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Abstract—Knowledge about the magnetic quantities in a 

magnetic circuit is always of great interest. On the one hand, this 
information is needed for the simulation of a transformer. On the 
other hand, parameter studies are more reliable, if the magnetic 
quantities are derived from a well established model. One possibility 
to model the 3-phase transformer is by using a magnetic equivalent 
circuit (MEC). Though this is a well known system, it is often not an 
easy task to set up such a model for a large number of lumped 
elements which additionally includes the nonlinear characteristic of 
the magnetic material. Here we show the setup of a solver for a MEC 
and the results of the calculation in comparison to measurements 
taken. The equations of the MEC are based on a rearranged system of 
the nodal analysis. Thus it is possible to achieve a minimum number 
of equations, and a clear and simple structure. Hence, it is 
uncomplicated in its handling and it supports the iteration process. 
Additional helpful tasks are implemented within the solver to 
enhance the performance. The electric circuit is described by an 
electric equivalent circuit (EEC). Our results for the 3-phase 
transformer demonstrate the computational efficiency of the solver, 
and show the benefit of the application of a MEC. 
 

Keywords—Inrush current, magnetic equivalent circuit, 
nonlinear behavior, transformer. 

I. INTRODUCTION 

HE characterization of transformers by using magnetic 
equivalent circuits (MEC) is incredibly interesting. It 

offers a significant gain of accuracy in comparison to 
empirical / analytical methods, while needing lower 
computational effort compared to the finite element method 
(FEM). The transformer is modeled by a nonlinear lumped 
element network to achieve good simulation results. The 
number of elements is low compared to FEM. Hence a MEC 
offers high simplicity and computational efficiency 
respectively. A model utilizing MEC could be used for 
controlling, for significance analysis, and dynamic 
calculations, if it had a fast working solver. The development 
of such a solver is challenging. It is affected by the software 
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used and the processor speed. But it is particularly linked to 
the design of the solver, especially in the case of nonlinear 
networks. Thus the implementation must take into 
consideration the manipulation of nonlinear elements and the 
compactness of the algorithm. The larger the network the more 
important is a systematic approach to setting up the equations. 

MEC was presented for time-efficient first estimations of 
the magnetic characteristics in [4, 6, 8]. It was mentioned as 
third method alongside the empirical / analytical method and 
FEM for design purposes [6, 8]. The electric circuit linked to 
the magnetic circuit is usually modeled by an electric 
equivalent circuit (EEC). Reference [1, 7] show calculations 
with separated equivalent circuits for the MEC and the EEC. 
Another possibility is the integration of the magnetic 
characteristic into the EEC by using nonlinear inductors [2, 5]. 
Network analysis has been established by using the nodal 
analysis [2, 5, 7, 10] or by the loop analysis respectively [3, 4, 
8]. Regardless of the way the algorithm is implemented, results 
of dynamic calculations achieved by this method show quite a 
low error level compared to measurements [1, 2, 7, 8]. The 
error for inrush currents simulation is reported to be lower than 
10% in [1]. 

The paper at hand describes the parts for implementing a 
solver to simulate the inrush current of a three-phase 
transformer. The solver is realized by separate circuits for the 
MEC and the EEC. The arithmetic equations of the MEC are 
established by the nodal analysis and deal with linear and 
nonlinear permeances. Hence this part must be solved 
iteratively, which is a point of interest. The EEC deals with the 
ordinary differential equations. A structured procedure to set 
up the equations is shown. This is necessary in order to handle 
the large number of elements used to model the transformer. 
The elements themselves hold the material characteristics and 
geometry information. The characteristics are measured with a 
permeance meter. 

II.  SOLVER IMPLEMENTATION 

A. Nodal Analysis 

The MEC consists of N + 1 nodes and B branches. The 
graph is the collection of all branches and nodes. To setup the 
equations of the MEC the loop or the nodal analysis can be 
chosen respectively. The loop analysis leads to B - N linearly 
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independent equations. The nodal analysis requires N linearly 
independent equations. In this case the nodal analysis was 
chosen because it is easier to establish by using the incidence 
matrix, no tree must be found, and there is the possibility for a 
computer aided setup of this matrix [9, 11, 14]. 

B. The Elementary Branch 

All different types of branches that occur in the MEC are 
represented by the elementary branch shown in fig. 1. 

 

 
Fig. 1 The elementary branch consists of the magnetomotive force 

source Θs and the tube permeance Gt 
Indexes: b … Branch, s … Source, t … Tube, n … Node 

 
The value of the magnetomotive force (MMF) for the 

source Θs is nonzero for geometries which are surrounded or 
bordered by coils. For all other geometries Θs is zero. The tube 
permeance Gt is linear for geometries with linear material 
characteristics, i.e. air. Gt is nonlinear for geometries with 
nonlinear material characteristics and dependent on the 
magnetic tube flux Φt through Gt or the MMF for the tubes Θt 
of Gt respectively. The equations of the elementary branch are 

b t s b t t t tGΘ Θ Θ Φ Φ Φ Θ= − = = ⋅ . (1) 

One can express Gt by using the relative permeance µr for a 
given flux density Bt or a magnetic field strength Ht and the 
normalized permeance Gt

’: 

( ) ', with andt r t t t t t t t t tG H B G H L B Aµ Θ Φ= ⋅ = = (2) 

Gt
’ includes only the absolute permeability µ0, the geometry 

data tube cross section area At, and tube length Lt. 

( )'
0t t tG A Lµ= ⋅  (3) 

C. Network Analysis 

Furthermore vectors and matrices are marked with bold 
letters. Kirchhoff’s current law in respect to the MEC denotes 

b⋅ =A Φ 0 . (4) 

The incidence matrix A contains the information about the 
network topology and ΦΦΦΦb is the flux branch vector. By using 
the branch and node relationship one can find 

, and= ⋅ = ⋅ + = ⋅ ⋅
⇒ ⋅ = − ⋅ ⋅ = − ⋅

T T
t t t t n s n t

n n t s s

Φ Y Θ Θ A Θ Θ Y A Y A

Y Θ A Y Θ A Φ
. (5) 

The magnetic potentials of the nodes ΘΘΘΘn are related to A by 
ΘΘΘΘt. The tube permeances Yt consists of all Gt. Because there 
are no coupled elements, Y t is a diagonal matrix. Together 
with A the node permeance matrix Yn can be calculated. The 
nodal analysis needs a flux source ΦΦΦΦs. A single flux source can 
not be established. The whole flux of the source branch is 
denoted by ΦΦΦΦ. 

 
Fig. 2 The source branch which is necessary to fulfill the demands of 

the nodal analysis 
 

One strategy for solving the source branch is to transform it 
into a MMF source with ΘΘΘΘs. However, this transformation can 
not be computed directly, as Gt is dependent on the unknown 
parameters     ΦΦΦΦ or ΘΘΘΘt.  

The second strategy is to split the entire network into two. 
The first network consists only of drain branches. These 
branches are made up of permeances only. With respect to the 
elementary branch, ΘΘΘΘs is zero. The network topology is 
summarized in Ad. The second network consists of source 
branches only. Here ΘΘΘΘs is nonzero. This network topology is 
summarized in As. One can write 

with T
d n s d d t d⋅ + ⋅ = = ⋅ ⋅Y Θ A Φ 0 Y A Y A . (6) 

According to fig. 2 the fluxes of the source branch are 
defined as 

= + = ⋅ ⋅ + ⋅ ⋅T
b s s s n s LΦ Φ Φ G A Θ w G i . (7) 

By using this procedure it is possible to solve the nodal 
analysis with a minimum number of equations. The winding 
information w is included in (7), to express directly the coil-
current iL instead of ΘΘΘΘs. These two equations written in matrix 
form lead to 

d n s
T

s s s L

− ⋅     
⋅ =     ⋅ ⋅    

Y 0 Θ A Φ

G A G w i Φ
. (8) 

The dimension of Yd is N x N, and As is a N x S matrix, 
where S denotes the number of sources of the MEC. For 
solving (8) one condition has to be met: Ad must form a 
connected graph. In comparison, the tableau analysis shown in 
[9] leads to more equations than (8). 

D. Time Domain 

The EEC is established in the time domain. It consists of a 
source voltage u(t), an ohmic resistor Rcu for the copper 
resistance of the coil windings, an ohmic resistor Rfe for the 
iron losses, and an ohmic load resistor Rload. Rcu, and Rload are 
combined to the resistor Rel. The equations of the EEC are 
given by (9). 

( ) ( ) ( ) ( ) ( ) ( )withel L fet t t t t t= ⋅ + ⋅ = +
•

u R i w Φ i i i  (9) 

The current i(t) is the sum of the currents iL and i fe. ife 
denotes the current flowing through Rfe, whereas iL is 
responsible for ΘΘΘΘs. 

A constant time step ∆t is chosen for the calculation. For 
every time step tn the current iL is found iteratively by the 
MEC, whereas ife,n is found with 

, nfe n fe= ⋅
•

i w Φ R . (10) 

By rearranging (9) and inserting (10) into (9) one can find 
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1 ,n nn el L n fe+
  = ⋅ − ⋅ + ⋅    

• •

Φ 1 w u R i w Φ R . (11) 

E. Consideration of the Winding Connection 

The windings of a transformer can be connected in delta or 
star. As only the line voltages are known from the 
measurement, (11) must be rearranged in the case of a star 
connection. This is done by using the connection matrix Mconn, 
the condition matrix Mcond, and the voltage matrices Mvc in 
accordance with [10]. For a three-phase star connected system 
these matrices are given without a detailed derivation by 

[ ]1 1 0 1 0 0
1 1 1

0 1 1 0 1 0conn cond vc

−   
= = =   −   

M M M .(12) 

Detailed information can be found in [10]. By inserting 
these matrices into (11) one will get 

1 ,n nconn vc n conn el L n fe+
 ⋅ ⋅ = ⋅ − ⋅ ⋅ + ⋅ 
 

• •

M w Φ M u M R i w Φ R .(13) 

Simplifying (13) and replacing the flux ΦΦΦΦn by the flux 
linkage ΨΨΨΨn leads to the ordinary differential equation (ODE) of 
the EEC. 

1, , ,EEC: n conn nn vc conn L n fe+
 = − ⋅ + 
 

• •

Ψ u R i Ψ R  (14) 

This ODE is solved by an Euler approach. Hence, the flux 
of the next time step tn+1 is found with 

1,1, 1, n connn conn n conn t∆++ += + ⋅
•

Ψ Ψ Ψ . (15) 

Several different algorithms for integrating (15) in order to 
find ΨΨΨΨn+1 are available. However, one must be aware that they 
need values of the estimated flux linkage ΨΨΨΨ‘

n+1, which have to 
be found by using the iteration procedure of the MEC again. 

F. Iteration Procedure 

Considering ΨΨΨΨconn, Mcond, and the winding connection matrix 

conn conn= ⋅w M w  (16) 

in (8), gives the equation system of the MEC. 

MEC:
n s s

nT
conn s s conn s conn

L
cond

⋅ ⋅   
    ⋅ ⋅ ⋅ ⋅ ⋅ =    
       

Y A G w 0
Θ

w G A w G w Ψ
i

0 M 0

 (17) 

Below, the compact formulation of (17) is used with 

( ) ⋅ =T x x b . (18) 

The dimension of the nonlinear matrix T is N+S. T includes 
all nonlinear and linear permeances. The solution vector x can 
be found for a given flux vector b by iteration. The iteration of 
the nonlinear equations of (18) can be performed using 
different procedures. Here, the direct iteration is applied. The 
advantage is the simplicity; the disadvantage is the high 
number of iterations required, especially for high saturation. 

( )1 1i i+ −= ⋅x T x b  (19) 

The convergence tolerance ε denotes the difference of Gt 
between two iteration steps. It is chosen with 10-4. The 
iteration procedure is drafted in fig. 3. 

( )
1 1

1 , ,1 1
, ,1 1

, ,

i i
t n t ni i i geometry i

t n n t ni idata
t n t n

+ +
− + +

+ +→ → → → →
Θ H

G T x G
Φ B

 

Fig. 3 Iteration procedure 
 

G. Permeance Extrapolation 

After every time step the nonlinear permeances Gt are found 
by the iteration procedure. The number of iteration steps cm 
strongly influences the computation time. One possibility to 
decrease cm is the use of extrapolations of Gt. The history of 
Gt(t) can be used in this way. Here, three types of 
extrapolation were investigated. The first applies a wraparound 
where the permeances Gt of the last time step are used as 
initial values for the iteration of the next time step. The second 
type is a linear extrapolation. Hence the last two time steps of 
Gt must be known. The third is a square extrapolation where 
the last three results of Gt must be recorded. 

III.  APPLICATION OF THE MEC AND THE EEC 

A. Geometry of the Transformer 

The three phase transformer consists of a core lamination 
and two hardboards on the upper and the lower yoke to 
compress the laminations. The material of the hardboard is 
steel. Coils are placed on every limb. The primary coil is on 
the inside, the secondary coil is wound around the outside. 
Both are star connected. A picture of this transformer can be 
seen in fig. 4. The main data are cited in the appendix. 

 

 
Fig. 4 Transformer under investigation 

 

B. Part Geometry 

The basis of the MEC is the idea of flux tubes. The 
principles of flux tubes have been well described in the 
literature [6, 7, 10]. The flux tubes which represent volumes 
determine the flow direction and are defined by permeances 
within the MEC. Here, only rectangular flux tubes are used. 
The connected flux tubes define flux paths, which must be 
established during initialization. For a systematic approach, the 
shape of the transformer is separated into several components. 
Table I lists these components, the corresponding network 
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with the node and branch configuration, and the associated 
materials. 

All branches listed in Table I are represented by the 
elementary branch in accordance with fig. 1. The normalized 
permeances G’

t are calculated with (3) by using the component 
geometries. The arrows of the figures in Table I indicate the 
predefined flux flow directions of the oriented branches. The 
non-magnetic paths of the overlapping areas within the edges 
and the places of joint are represented by an additional air gap 
δ. Hence, air gap and limb component are connected in series. 

The permeances of the leakage path are estimated in 
accordance with [12]. For every coil, the leakage permeance 
Gσ is calculated by 

1 2 1 2
1 2

1

6 3

6 3w

h h a a
G l l

b hσ
+ ⋅ + ⋅

= ⋅ + ⋅
⋅ ⋅

. (20) 

The total permeances of all coils are distributed 
homogenously across all leakage paths. The parameters in (20) 
are defined in the appendix. 

C. Connected Network Graph 

To create more detailed leakage paths and to situate the 
sources onto the limbs both the yokes and the limbs are 
segmented into two serial connected components. By 
connecting all the components listed in Table I, the MEC of 
the transformer is found. The connected graph is shown in 
fig. 5. 

The laminations are displayed with solid lines, the 
hardboards with dashed lines, the air gaps with dotted lines, 
and the leakage paths with dash-dotted lines. The upper and 
the lower hardboards are both represented by one branch, 
because they have the same dimensions and material 
characteristics and effect in parallel to the yokes and edges. 
The components of each limb hold the MMF source of the 
primary and secondary coil. The connected graph consists of 
30 nodes and 71 branches. To illustrate the connected and 
oriented graph in fig. 5 more clearly, the numbers of the nodes 
and branches are not included. 

 
Fig. 5 Connected and oriented graph of the MEC for the three phase 

transformer 
 

D. Material Characteristics 

The BH curves of the laminations and the hardboard were 
measured in accordance with [15]. The init curve of both 
materials is shown in fig. 6. These curves are approximated by 
an analytical approach with exponential functions by 

( ) 2
0

1

1 i

n H
k

i
i

B H k e Hµ⋅
−

=

 = ⋅ − + ⋅ 
 

∑ . (21) 

The init curve of the laminations is modeled with n = 3; for 
the hardboard n = 2 was sufficient. The measured curves and 
the resulting calculated curves can be seen in fig. 6. 

 
Fig. 6 Comparison of the measured and the calculated init curve of 

the laminations and the hardboard 
 

The relative permeability µr is found by 

( ) ( )
2

0
10 0

1 1
1 i

n H
ki

r
i

B H k
H e

H H
µ µ

µ µ
⋅

−

=

  = ⋅ = ⋅ ⋅ − +  
  

∑ . (22) 

The applied curve defined in (21) has a convex 
characteristic. Hence, for flux densities B lower than 1 T the 
magnetic field strength H of the calculated curve is lower than 
the measured H. On the other hand by using (21) the iteration 
process is stable and will converge [11]. For higher B the 

TABLE I 
FLUX TUBE COMPONENTS AND THE CORRESPONDING MEC DATA 

Component 
Name Shape 

Network Graph Material 

edge 

 
 

laminations, 
hardboard 

yoke 
laminations/ 
hardboard 

limb lamination 

air gap  
 

air 

tee 

  

lamination 
hardboard 

leakage see (22) 
 

air 
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measured and the calculated curves show almost the same 
values. 

E. Indexing 

The incidence matrix A is sparsely filled. It is used to 
calculate i.e. the drain permeance matrix Yd in (6), (8), and in 
(17). Thus, it makes sense to ease the calculation effort. 
Table II shows an example for indexing the graph branches. 
The cited names are linked by numbers to the corresponding 
branches. 

Thus, sub matrices of the incidence matrix are found by 
applying the criteria of Table II. They use the mentioned name 
as subscript to the parameter. For example, the drain 
admittance matrix Yd denotes to 

= ⋅ ⋅ + ⋅ ⋅ = +T T
d l t l m t m l mY A Y A A Y A Y Y . (23) 

This matrix must be refreshed for every iteration step of 
every time step. By applying the indexing, only the m-Matrix 
must be refreshed. Y l doesn’t change throughout the entire 
simulation. Hence, it only needs to be calculated during the 
initialization. Since Am is much smaller than A computation 
time is saved. Another example of the indexing is the 
replacement of a matrix multiplication. The process is drafted 
in (24). It leads to a vast reduction of computation. The 
parameter n holds the information of the appropriate node. 

( ) ( ), : ,= ⋅ ⇒ = ⇒ = ⋅ T
mY m t mY t l mY mn m m mA A Y A Y Y A A  (24) 

IV.  RESULTS 

A. Solver Handling 

The calculation is separated into four parts. The first part is 
the initialization where the permeances Gt

’ are calculated from 
the geometries. Another task is the setup of the vectors for the 
magnetic and electric parameters, the setup of the network 
topology by means of the incidence matrix A, and extracting 
the categorized branch indexes, supporting the computational 
efficient algorithm described above (E Indexing). After this 
initialization, the iteration process for the MEC starts. This 
algorithm profits from a minimum number of equations by 
using the algorithm in (17) and a minimum number of 
calculation steps by applying the indexing. Then the results are 
fed into the EEC to calculate the ordinary differential equation 
of (14). Both the flux and the permeances are used in the next 
time step and its iteration process. 

B. Inrush Current 

Fig. 7 shows the measured and the calculated runs of the 
phase currents during the first three periods of the line voltage. 

 
Fig. 7 Inrush current for all phases of the transformer 

 
The line voltage on the primary windings was adjusted to 

3x400 V@50 Hz. The phase currents and the line voltages of 
all phases of the transformer were recorded. Then, the 
recorded line voltages were used to feed the simulation model. 
The calculated phase currents are slightly higher for the first 
two periods. The deviation between calculation and 
measurement for the first maximum is in the range of ±5% for 
the first two phases, and ±20% for the third phase. 

C. Steady State Current 

After the decay of the transient effects, the steady state 
currents are available. For this transformer it takes about 3 s 
until steady state condition is reached. The measured and 
calculated runs of the phase currents are shown in fig. 8. For 
steady state condition the calculated current’s amplitudes are 
slightly below the measured values. 

The deviation for all phases is in the range of ±5%. 

 
Fig. 8 Steady state current for all phases of the transformer 

 

TABLE II 
BRANCH CATEGORIES FOR THE INDEXING 

Name Category Linearity Sources 
d branches without sources – 0 
s branches with sources 0 1 
k branches with nonlinear permeances 0 – 
l branches with linear permeances 1 0 

m 
branches without sources and with 
nonlinear permeances 

0 0 
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D. Flux in the Laminations and in the Hardboard 

In fig. 9 both the magnetic flux in the laminations and in the 
hardboard is shown during inrush and steady state operation. 
The hardboard caries flux only for the first several periods. 
During this time the flux in the hardboard is close to 10% of 
the total flux. 

 
Fig. 9 Fluxes within the laminations and the hardboard during the 

transient and steady state respectively 
 

Afterwards the share of the flux in the hardboard is about 
3%. Hence, the hardboard offers an additional flux path during 
the transient time. If the hardboards are neglected in the MEC, 
the calculated inrush currents shown in fig. 7 will be about 
twice as high. Thus, the hardboards drastically reduce the 
maximum of the inrush currents. 

E. Number of Iteration Steps 

The number of iteration steps cm depends on the used 
iteration process, and the degree of saturation. In this case the 
direct iteration is used. If there is strong saturation, cm will be 
high. To decrease cm the permeance extrapolation is applied. 
Fig. 10 compares the cumulative cm for all investigated types 
of extrapolation. 

The average number of iteration steps per time step can be 
found in Table III. It can be seen that the linear and the square 
extrapolation is very effective. The linear extrapolation has 
about 60%, and the square extrapolation has about 80% fewer 
iteration steps compared to the wraparound type. A well 
established permeance extrapolation is essential for an 
efficient calculation. The step size was chosen as 56 µs. The 
calculation time for one iteration accounted for about 600 µs 
on the computer used. 

 

 
Fig. 10 Cumulative number of iteration steps by using different 

permeance extrapolations 
 

V. DISCUSSION 

The calculated current characteristics of all phases show 
good consistency to those measured. The current of the first 
phase shows a higher magnetization current compared to the 
third. This should be mainly affected by weaker laminations 
overlapping, which causes a higher equivalent air gap δu. The 
equivalent air gaps of the other two phases are smaller. The 
measured currents show harmonics which the calculated 
currents do not show, because of imperfections in modeling 
the BH curve. A remarkable flux through the hardboard occurs 
only during the first three periods. This is caused by the high 
excitation levels. After several periods the flux in the 
hardboard is almost negligible. Hence, the hardboard reduces 
the inrush current. 

The Euler method for the integration algorithm is efficient 
enough because of small step size used. The used MEC is very 
detailed, thus it includes different flux paths. Every important 
part of the magnetic circuit is represented in the graph. The 
number of iteration steps can be reduced drastically by 
permeance extrapolation. 

VI.  CONCLUSION 

The graph of the MEC is split into a drain and a source part. 
Hence, a minimum of equations must be solved for the 
nonlinear MEC by using the nodal analysis. This leads to a 
compact and fast solver. By establishing indexes for all 
characteristic branches of the graph, the solver is simple to 
handle. Hence, information about every branch can easily be 
found. A lot of preliminary work is carried out before the start 
of the simulation. This supports the calculation speed. 

A satisfyingly good comparison between measurement and 
calculation is reached by this MEC and EEC. For most cases 
the difference between measurement and the calculation is in 
the range of ±10%. 

TABLE III 
EFFECT OF PERMEANCE EXTRAPOLATION ONTO THE NUMBER OF ITERATIONS 

Extrapolation type Average number of iterations cm 

wraparound 7.2 
linear 2.8 
square 1.3 
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VII.  APPENDIX 

Table IV lists the most important data of the transformer 
used. The type of the transformer is: FRITZCO DT 0.1/21. 

REFERENCES 

[1] S.G. Abdulsalam, W. Xu and V. Dinavahi, “Modelling and simulation 
of three-phase transformers for inrush current studies,” IEE Proc.-
Gener. Transm. Distrib., vol. 152, No. 3, pp. 328-333, May 2005. 

[2] J. Arrillaga, W. Enright, N.R. Watson and A.R. Wood, “Improved 
simulation of HVDC converter transformers in electromagnetic transient 
programs,” IEE Proc.-Gener. Transm. Distrib., vol. 144, No. 2, pp. 
100-106, March 1997. 

[3] A. Delale, L. Albert, L. Gerbaud and F. Wurtz, “Automatic generation 
of sizing models for the optimization of electromagnetic devices using 
reluctance networks,” IEEE Trans. Magn., vol. 40, No. 2, pp. 830-833, 
March 2004. 

[4] J. Turowski, M. Turowski and M. Kopec, “Method of three-dimensional 
network solution of leakage field of three-phase transformers,” IEEE 
Trans. Magn., vol. 26, No. 5, pp. 2911-2919, September 1990. 

[5] A. Medina and J. Arrillaga, “Simulation of multilimb power 
transformers in the harmonic domain,” IEE Proc.-C, vol. 139, No. 3, 
pp. 269-276, May 1992. 

[6] M. Amrhein and P.T. Krein, “Magnetic equivalent circuit simulations of 
electrical machines for design purposes,” IEEE Electric Ship 
Technologies Symposium, 2007, pp. 254-260, May 2007. 

[7] V. Ostović, “A method for evaluation of transient steady state 
performance in saturated squirrel cage induction machines,” IEEE 
Trans. Energy Conversion, vol. EC-1, No. 3, pp. 190-197, September 
1986. 

[8] C.B. Rasmussen and E. Ritchie, “A equivalent circuit approach for 
predicting PM motor performance,” IEEE Ind. Applicat. Society 
Conference, pp. 10-17, October 1997. 

[9] L.O. Chua, C.A. Desoer and E.S. Kuh, “Linear and nonlinear Circuits,” 
McGraw-Hill series in electrical engineering, Singapore: McGraw-Hill, 
1987, pp. 214–232. 

[10] V. Ostović, “Dynamics of saturated electric machines,” New York: 
Springer Verlag New York, 1989, pp. 50–74, pp. 86–90, pp. 226–247. 

[11] B. Peikari, “Fundamentals of network analysis and synthesis,” in 
Prentice-Hall network series, New York: Prentice-Hall, 1974, pp. 91–
147, pp. 303–314. 

[12] H. Köfler, “Bemessung und Konstruktion elektrischer Maschinen,” 
Graz: Institut für elektrische Antriebstechnik und Maschinen, 2007, pp. 
71–72. 

[13] J. Otto, “Berechnung linearer und nichtlinearer Netzwerke. Eine 
Einführung in die numerische Modellierung mit PSPICE,” Leipzig, 
Köln: Fachbuchverlag Leipzig, 1994, pp. 42–49. 

[14] R. Unbehauen, “ Elektrische Netzwerke, Eine Einführung in die 
Analyse,” 3. neu bearbeitete und erweiterte Auflage, Berlin: Springer 
Verlag, 1987, pp. 91–127. 

[15] IEC 60404-4: 1995 + A1: 2000, Magnetic materials – Part 4: Methods 
of measurement of d.c. magnetic properties of magnetically soft 
materials. 

 
 
Markus G. Ortner  was born in Graz, Austria, in 1971. He attended the Graz 
University of Technology from 1992 to 1999, where he received a Dipl. Ing. 
degree from the Institute of Electrical Energy Innovations in 1999. 
 He worked as a project engineer with the same institute from 1999 to 
2000, collaborating on the modeling of fuel cell systems. From 2000 to 2005 
he worked as development engineer for EPCOS. He was responsible for 
modeling, and measurement of multilayer ceramic capacitors within high and 
low frequency respectively, and collaborated on the development of high 
frequency multilayer ceramic capacitors. Since 2005 he has been with the 
Institute of Electrical Drives and Machines. He is responsible for thermal 
measurements of electrical machines, and material measurements of magnetic 
material. His main field is modeling of magnetic circuits by using lumped 
elements. He is author of one, and coauthor of three scientific papers. 

 
Christian Magele was born in Wolfsberg, Austria in 1960 and received the 
Ph.D. degree from the Graz University of Technology, Austria in 1991. 
Currently he is working as Associate Professor at the Institute for 
Fundamentals and Theory in Electrical Engineering at the Graz University of 
Technology, Austria. 
His research interest include the development and application of 
optimization/identification methods coupled to numerical methods for the 
solution of electromagnetic field problems and the design of Web based 
courses for distant education. 

 
Klaus Krischan was born in Leibnitz, Austria in 1965. He received the Dipl. 
Ing. and PhD in electrical engineering from the Graz University of 
Technology in 1990 and 1995, respectively. Since 1991 he has been working 
at the Institute for Electrical Drives and Machines of the Graz University of 
Technology where he has been Assistant Professor since 2001. His research 
concerns electrical drives and power converters. 
 

TABLE IV 
TRANSFORMER DATA 

Parameter Location Value 
nominal apparent 
power 

SN  95 VA 

nominal frequency fN  50 Hz 
nominal voltage U1N primary 3 x 400 V 
 U2N secondary 3 x 21 V 
winding connection  primary star 
  secondary star 
windings w1 primary 1333 
 w2 secondary 122 
ohmic resistance Rcu1 primary 33.5 Ω 
 Rcu2 secondary 0.665 Ω 
wire diameter dcu1 primary 0.41 mm 
 dcu2 secondary 0.91 mm 
iron loss resistance Rfe  30 kΩ 
yoke width byo  22.5 mm 
limb width bli  22.5 mm 
hardboard width bhb  33.5 mm 
window height hw  52.5 mm 
window width bw  33.8 mm 
laminations depth tL  33.0 mm 
hardboard depth thb  1.7 mm 
coil height h1  46.3 mm 
coil-yoke distance h2  3.1 mm 
width coil a1 primary 6.6 mm 
  secondary 3.2 mm 
coil-limb distance a2 primary 2.0 mm 
  secondary 8.5 mm 
mean coil winding l1 primary 38.3 mm 
length within yoke  secondary 48.1 mm 
mean coil winding l2 primary 114.8 mm 
length without yoke  secondary 144.2 mm 
equivalent air gap δu  0.03 mm 
 δv  0.01 mm 
 δw  0.01 mm 

 


