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Abstract—Mostly the systems are dealing with time varying 

signals. The Power efficiency can be achieved by adapting the sys-
tem activity according to the input signal variations. In this context 
an adaptive rate filtering technique, based on the level crossing sam-
pling is devised. It adapts the sampling frequency and the filter order 
by following the input signal local variations. Thus, it correlates the 
processing activity with the signal variations. Interpolation is re-
quired in the proposed technique. A drastic reduction in the interpo-
lation error is achieved by employing the symmetry during the in-
terpolation process. Processing error of the proposed technique is 
calculated. The computational complexity of the proposed filtering 
technique is deduced and compared to the classical one. Results 
promise a significant gain of the computational efficiency and hence 
of the power consumption.  
 

Keywords—Level Crossing Sampling, Activity Selection, Rate 
Filtering, Computational Complexity, Interpolation Error.  
 

I.  CONTEXT OF THE STUDY 

HIS work is a contribution in the development of smart 
mobile systems. The goal is to reduce their size, cost, 

processing noise, electromagnetic emission and especially 
power consumption as they are remotely powered by batter-
ies. This can be done by smartly reorganizing their associ-
ated signal processing theory and architecture. The idea is 
to combine the signal event driven processing with the 
asynchronous circuit design in order to reduce the system 
processing activity.  

Most of the real life signals like speech, seismic, Doppler 
and biological signals are time varying in nature. The spec-
tral contents of these signals vary with time, which is a di-
rect consequence of the signal generation process [5].  

Classical systems are based on the Nyquist signal proc-
essing architectures. They do not take advantage of the in-
put signal local variations. These systems are highly con-
strained due to the Shannon theory especially in the case of 
low activity sporadic signals like electrocardiogram, phono-
cardiogram, seismic signals etc. It causes a large number of 
samples without any relevant information, a useless in-
crease of the system activity and so a useless increase of the 
power consumption.  
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This problem is resolved by employing a signal driven 
sampling scheme, which is sensitive to the input signal lo-
cal variations [12, 17]. It is based on the principle of “level-
crossing” that provides a non-uniform time repartition of 
the samples [1], consequently it is named as the LCSS 
(level crossing sampling scheme). This sampling scheme 
drastically reduces the activity of the post processing chain 
because it only captures the relevant information [11, 13]. 
In this context, analog to digital converters based on the 
LCSS have been developed [2, 4, 18]. Algorithms for proc-
essing [3, 11, 13] and analysis [8, 12, 19] of the non-
uniformly spaced out in time sampled data obtained with 
the LCSS have also been developed. 

The focus of this work is to develop an efficient online 
FIR (Finite Impulse Response) filtering technique. The idea 
is to extract the input signal local features and then use them 
to improve the quality and to reduce the computational load 
of the post processing chain. An efficient solution is proposed 
by combining the features of both non-uniform and uniform 
signal processing tools.  

II.  LCSS (LEVEL CROSSING SAMPLING SCHEME) 
In the case of LCSS, a sample is captured only when the 

input analog signal x(t) crosses one of the predefined thresh-
old levels [1]. The samples are not uniformly spaced in time 
because they depend on x(t) variations as it is clear from Fig. 
1. Thus, the non-uniformity in the sampling process reflects 
the local characteristics of x(t) [12].  

According to [1], the sampling instants of a non-uniformly 
sampled signal obtained with the LCSS are defined by Equa-
tion 1. 
 

tn = tn-1 + dtn . (1)    dtn = tn – tn-1 .           (2) 

Where tn is the current sampling instant, tn-1 is the previous 
one and dtn is the time delay between the current and the pre-
vious sampling instants (cf. Equation 2). 
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Fig. 1 Level-crossing sampling scheme 

 

III.  PROPOSED ADAPTIVE RATE FILTERING TECHNIQUE 
The activity selection and local features extraction [8] is 

the base of the proposed technique. It makes to achieve the 
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adaptive rate sampling (only relevant number of samples to 
process) along with adaptive rate filtering (only relevant 
number of operations to deliver per filtered sample). These 
achievements assure a drastic computational gain of the pro-
posed filtering technique compared to the classical one. The 
approaches to realize it are detailed in the following subsec-
tions. 

The block diagram of the proposed filtering technique is 
shown in Fig. 2. The description of different blocks is given 
in the following subsections. This technique is splitted into 
two filtering cases, which are explained in Section III-D. 

 

Resampler

Reference FIR
Filtrer

Uniformly
Sampled Signal

(xrn)

Sampling
Frequency

(Fsi)

Filtered Signal
(yn)

Di

Impulse Response 
Decimator

Coefficients
Scalar

FIR Filter for 
the itth Selected

widow

Comparator
Reference Filter

Sampling Frequency
(Fref)

Reference Filtrer (hk)

D
ecim

ated  & 
Scaled

Filtrer (hw
ij )

AADC
Band Limited 
Analog Signal 

x(t)

Non-Uniformly
Sampled Signal

(xn,tn)

ASA

Selected Signal
(xs,ts)

Divider

Adjustement Factor 
(AF)

Resampling
Frequency 

(Frsi)

0

1
FDi

Resampler

Reference FIR
Filtrer

Uniformly
Sampled Signal

(xrn)

Sampling
Frequency

(Fsi)

Filtered Signal
(yn)

Di

Impulse Response 
Decimator

Coefficients
Scalar

FIR Filter for 
the itth Selected

widow

Comparator
Reference Filter

Sampling Frequency
(Fref)

Reference Filtrer (hk)

D
ecim

ated  & 
Scaled

Filtrer (hw
ij )

AADC
Band Limited 
Analog Signal 

x(t)

Non-Uniformly
Sampled Signal

(xn,tn)

ASA

Selected Signal
(xs,ts)

Divider

Adjustement Factor 
(AF)

Resampling
Frequency 

(Frsi)

0

1
FDi

 
Fig. 2 Block diagram of the Proposed Filtering Technique. ‘___’  

represents the common blocks and signal flow used in both filtering 
cases,‘…..’ represents the signal flow used only in  case 1 and   ‘---’  

represents blocks and the signal flow used only in case 2 
 

A. AADC (Asynchronous Analog to Digital Converter) and 
ASA (Activity Selection Algorithm) 

The AADC [2], is employed for digitizing x(t). An M-bit 
resolution AADC has 2M - 1 quantization levels which are 
uniformly disposed according to x(t) amplitude dynamics.  
The AADC has a finite bandwidth. Thus, to assure a proper 
signal capturing a band pass filter with pass-band [fmin; fmax], 
is employed at the AADC input.  

Reconstruction issue of the non-uniformly sampled signal 
has been discussed in [7, 14]. In [14], author showed that a 
bandlimited signal can be ideally reconstructed from its non-
uniformly spaced samples, provided that the average number 
of samples satisfies the Nyquist criterion. In the case of 
AADC, the number of samples is directly influenced by M 
and the signal characteristics [2, 4, 18]. Thus, for a given 
application an appropriate M should be chosen in order to 
respect the reconstruction criterion [14]. 

Let ΔVin and Δx(t) be the AADC and x(t) amplitude dy-
namics respectively. In order to avail the complete AADC 
resolution in the studied case, Δx(t) is always adapted to 
match ΔVin. For a given M, The AADC maximum sampling 
frequency Fsmax and minimum sampling frequency Fsmin [11] 
are defined by Equations 3 and 4 respectively. Where, fmax 
and fmin are the bandwidth and the fundamental (lowest) fre-
quencies of x(t) respectively. 
 

Fsmax = 2.fmax.(2M-1).   (3)    Fsmin = 2.fmin.(2M-1).        (4) 
 

The relevant (active) parts of the non-uniformly sampled 
signal are selected and windowed by the ASA. The complete 
procedure of activity selection has been explained in [8]. The 
ASA displays interesting features with the LCSS, which are 
not available in the classical case. It selects only the interest-
ing parts of the non-uniformly sampled signal obtained with 
the AADC. Moreover, it correlates the length of the selected 
window with the signal activity, lies in it. In addition, it also 

provides an efficient reduction of the phenomenon of spectral 
leakage in the case of transient signals. This is done by avoid-
ing the signal truncation with a simple and efficient algorithm 
instead of a smoothening window function, which is used in 
the classical scheme [8]. 
 

B.  Adaptive Rate Sampling 
For a fixed M, the temporal density of the AADC sampling 

operation is a function of the input signal variations [11, 13]. 
Let Fsi represents the AADC sampling frequency for the ith 
selected window. Fsi can be specific for each selected win-
dow, depending upon the window length Tsi in seconds and 
the slope of x(t) part lying within this window [8]. Fsi can be 
calculated by using the following equations. 
 

Tsi = tmaxi – tmini
  . (5)  Fsi = Ni / Tsi

 .               (6) 
 

In Equation 5, tmaxi and tmini are the final and the initial 
times of the ith selected window. The upper and the lower 
bounds on Fsi are posed by Fsmax and Fsmin respectively. 
 

C.  Adaptive Rate Resampling 
The non-uniformly sampled signal obtained with the 

AADC can be used directly for further non-uniform digital 
processing [3, 12]. However in the studied case, the AADC 
output is first selected with the ASA and then resampled uni-
formly before proceeding towards further processing. It en-
ables to take advantage of both non-uniform and uniform 
signal processing tools [8, 11, 13]. An additional error occurs 
due to this resampling. Nevertheless, prior to this transforma-
tion, one can take advantage of the inherent over-sampling of 
the relevant signal parts in the system [11, 13]. Hence it im-
proves the accuracy of the post resampling process [4].  

The resampling process requires interpolation, which 
changes the properties of the resampled signal compared to 
the original one. The properties of the resampled signal de-
pend upon the interpolation technique used to resample it [9, 
10]. The NNRI (nearest neighbour resampling interpolation) 
is employed for data resampling.  The reasons of inclination 
towards NNRI are discussed in [8, 9, 10].  

A study on the interpolation error is made by taking into 
account an academic signal, known formally. If (trn, xrn) rep-
resent the time-amplitude pairs of the nth interpolated sample. 
Then the original sample amplitude xon can be mathemati-
cally calculated for trn, as the input signal is analytically 
known. Now the interpolation error per interpolated point Ien 
is given by the absolute difference between xon and xrn. The 
process is given by Equation 7. The mean interpolation error 
for the ith selected window MIei can be calculated by using 
Equation 8. In Equation 8, Nri is the number of resampled 
data points lie in the ith selected window.  
 

nnn xrxoIe −=  . (7) ∑
=
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.1  .          (8) 

 
The interpolation error can be reduced by making the in-

terpolation interval as symmetrical as possible [6], by having 
equal number of samples on either side of the interpolation 
instant. This type of interpolation is also known as the central 
point interpolation. In order to achieve the symmetry in the 
interpolation interval, a resampling frequency for the ith se-
lected window Frsi, is calculated by employing Equation 9. 
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Where, AF is the adjustment factor, which is chosen by re-
specting the following criteria. 
  
* Frsi should maintain the symmetry in the interpolation 
process. 
* Frsi should be greater than and closest to FNyq

i
 . 

  
Here, FNyq

i=2.fmax
i and fmax

i represents the local bandwidth 
of the ith selected window [11, 13]. The 1st criterion adds to 
the system accuracy by reducing the interpolation error. The 
2nd criterion keeps the system computationally efficient, 
firstly by avoiding the unnecessary interpolations during the 
resampling process and secondly by avoiding the processing 
of unnecessary samples during the filtering operation.  

In this article the performance of the proposed filtering 
technique in terms of computation and quality is studied by 
employing a modelled input, consists of different frequency 
sinusoids. For a monotone sinusoid fmax

i=f i, here f i is the 
frequency of the sinusoid lie in the ith selected window. In 
this case, Fsi can be calculated by employing Equation 10. 
Where, NRC represents the relevant number of level-crossing 
thresholds crossed by the sinusoid.  
 

Frsi
 = Fsi

 /AF.      (9) Fsi = 2.f i.(NRC) .         (10) 
 

In the studied case Δx(t)= ΔVin, so NRC becomes equal to 2M-
1. Thus, Fsi can be expressed mathematically by Equation 11. 
The over sampling ratio for the ith selected window OSRi is 
given by Equation 12. 
 

Fsi = 2.f i.( 2M-1) .(11) 12
.2

−=
=

= M
ii

Nyq

i
i

fF
FsOSR  .   (12) 

As Δx(t)=ΔVin so AF is a function of M, in the studied case. 
By following the above discussed criteria, for M ≥ 2 the AF is 
chosen equal to (2M-1)/2. The replacement of AF and Fsi in 
Equation 9 gives Frsi=4.f i. 
 

D.  Adaptive Rate Filtering 
It is known that for fixed design parameters (cut-off fre-

quency, transition-band width, pass-band and stop-band rip-
ples) the FIR filter order varies as a function of the opera-
tional sampling frequency. For high sampling frequency, the 
order is high and vice versa. In the classical case, the sam-
pling frequency and filter order both remains unique regard-
less of the input signal variations, so they have to be chosen 
for the worst case. This time invariant nature of the classical 
filtering causes a useless increase of the processing load. This 
drawback has been resolved up to a certain extent by employ-
ing the multirate filtering techniques [15, 16]. They achieve 
computational efficiency which is not attainable with the 
classical approach.     

The proposed filtering technique is a smart alternative of 
the multirate filtering techniques. It adapts the sampling fre-
quency and the filter order by following the input signal local 
variations, which leads to a drastic computational gain of the 
proposed technique over the classical one.  

The idea is to offline design a reference filter for a refer-
ence sampling frequency Fref, which satisfies the AF criteria, 
discussed in Section III-C. In the studied case Fref is chosen 
as: Fref = 4.fmax. The reference filter impulse response hk is 
sampled at Fref during offline processing. Here k is the index 
of the reference filter coefficients.  

Frsi
 can be equal to or less than Fref, depending upon Fsi. 

In order to perform a proper filtering operation Frsi
 should 

match to Fref, the process of keeping them coherent leads 
towards the following two filtering cases.  
 

Filtering Case 1 
This case is true if Frsi= Fref. For this case, the filtering 

decision for the ith selected window FDi is set to 0 and it 
drives the switch to state 0, in Fig. 2. The reference filter im-
pulse response hk remains unaltered for this case.  
 

Filtering Case 2 
This case is true if Frsi

 < Fref. For this case, FDi is set to 1 
and it drives the switch to state 1, in Fig. 2. 

In this case, it appears that the data lies in the ith selected 
window can be resampled at a frequency which is less than 
the Nyquist frequency of x(t) and so it can cause aliasing. 
Since the AADC sampling frequency varies according to the 
slope of x(t) [2]. A high frequency signal part has a high slope 
and the AADC samples it at a higher rate and vice versa. 
Hence, a signal part with only low frequency components can 
be sampled by the AADC at a sub-Nyquist frequency of x(t). 
But still this signal part is locally over sampled in time with 
respect to its local bandwidth [11, 13]. It is valid as far as 
Δx(t) = ΔVin, because it makes the relevant signal part to cross 
all thresholds of the AADC, therefore it is locally oversam-
pled in time. This statement is further illustrated with the 
results summarized in Table II. Hence, there is no danger of 
aliasing, when the low frequency relevant signal parts are 
locally over-sampled in time at overall sub-Nyquist frequen-
cies.   

As in order to perform a proper filtering operation Frsi
 

should match to Fref, so in filtering case 2, hk is online deci-
mated as a function of Frsi for the ith selected window. The 
decimation factor for the ith selected window Di can be spe-
cific depending upon Frsi. The process of calculating Di and 
decimating hk for the integral and the fractional Di is shown 
in Fig. 3. 
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Fig. 3 Flowchart of calculating Di and decimating hk 

 
In Fig. 3 hdi

j represents the decimated filter for the ith se-
lected window. Here j represents the index of the decimated 
filter coeficients. For integral Di, hdi

j is obtained by picking 
every (Di)th coefficient from hk. For fractional Di, the frac-
tional decimation is achieved by resampling hk at Frsi. The 
NNRI is employed to resample hk. If the order of hk is H then 
the order of hdi

j is Pi=H/Di. 
A simple decimation causes a reduction of the decimated 

filter energy compared to the reference one. It will lead to an 
attenuated version of the filtered signal. Di is a good ap-
proximate of the ratio between the energy of the reference 
filter and that of the decimated filter. Thus, this effect of 
decimation is compensated by scaling hdi

j with Di. The proc-
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ess of scaling hdi
j in order to obtain the decimated and the 

scaled impulse response hwi
j for the ith selected window is 

given by Equation 13. 

hwi
j = hdi

j × Di
 .                              (13) 

 

IV.  ILLUSTRATIVE EXAMPLE 
In order to illustrate the proposed filtering technique a 

modelled signal x(t),  shown on the left part of Fig. 4 is em-
ployed. Its total duration is 20 seconds and it consists of three 
active parts. Each activity is a sinusoid of amplitude 0.9v and 
of frequency 1100, 200 and 350 Hz respectively. The time 
span of each activity is 0.5, 1.0 and 1.0 second respectively.  

As x(t) is band limited up to 1.1 kHz so the value of Fref 
becomes 4.4 kHz in this case. x(t) is sampled by employing a 
3-bit resolution AADC, it results into Fsmax=15.4 kHz and 
Fsmin= 2.8 kHz respecttively (c.f. Equations 3 and 4). AF be-
comes 3.5 in this case. ∆Vin is set to 1.8v, thus AADC quan-
tum q=∆Vin /(2M-1) becomes 0.2571v. 

0 10 200

0.5

1

1.5

0 10 200

0.5

1

1.5

 
Fig. 4 Input signal (left) and the selected signal (right) 

 
The 1st and the 3rd active parts of x(t) are of higher fre-

quencies compared to the 2nd one. In order to filter out the 
high frequency components from x(t) a low pass reference 
filter is designed by using standard Parks-McClellan algo-
rithm. The filter parameters are summarized in Table I. The 
purpose of this filtering process is to demonstrate that how 
the proposed filtering technique adapts its processing load by 
following the local variations of x(t).  

 
TABLE I 

SUMMARY OF REFERENCE FILTER PARAMETERS 
Cut-off  

Freq (Hz) 
Transition  
Band (Hz) 

Pass Band  
Ripples 

Stop Band  
Ripples 

Fref 

(kHz) R 

250 250~310 -25 (dB) -80 (dB) 4.4 186 
 

In order to apply the ASA, the reference window length 
Tref = 1second is chosen for this studied example. The se-
lected signal obtained with the ASA is shown on the right 
part of Fig. 4. The parameters of each selected window are 
summarized in Tables II and III.  

 
TABLE II 

SUMMARY OF PARAMETERS OF THE SELECTED WINDOWS 
Selected 
Window 

Tsi
 

(Sec) 

Fsi
 

(kHz) 
Ni 

(smp) 
Fref 

(kHz) 

1st  0.4995 15.4 7693 4.4 
2nd  0.9994 2.8 2799 4.4 
3rd  0.9995 4.9 4898 4.4 

 
TABLE III 

SUMMARY OF PARAMETERS OF THE SELECTED WINDOWS 
Selected 
Window 

Frsi
 

(kHz) 
Nri

 
(smp) OSRi Di Pi 

1st  4.4 2198 7 1 186 
2nd  0.8 800 7 5.5 33 
3rd  1.4 1400 7 3.1 60 

Tables II and III exhibit the interesting features of the pro-
posed filtering technique, which are achieved due to the 
smart combination of the non-uniform and the uniform signal 
processing tools. Fsi represents the sampling frequency adap-
tation by following the local variations of x(t). Ni and OSRi 
show that the relevant signal parts are locally over-sampled 
in time with respect to their local bandwidths [11, 13]. Frsi 
shows the adaptation of the resampling frequency for each 
selected window. It further adds to the computational gain of 
the proposed technique by avoiding the unnecessary interpo-
lations during the resampling process. Nri shows that how the 
adjustment of Frsi avoids the processing of unnecessary sam-
ples during the filtering process. Tsi

 exhibits the dynamic fea-
ture of ASA, which is to correlate the reference window 
length [8] with the signal activity lying in it. On the contrary, 
in the classical case, the reference window length remains 
static and is not able to adapt according to the signal activity 
lying in it. Moreover, the windowing process does not select 
only the active parts of the sampled signal. For this studied 
example Tref = 1 Sec. would lead to twenty 1-second win-
dows for the whole signal span (20 seconds), in the classical 
case. It follows that the system has to process more than the 
relevant information part in x(t). 

From Table III, Pi
 represents the adaptation of hk for the ith 

selected window. It is another advantage of the proposed 
technique over the classical one. In the classical case, the 
filter remains time invariant so it has to be designed for the 
worst case. In this example the input signal is band limited to 
1.1 kHz. Therefore, if the Fs = 3 kHz is chosen in order to 
respect the Shannon sampling theorem. Then for the same 
filter parameters, summarized in Table I, Parks-McClellan 
design algorithm provides a 127th order filter. As in the clas-
sical case, signal regardless of its activity is sampled at a 
fixed sampling frequency Fs = 3 kHz, so a fixed order filter 
H = 127 has to be employed for the whole signal length, 
leads towards the extra system activity compared to the pro-
posed case. 

V.  COMPUTATIONAL COMPLEXITY 
This section compares the computational complexity of 

the proposed filtering technique with the classical one. The 
complexity evaluation is made by considering the number of 
online operations executed to perform the algorithm.  

In the classical case, Fs and H remains constant, regardless 
of the input signal local variations. It is known that for an R 
order FIR filter, H multiplications and H additions are com-
puted for each output sample. The total computational com-
plexity C1 for N samples can be calculated by employing 
Equation 14. 

tionsMultiplicaAdditions

NHNHC ..1 += .                        (14) 

In the proposed filtering technique, the sampling frequency 
and the filter order both are not fixed and are adapted for 
each selected window according to the local variations of 
x(t). In comparison to the classical case this approach locally 
requires some extra operations for each selected window.  

Calculation of Frsi requires a division between Fsi and AF 
(cf. Equation 12). The selected data lie in the ith selected win-
dow is resampled uniformly at Frsi before filtering. The 
NNRI is employed for the resampling purpose. The NNRI 
requires only a comparison operation for each resampled 
observation. Therefore the interpolator performs Nri compari-
sons. Moreover, the filtering case selection requires a com-
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parison between Fref and Frsi. If FDi=0 then the reference 
filter impulse response hk remains the same. Otherwise, the 
decimation of hk is required. Di is calculated for this purpose. 
The calculation of Di

 requires one division (cf. Fig. 3). For an 
integral Di the decimation of hk is simple and has a negligible 
complexity as compare to operations like addition or multi-
plication. This is the reason that for this case the complexity 
of the decimator is not taken into consideration, during the 
complexity evaluation. For a fractional Di, it is required to 
resample hk at Frsi, which which perform Pi comparisons. 
Here, Pi is the order of decimated filter for the ith selected 
window. The filter coefficients scalar performs Pi multiplica-
tions (cf. Equation 16). Finally a Pi order filter, performs 
Pi.Nri multiplications and Pi.Nri additions for the ith selected 
window. The processes of designing the reference filter is 
performed offline, so is not included in the online algorithm 
complexity calculation. The combined computational com-
plexity C2 of the proposed filtering technique is given by 
Equation 15. 

 

( ) ( ) ( )∑
=

+++++++=
L

i tionsMultiplica

iii

Additions

ii

sComparison

ii

Division

PNrPNrPPNrLC
1

2 11 ααβα .  (15) 

 
In Equation 18, i = 1, 2,…., L represents the index of se-

lected window. α is a multiplying factor and its value is 0 for 
Frsi = Fref and 1 otherwise. β is also a multiplying factor, it is 
0 for an integral Di and 1 for a fractional Di.  

From C1 and C2 it is clear that there are uncommon opera-
tions between both filtering techniques. In order to make 
them approximately comparable the following assumptions 
are made. 
 
*A comparison has same processing cost as that of an addi-
tion. 
*A division has same processing cost as that of a multiplica-
tion. 
 

By following these assumptions, comparisons are merged 
into additions count and divisions are merged into multiplica-
tions count, during the complexity evaluation process. The 
computational gain of the proposed filtering technique over 
the classical one is calculated for results of the illustrative 
example, for different time spans of x(t). The results are sum-
marized in Table IV. 

 
TABLE IV 

SUMMARY OF THE COMPUTATIONAL GAIN 
Time Span (Sec) Gain in Additions Gain in Multiplications 

Ts1 0.93 0.93 
 Ts2 13.99 13.41 
 Ts3 4.45 4.53 

Total signal span (20)  14.55 14.61 
 

Table IV shows 14.55 and 14.61 times gain in additions 
and multiplications respectively for the total x(t) span of 20 
seconds. It shows that the proposed filtering technique leads 
towards a drastic reduction in the number of operations com-
pared to the classical one. It is achieved by adapting the sam-
pling frequency and the filter order by following the input 
signal local variations. 

It is clear that by knowing fi the choice of Frsi ≥ 2. fi is 
enough, but in order to achieve symmetric interpolation Frsi 
= 4. fi is chosen, in the studied case. Although this choice of 
Frsi affects the proposed technique computational efficiency, 

yet it can be accepted to achieve a significant processing ac-
curacy (c.f. Section VI).  

VI.  PROCESSING ERROR 
A.  Interpolation Error 
The interpolated samples are calculated by employing the 

level-crossing samples. For the practical AADC there exist 
uncertainties in time-amplitude pairs of the level-crossing 
samples [2]. These uncertainties accumulate in the interpola-
tion process and cause to increase the error [4]. Therefore in 
order to have a fair idea of the interpolation error an ideal 
AADC is employed, which provides the exact time-
amplitude pairs of the level-crossing samples.  

For the studied example, AF=3.5 leads to the interpolation 
symmetry (cf. Section III-C). In order to observe the effect of 
symmetry on the interpolation error, values of MIe2 are calcu-
lated by varying AF around 3.5. The process of calculating 
MIe2 is clear from Equation 8. The values of AF are chosen in 
such a way that Frs2

 remains greater than FNyq
2 for all AFs. 

The results are plotted in Fig. 5. 
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Fig. 5 Mean interpolation error (dB) versus AF 

 
Fig. 5 shows that a drastic reduction in the interpolation er-

ror can be achieved by availing the symmetry during the in-
terpolation process. Interpolation symmetry may leads to 
some latencies in terms of the real time implementation and 
the computational efficiency. However depending on the 
application requirements, these latencies can be tolerated for 
the benefit of maintaining a small error. 
 

B.  Filtering Error 
In the proposed filtering technique a reference filter hk is 

employed and then it is adapted for the ith selected window, 
depending upon the chosen Frsi. It makes the sampling and 
filtering of the ith activity at Frsi. In order to calculate the 
relative filtering error, of the proposed technique with the 
classical one, the following procedure is adopted.  

In the classical case, instead of adapting hk to obtain hi
j, a 

specific filter is designed for the ith selected window, by em-
ploying the Parks-McClellan algorithm. It is designed for 
Frsi by employing the same design parameters, summarized 
in Table I. The ith activity is sampled at Frsi and is filtered by 
employing the designed filter. The filtered signal obtained in 
this case is used as a reference and is compared with the one, 
obtained with the proposed technique. 

Let yn be the nth reference filtered sample and yn
^ the nth fil-

tered sample obtained with the proposed filtering technique. 
Then the relative filtering error for the nth filtered point can 
be calculated by using Equation 16. The mean filtering error 
for the ith activity MFei can be calculated by employing 
Equation 17. 
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By following the above method MFe2 is calculated and it 

is 5.6 %. It shows that the output obtained with the proposed 
filtering technique is of comparable quality to the classical 
one. It is obvious that the online decimation of hk in the pro-
posed filtering technique, leads to a loss of the filtering qual-
ity. The measure of this quality loss can be used to decide the 
upper bound on Di. By performing offline calculations the 
maximum value of Di

 can be decided for which the deci-
mated and scaled filter provides results with an acceptable 
level of accuracy. The level of accuracy is application de-
pendent.  

VII.  CONCLUSION 
An adaptive rate filtering technique is devised. This tech-

nique is well suited for the low activity sporadic signals like 
electro-cardiogram, phonocardiogram, seismic signals, etc. A 
reference filter is offline designed by taking into account the 
AF criteria. A complete methodology to obtain Frsi and 
decimating hk for the ith selected window has been demon-
strated. It is shown that how the data resampling rate and the 
reference filter order are smartly adapted for the ith selected 
window, by following the input signal local variations. The 
computational gain of the proposed adaptive rate filtering 
technique is shown over the classical one. It is achieved due 
to the joint benefits of the AADC, the ASA and the resam-
pling as they enable to adapt the Fsi, Frsi, Ni, Nri, Di and Pi 
by exploiting the input signal local variations.  

The interpolation error is calculated. It is shown that a 
drastic reduction in the interpolation error can be achieved by 
employing the symmetry in the interpolation process. A 
method to calculate the relative filtering error of the proposed 
technique with respect to the classical one is also proposed. It 
is shown that the result obtained with the proposed filtering 
technique is of comparable quality to the classical one. The 
reference filter decimation is required in the proposed tech-
nique. The complete procedure of decimating and scaling the 
pre-calculated reference filter during online computation is 
demonstrated. This online decimation reduces the quality of 
the decimated filter as compare to the reference one. The 
upper bound on the decimation factor can be determined by 
offline calculations, for which the decimated and scaled filter 
provides a response with an acceptable level of accuracy. 
Moreover, for high precision applications, an appropriate 
filter can be directly calculated online for each selected win-
dow at the cost of an increased computational load. 

A detailed study of the computational complexity of the 
proposed filtering technique by taking into account the real 
processing cost at circuit level is in progress. Further research 
focuses on the optimization of the proposed techniques and 
on its performance study in the case of real life applications. 
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