java J2EE applications for common

types of security vulnerabilities. PMD [5] can scan Java source

code for empty try/catch/finally/switch statements and unused

local variables, parameters and private methods as well as

wasteful String/String Buffer usages. Furthermore PMD can be

integrated with many IDEs such as JDeveloper, Eclipse,

Jbuilder and etc.

The main technique used to check the bugs of Java bytecode

is vulnerability pattern analysis. FindBugs [6] is one of such

tools, which has been widely used. It has some functional

patterns such as null pointer check, type check for abstract set,

etc. The users can discover some bugs in the bytecodes to

reduce the security risks with the help of FindBugs. However, it

has two shortcomings: The first one is that the number of

FindBugs’ pattern is limited, which means that the users have no

idea about the bugs that outside these patterns; The second one

is that the patterns are mainly focusing on the local field of

program, and they cannot handle the check on global scope.

III. THE ESSENCE OF EXPLOITED VULNERABILITY

Vulnerability is the bug or flaw of software system which can

be exploited by attackers from outside. It depends on three basic

conditions: the first is the channel to be used by outside

attackers, which refers to the malicious input data; the second is

the risky point which could lead to security breach of the

system, which also refers to the execution of the malicious input

data; the third is the connection between the malicious input

data from outside attackers and the risky point, which is the data

propagation path from outside to the operation point. Figure 1

points out the essence of exploited vulnerability.

The Vulnerability Analysis of Java Bytecode

Based on Points-to Dataflow

Tang Hong, Zhang Lufeng, Chen Hua, Zhang Jianbo

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1646

Fig 1. Essence of exploited vulnerability

Therefore, if the analyzers want to analyze the vulnerability

of the program, they can start from the receiving data from

outside, and meanwhile check the security related internal

operation. If there are some close relations between the input

data and the corresponding operation objects, it may indicate

certain vulnerability of the program. However, it is difficult to

confirm this kind of connections. Fig. 1 shows the data

propagation path from the data-outside read point to the risk

operation. It is the most difficult part in the analysis, which is

how to trace the path inside the target program. In this paper the

way is found by improving the common points-to dataflow

analysis technique.

IV. IMPROVING POINTS-TO DATAFLOW ANALYSIS

Generally, the people can use points-to dataflow analysis to

describe the connections between the variables in the program,

for example, which variables will be affected by the same

allocation instruction. Many researchers have done good work

on points-to dataflow analysis[7-10]. Anderson has began

points-to dataflow analysis in C language firstly [11]. Lhotak

has developed SPARK[12] to analyze the points-to dataflow in

Java language. The results of these analyses have been used to

optimize the developing program. Some improvements have

been made on the basis of SPARK to meet the requirement of

our vulnerability analysis in this paper.

Our points-to dataflow analysis have been divided into two

stages: pointer assignment graph (PAG) construction, and

points-to set propagation. The following subsections describe

the improved pointed-to dataflow analysis.

A. PAG construction

The pointer assignment graph consists of three types of

nodes:

Data-outside reading nodes represent sites reading

the data from outside in the source program.

Simple variable nodes represent local variables,

method parameters and return values, and static

fields.

Field dereferences nodes represent field access

expressions in the source program; each is

parameterized by a variable node representing the

variable being dereferenced by the field access.

The nodes in the pointer assignment graph are connected with

four types of edges representing the pointer flow, corresponding

to the four types of constraints imposed by the pointer-related

instructions in the source program.

TABLE I

THE FOUR TYPES POINTERS ASSIGNMENT GRAPH EDGES

In this table, a and b denote data-outside reading nodes, src

and dst denote variable nodes, and src.f and dst.f denote field

dereference nodes. Depending on the parameters to the builder,

the pointer assignment graph for the same source code can be

very different, representing various levels of precision required

by the points-to dataflow analysis.

B. Propagation of points-to set

After the pointer assignment graph has been built, the

following step is to propagate the points-to sets along the edges

according to the rules shown in Table 1. The following

statements also show the rules for the propagation.

Data-outside reading instruction means that if a

points to dst, a belongs to the points-to set of dst.

(rule 1)

Assignment instruction means that if src points to dst

and a belongs to the points-to set of src, then a

belongs to the points-to set of dst. (rule 2)

Field store instruction means that if src points to the

field f of dst, and a belongs to the points-to set of src,

and b belongs to the points-to set of dst, then a

belongs to the points-to set of b.f. (rule 3)

Field load instruction means that if the field f of src

points to dst, and a belongs to the points-to set of src,

and b belongs to the points-to set of a.f, then b

belongs to the points-to set of dst. (rule 4)

According to these rules, we can construct the whole

points-to flow of the program from the beginning to the end.

C. Results

With the result of the points-to analysis, the variable of the

program has the points-to set whose elements are the

instructions that read data from outside. So suppose there are

two variables v1 and v2, the points-to set of them are pt(v1) and

pt(v2). If pt(v1) pt(v2) is not empty, that means v1 and v2 all

have the connections with some instructions reading data from

outside. Let’s move forward, suppose variable vout is the result

of the reading instruction, and vn is the parameter of the risk

method, then if pt(vout) pt(vn) is not empty, that means the

data from outside has a propagation path to the parameter of the

risk method, and the points-to flow is the a propagation path.

V. ANALYSIS THE VULNERABILITY OF JAVA BYTECODE

From previous discussion, it shows that users can analyze the

vulnerability of the program by searching the instructions of

input data from outside whose results are considered as vout,

Reading Assignment Field store Field load

Inst

a : dst :=

read(data

-outside)

dst := src dst.f := src dst := src.f

Edge a ĺ dst src ĺ dst src ĺ dst.f src.f ĺ dst

Rules

a ĺ dst

/(a ฀
pt(dst))

(src ĺ dst)

(a ฀ pt(src))

/(a฀ pt(dst))

(src ĺ dst.f)

(a ฀ pt(src))

(b ฀ pt(dst))

/(a ฀ pt(b.f))

(src.f ĺ dst)

(a ฀ pt(src))

(b ฀ pt(a.f))

/(b ฀ pt(dst))

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1647

and by searching the risk methods in the program whose

parameters are considered as vn. With the help of points-to

dataflow analysis, users can find out whether pt(vout) pt(vn) is

empty or not. If it is not empty, it is concluded that there is a bug

in the program which can be exploited by attackers, and some

special protections have to be taken for the target bytecode in

addition.

A. Analysis strategy

The following part defines the strategies of the vulnerability

analysis, which includes the entrance point of input data from

outside, the risk operation method, and the rules of points-to

dataflow analysis. We use <Ir, Pr, Tr> to represent the

strategies respectively.

Ir is the set of functions of Java language reading the input

data from outside, which comes from APIs of JDK. In the future

we can include some APIs from the other components. The

below table specifies the set.
TABLE II

DATA-OUTSIDE READING FUNCTION

From user args[], UI text input, console text input

From network get url information

From

environment

get environment variables฀get system

information

From file system read file name฀read the content of file

On some cases with low level security requirement, it is

unnecessary to add all the items in the above table to the analysis

strategy as Ir. You may just pick some functions such as “get url

information” for you need to analyze the network part of the

program.

Pr is the set of the points-to dataflow analysis rules, which

mainly includes the context of the rules of Subsection 3.3. In the

future we may add some other rules to meet the propagation.

Tr is the set of risk methods, which include local file

operations, database operations, process operations, some risk

native methods such as strcpy and etc. The table is shown

below.
TABLE III

RISK OPERATION

Database

operation

Database create, search, modify, delete, add

and so on

File operation File read, delete, create, copy, write

Risk native

method

Risk system call and risk native method

from DLL or lib

Network

operation

Net connect, data send and receive

As Ir, for different levels of the security analysis, we can form

different Tr by choosing different subset of table 3.

So the strategy depends on the requirements of the analysis.

Based on the experience of analysts, different strategies can be

adopted for different tasks in order to improve the speed and

correctness.

B. Analysis model

Based on the definition of the analysis strategy<Ir, Pr, Tr>,

the vulnerability analysis model <Id, Pd, Td> can be built. Id is

the set of variables that denotes the results of security check on

the input data from outside under Ir rule. Td is the set of

variables that denotes the parameters of the risk methods. A set

PId can be built by the way of points-to dataflow analysis whose

element pid is the points-to set of the variable among the Id. A

set PTd can also be built by the way of points-to analysis whose

element ptd is the points-to set of the variable among the Td.

When the element of PId crossing the element of PTd, its result

can be collected to form a set Pd. If all the element of Pd is

empty, that means the program is secure. The figure below

shows the model.

.

Fig. 2. The vulnerability analysis model base on points-to dataflow

analysis

C. Analysis procedure

In order to analyze Java bytecode, the .class files need to be

converted into the jimple files first. It can be easily done by

open source tools such as Soot framework[12]. After that the

code of the jimple files are scaned line by line to search the

variables denoting the data-outside and the variables as the risk

method parameters. Those are Id and Td described above. Then

the points-to dataflow analysis of the target codes must be

executed as described in Section 3. At last, the analysis model in

Section 4.2 is used to get the risk data points-to set Pd, which

shows the result of the vulnerability of the program. The

analysis procedure is shown in the following figure.

Fig 3. Aanalysis procedure

VI. TEST AND EVALUATION

A code segment as a simple example which is used to test the

vulnerability analysis model presented is showed in Fig. 3. On

the top part, a1-a2 are the main functions while on the below

b1-b2 are the extern class A used in a1-a2. On the left a1-b1 are

the source codes which describe the tasks of the program while

on the right a2-b2 are the jimple format codes which are our

target codes translated from the bytecode of the source codes on

the left. Our analysis has been carried on the jimple codes.

Firstly, the program is scaned to search Id and Td. Line 1 is

the point of reading data-outside and line 22 is the risk method

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1648

of calling native risk function. So the Id is {args} and the Td is

{s3}.

Then the points-to dataflow analysis begins line by line as

follows:

Pt(args)={1} (rule 1)

Pt(temp$0)={1} (rule 2)

Pt(temp$1)={}

Pt(s1)={1} (rule 2)

Pt(s2)={1} (rule 2)

Pt(temp$2)={}

Pt(a1)={}

Pt(this)={}

Pt(s)={1} (rule 1)

Pt(this.<main.A: java.lang.String> f)={1} (rule 3)

Pt(s3)={1} (rule 4)

Pd={Pt(args) ŀPt(s3)}={{1}}.

The element of Pd is {1}, which is not empty. So there is

vulnerability in the code, which can be exploited by attacker. If

“this.<main.A: java.lang.String f> = s ” is

replaced with “this.<main.A: java.lang.String

f> = “hello”” in the line 19. Some analysis tools still regard

line 11 as a bug because of its calling of risky native method.

However, there is a different opinion. Here is the points-to

dataflow analysis:

Pt(this.<main.A: java.lang.String> f)={}

Pt(s3)={} (rule 4)

Pd={Pt(args) ŀPt(s3)}={{ }}.

That means there is no vulnerability of the program which

shows the fact.

Fig 4. Example codes for check tests

There is a benchmark tool nist from SAMATE (Software

Assurance Metrics And Tool Evaluation) [14], which is used to

test the tools that collect the common security faults in Java

program. This analysis model is able to find out all security

faults in it.

VII. CONCLUSIONS

In this paper a novel method has been described to analyze

vulnerability in Java bytecode. It is different to the common

analysis techniques based on the vulnerability pattern check.

The analysis model can be used as an assistant tool for security

analysis of the bytecode for unknown software, especially

before the unknown component can be used as extern LIBs.

Users can use the model to check the vulnerability in order to

add specific protections. In the future the method will be

improved continually by complete the details of the analysis

strategy. Java language is still growing up and many software

companies are continue supplying different components. It is

the challenge for us to keep the completeness of analysis

strategy.

REFERENCES

[1] Ed Roman and Rickard Oberg, The Business Benefits of EJB and J2EE

Technologies over COM+ and Windows DNA, 1999, The Middleware

Company

[2] W. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for

NEutralizing SQL-Injection Attacks. In Proceedings of the IEEE and

ACM International Conference on Automated Software Engineering

(ASE 2005), pages 174–183, Long Beach, CA, USA, Nov 2005

[3] Jlint: a security tool for checking Java source code to find bugs ,

http://artho.com/jlint/

[4] lapse: security analysis tool for J2EE applications,

http://suif.stanford.edu/~livshits/work/lapse/

[5] pmd: a security tool for checking Java source code to find bugs ,

http://pmd.sourceforge.net/

[6] findbugs: a security tool for checking Java code to find bugs ,

http://findbugs.sourceforge.net/

[7] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive

interprocedural points-to analysis in the presence of function pointers. In

Proceedings of PLDI’94, pages 242–256, 1994

[8] N. Heintze and O. Tardieu. Demand-driven pointer analysis. In

Proceedings of PLDI’01, pages 24–34, 2001

[9] D. Liang, M. Pennings, and M. J. Harrold. Extending and evaluating

flow-insensitive and context-insensitive points-to analyses for Java. In

Proceedings of PASTE’01, pages 73–79, 2001

[10] J. Whaley and M. Lam. An efficient inclusion-based points-to analysis for

strictly-typed languages. In Static Analysis 9th International Symposium,

SAS 2002, volume 2477 of LNCS, pages 180–195, 2002.

[11] L. O. Andersen. Program Analysis and Specialization for the C

Programming Language. PhD thesis, University of Copenhagen, May

1994. (DIKU report 94/19).

[12] ak. SPARK: A Flexible Points-to Analysis Framework for

Java. Montreal: McGill University, 2003.

[13] Soot: a Java optimization framework. http://www.sable.mcgill.ca/soot/.

[14] SAMATE test cases. http://www.samate.nist.gov/SRD /view.php

