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Segmentation of Breast Lesions in Ultrasound
Images Using Spatial Fuzzy Clustering and

Structure Tensors

Abstract—Segmentation in ultrasound images is challenging due
to the interference from speckle noise and fuzziness of boundaries.
In this paper, a segmentation scheme using fuzzy c-means (FCM)
clustering incorporating both intensity and texture information of
images is proposed to extract breast lesions in ultrasound images.
Firstly, the nonlinear structure tensor, which can facilitate to refine
the edges detected by intensity, is used to extract speckle texture. And
then, a spatial FCM clustering is applied on the image feature space
for segmentation. In the experiments with simulated and clinical
ultrasound images, the spatial FCM clustering with both intensity and
texture information gets more accurate results than the conventional
FCM or spatial FCM without texture information.

Keywords—fuzzy c-means, spatial information, structure tensor,
ultrasound image segmentation

I. INTRODUCTION

BREAST cancer is the most common form of cancer and
the second cause of cancer deaths among women. Mam-

mography is an effective method for breast cancer diagnosis
but it has a low negative predictive value, which leads to
more needless breast biopsies so it is necessary to use some
other ways to ameliorate the result. Breast ultrasound can
be used to distinguish benign breast lesions from malignant
ones and detect breast lesions invisible on mammography.
It is also recommended as the primary imaging technique
for women younger than thirty with breast problems. So
ultrasound has been employed as an adjunct to mammography.
The morphology [1] and texture features between benign
and malignant tumors in an ultrasound image are important
indications for classifying breast tumors. The segmentation of
breast ultrasound image performs as an important antecedent
step for advanced medical application, such as computer-aided
diagnosis (CAD). However, segmentation of ultrasound im-
ages is quite challenging due to the interference from speckle
noise and fuzziness of boundaries. A high failure rate of
analyzing image lesions appears [2] because the computerized
segmentation failed.

In ultrasound imaging, the speckle noise which gives a
granular appearance makes segmentation complicated. The
general idea is to do noise reduction before segmentation for
preprocessing. However, the big-size speckles and the repeated
speckle structure have a much greater effect to image quality
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than the normal noise such as Gaussian noise. Thus some
methods treated the ultrasound images as textured images. To
deal with textured images, texture feature extraction is used
for preprocessing instead of noise reduction. Many different
approaches have been employed in the literature for texture
feature extraction based on Laws texture feature, multiple
resolution techniques, Markov Random Fields, Gabor filters
and so on. There are still some well-established texture feature
extraction methods rarely used in ultrasound images, such as
structure tensors (second moment matrix) [3].

Fuzzy c-means (FCM) clustering [4] is an unsupervised
technique that has been successfully applied in classifier
designs for image segmentation. Pixels with similar features
in an image can be classified into the same cluster. The
advantages of FCM include a straightforward implementation
and applicability to multichannel data make. Especially, the
ability of FCM to model uncertainty within the data give
a solution to deal with the fuzziness of the boundaries in
ultrasound images. A major disadvantage of conventional
FCM is that pixels are regarded isolated with their positions.
Obviously, this does not cohere with the spatial characteristic
of an image. Pham [5] modified the objective function of the
standard FCM by adding a spatial penalty term. Liew et al.
[6] ameliorates the dissimilarity measure between data and
the cluster prototype by making it be a weighted sum of the
classified pixel and its neighborhoods. The modified FCM
algorithm improved the results of conventional FCM method
on noisy images. However, the way in which they incorporate
the neighboring information limits their application to single-
feature inputs.

Fig. 1 shows the framework of the proposed method which
use spatial FCM by improving the membership function and
utilizes both the image intensity and speckle pattern extracted
from image texture. The following section starts with a brief
introduction of the linear structure tensor and nonlinear struc-
ture tensor. In section 3, the spatial FCM is used in tensor
domain and an image intensity channel is added into the
extracted feature space. Section 4 shows experiment results
of simulated data and real ultrasound data. The paper is
concluded with a summary in section 5.

II. STRUCTURE TENSOR FOR SPECKLE FEATURE
EXTRACTION

The local structure tensor [3] (also called scatter matrix
or second moment tensor) provides a representation of image
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Fig. 1. Framework of the proposed method.

texture by taking into account how the gradient changes within
the vicinity of any investigated point. Comparing Gabor filter,
it has less parameters and it also provides a controllable scales
more easily than wavelet transform. For a scalar image I , the
linear structure tensor with a rank of 2 is defined as follows:

Jρ =
(

J11 J12

J21 J22

)

= Kρ ∗ (∇I∇IT )

=
(

Kρ ∗ I2
x Kρ ∗ IxIy

Kρ ∗ IxIy Kρ ∗ I2
y

)
(1)

where Kρ is a Gaussian kernel with standard deviation ρ , and
subscripts of I denote partial derivatives. This is a classical
form of structure tensors, which is a symmetric positive
semi-definite matrix. Fig. 2 shows the channels in structure
tensor which pick up the speckle shape and position of an
ultrasound image but throw away the intensity information.
This expression of speckle texture facilitates to refine the edge
that extracted from the original image. Gaussian convolution in
(1) not only smoothes the noise, but also provides a scale-space
with the integration scale ρ which controls the smoothness of
edges by apply segmentation in different scales.

The Gaussian filter implies a process of linear isotropic
diffusion which has a problem that it blurs edges at the same
time of smoothing. Thus, Perona and malik [7] proposed the
following nonlinear diffusion PDE to preserve edges:

∂tu = div(g(|∇u|2)∇u) (2)

where ∇ is the gradient operator, div the divergence operator,
| · | denotes the magnitude. The initial condition, u(t = 0),
is equal to original image I . g(·)is the diffusivity function,
which is proposed in [7] to be

g(s2) =
1

1 + s2

k2

(3)

or

g(s2) = exp(− s2

k2
) (4)

where k is an edge magnitude parameter.
In [8] , the Perona-Malik filter was regarded as an isotropic

model, since it utilizes a scalar-valued diffusivity and not a

Fig. 2. (a) Original ultrasound high-reflection image I. (b) (c) (d) Channels
of IxIy , I2

x and I2
y in structure tensor respectively

Fig. 3. IxIy in nonlinear structure tensor (k = 5). (a) t = 0. (b) t = 7. (c)
t = 8.

diffusion tensor. In the case of anisotropic, the smoothing is
adapted not only to the locations of pixels but also different
directions and it allows smoothing along image edges while
inhibiting smoothing across edges. For matrix-valued data, the
anisotropic nonlinear diffusion can be express as

∂tuij = div(g(
n∑

k,j=1

∇ukl∇uT
kl)∇uij) (i, j = 1, · · · , n)

(5)
where ukl is a tensor channel. Fig. 3 shows the texture of
IxIy defined by (5) in different scales. As the diffusion time
increases, the contrast of texture becomes lower, which will
exert a weaker influence on the segmentation. This approach
is generalized directly from the vector-valued anisotropic dif-
fusion, which means the spatial structure of tensors is ignored.

III. SEGMENTATION METHOD

A. Spatial FCM

FCM [4] is an iterative clustering algorithm with the char-
acteristic that it allows feature vectors to belong to multiple
clusters and the belongingness is described by the grade of
membership. Let X = (x1, x2, · · · , xN ) denotes an image
with N pixels to be partitioned into C clusters. The conven-
tional algorithm is based on minimization of the following
objective function:

Jm =
N∑

i=1

C∑
j=1

um
ij‖xi − cj‖2 (6)
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where uij is the membership function of xi in the cluster j,
xi is the ith measured data, cj is the center of the jth cluster,
and ‖ · ‖ is any norm expression the dissimilarity between any
measured data and the center. The exponent m, called fuzzifier,
determines the level of cluster fuzziness. The recommended
value of the fuzziness index is 2 because the updated fuzzy
membership value is proportional to the square of the inverse
distance from a specific segment location to each project’s
centroid [4]. The membership functions are constrained to be
positive and satisfy:

C∑
j=1

uij = 1 (7)

The membership function is updated by the following:

uij =
1

∑C
k=1

( ‖xi−cj‖
‖xi−ck‖

) 2
m−1

(8)

And the center is

cj =

∑N
i=1 um

ij xi∑N
i=1 um

ij

(9)

One of the important characteristics of an image is that
neighboring pixels are highly correlated. This spatial rela-
tionship between pixels is important in clustering, but it is
not utilized in the conventional FCM algorithm, where the
noise leads a misclassification because the noised pixel takes
a different feature with the correct one. To reduce the effect
of noise, the probability that a noised pixel belongs to the
same cluster with its neighbors should become greater. In
[9], they proposed a spatial FCM algorithm by altering the
membership weighting of each cluster. Referring to this idea
of incorporating spatial information, a spatial membership
function is defined as:

u′
ij =

up
ijf(uij)q

∑C
k=1 up

ikf(uik)q
(10)

where p and q are parameters to control the relative importance
of u and f terms. f(u) is a spatial weight function which
can be defined as a two dimensional average or median filter.
In a homogenous region, the spatial weight function simply
fortifies the original membership, and the clustering result
remains unchanged. However, for a noisy pixel, (10) makes its
membership be closed to its neighborhoods. As a result, we
can classify the noisy pixel correctly. What should be noted
is that the situation where p = 1 and q = 0 is identical to the
conventional FCM.

Some clustering methods estimates the initial cluster proto-
type to allow a faster segmentation. It is easy for scalar valued
data to obtain the cluster prototypes estimation using image
histogram or some threshold techniques, but these techniques
is not adapted to vector valued data. In [10], they initialized
the cluster prototypes by genetic algorithm which need 300
generations for optimization. In some sense, this step increased
the total calculation time, so to set the initial memberships
randomly is alternative. The spatial FCM algorithm is as
follows:

1) Generate random numbers with the range from 0 to 1
to be the initial memberships. Set the number of cluster and
calculate ci using (9). Select a very small positive number ε.

2) Compute uij using (8).
3) Map uij into the pixel position and calculate the modified

membership u′
ij using (10). Compute the objective function J .

4)Update center c using (9)
5) Repeat steps from 2) to 4) until the following termination

criterion is satisfied:

‖Jnew − Jold‖ < ε (11)

B. Segmentation in Image Feature Domain

The classical FCM is based on vector-valued data, and
we usually use Euclidean norm as the distance measures.
To develop a tensor-valued version of FCM, the similarity
between tensors should be defined firstly. Alexander et al.
[11] discussed different similarity measures for matching
of diffusion tensor images and indicated that the Frobenius
difference measure of tensors was the best in the context of
images registration. The Frobenius distance is defined as:

dist(A,B) =

√√√√ m∑
i=1

n∑
j=1

|aij − bij |2 (12)

where aij and bij are elements of tensor data A and B with
indices i and j. The Frobenius distance of a matrix is identical
to the Euclidean distance of a vector in (15). Moreover, the
nonlinear diffusion of a tensor does not consider the position of
different channels, neither. Therefore, the tensor-valued FCM
is equals to the vector-valued one.

The general idea is that the extracted texture ameliorate
edges confused speckle noise while he gray level image after
smoothed indicates the basic region of target. So the image
feature is constructed as:

F = [ J11 J12 J22 It ] (13)

where J11, J12 and J22 are channels in structure tensor and
It is the filtered image by anisotropic diffusion with diffusion
time t. Because J21 is equal to J12 in structure tensor J , one is
enough for the texture feature. The values of different channels
are always not in the same unit, which makes it incommensu-
rable to each other. So the data is normalized by dividing each
column by its standard deviation. The feature combined image
intensity with texture contains a lot of useful information for
the discrimination between different areas. However, the mul-
tichannels increase computing time, especially as the image
size gets bigger. To overcome this disadvantage, principle
components analysis (PCA) is alternative to summarize the
data into fewer dimensions.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

To evaluate the performance of the proposed algorithm,
both simulated and real breast ultrasound images are used.
The simulated data in Fig. 4(a) is acquired from an ultra-
sound simulation package, ”Field II” [12], which provides a
framework to simulate ultrasound imaging. There are three
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simulated cysts, the diameters of which are 4, 5, and 6 mm
from top to bottom. The simulated image has not been pro-
cessed by any noise reduction or contrast enhancement method
before segmentation. That is different from real ultrasound
images because ultrasound instruments always have an image
enhancement module to make a better display.

Fig. 4 displays the results of FCM, spatial FCM with texture
information and spatial FCM without texture information. The
signal-to-noise ratio (SNR) in Fig. 4(a) is about 14dB. The
number of clusters is 2 and the image is divided into two
regions. The intensity images, It , in both Fig. 4(c), (d) and (e)
are acquired by anisotropic diffusion filters with 15 iterations
and k = 25. The texture feature is extracted by nonlinear
structure tensor with 12 iterations and k = 5. m is set to 2 in
both conventional and spatial FCM. In spatial FCM, p = 0,
q = 1.1 and A median filter with 7× 7 windows is chosen to
get the spatial weight for the membership of data.

In Fig. 4, the results of spatial FCM with both intensity and
texture information characterize the most accurate boundaries.
The spatial FCM with only intensity information in Fig.
4(c) makes more misclassification at the edge and that may
cause a wrong characterization of the tissue. The result of
conventional FCM in Fig. 4(d) appears a lot of noisy area
in both the background and edges. Fig. 4(e) using the spatial
FCM with texture and intensity information shows that the
texture extracted by structure tensors refines the border of
lesion regions and it can cope with the speckle noise. In this
experiments, the most sensitive parameters are the iteration
number and diffusivity parameter k in nonlinear diffusion of
structure tensors. This two parameters control the smoothness
of speckle patterns. If the texture is over smoothed, the texture
information is not enough to rectify the misclassification by
speckle noise. If the texture is too strong, it will corrupt the
image as a kind of artifacts. It is important to find a balance
between noise reduction and edge representation.

Fig. 5 shows the result of real ultrasound image segmen-
tation. ultrasound image of breast with 180-by-124-pixel is
used and a manual delineation of the lesion area is compared
with the result. All the parameters of Fig. 5 are the same
with that of Fig. 4 except the image intensity which is filtered
by anisotropic diffusion with 10 iterations and k = 5 . The
reason is that the real image has already been processed by
noise reduction and contrast enhancement before displayed in
ultrasound instruments.

Two types of cluster validity functions, partition coefficient
Vpc and partition entropy Vpe [9], are used to evaluate the
performance of fuzzy partition. They are defined as follows:

Vpc =

∑N
j

∑C
i u2

ij

N
(14)

and

Vpe =
−∑N

j

∑C
i [uij log uij ]
N

(15)

The idea of these validity functions is that the partition with
less fuzziness means better performance. As a result, the best
clustering is achieved when the value Vpc is maximal or Vpe

is minimal. Table I indicates that the proposed FCM methods
perform better than the conventional FCM, and the spatial

Fig. 4. (a) Original images. (b) Ideal regions (c) Spatial FCM with only
intensity (d). FCM with texture and intensity feature. (e) Spatial FCM with
texture and intensity information.

TABLE I
EVALUATIONS OF CLUSTERING

SFCM/Average SFCM/Median FCM
Vpc 0.8112 0.8116 0.7381
Vpe 0.3077 0.3068 0.4120

weighted function with median filter is a little better than that
with average filter.

Two factors are imported to evaluate the segmentation
method and the three cyst regions are measured respectively.
The area error is defined as the result of the sum of the total
number of pixels in the cyst divided by the sum of number of
misclassified pixels. Because the original shape of the cysts
is an ideal circle, the shape of segmented region is measured
with form factor calculated by

F =
‖P‖2

4πA
(16)

where P is the perimeter and A is the area of the segmented
region. F is a positive number that is always bigger than
one unless the area is a circle which makes F equal to one.
Thus, the form factor indicates the deviation of the shape from
a circle. Table II shows the measurement of the segmented
regions using three fuzzy clustering methods, where I and T
refer to the intensity and texture feature applied to images,
SFCM refers to the proposed spatial FCM and FCM refers
to the conventional method. The area errors of SFCM/I is the
biggest because speckle noise distort the image so much that
intensities cannot represent the edges accurately. SFCM/I&T
is comparable to FCM/I&T in terms of area error, but the
form factor of FCM/I&T is much bigger which is caused
by the rough borders of the segmented region. This kind of
roughness may bring about the misdiagnosis of cancer because
the roughness of borders is one of the critical indicators in
breast ultrasound images.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1454

Fig. 5. (a) An original breast ultrasound image. (b) The result of proposed method with 2 clusters, (c) Edge detection of (b) by the sobel mask, (d) The
lesion delineated by the doctor.

TABLE II
EVALUATIONS OF SEGMENTED REGIONS

Area Error Form Factor
Method 4mm 5mm 6mm 4mm 5mm 6mm

SFCM/I&T 0.2108 0.2333 0.1610 10.74 9.969 11.05
SFCM/I 0.2836 0.3002 0.1932 11.69 11.78 11.51
FCM/I&T 0.2780 0.1543 0.0784 20.33 12.52 16.46

V. CONCLUSION

In this study, an effective segmentation method is presented
to extract lesion regions in ultrasound breast images on the
simulated and clinical images. Both texture and intensity
information are utilized to get an accurate result. The texture
extracted by nonlinear structure tensors with different scales
can be used to get the balance between noise reduction
and edge representation. The proposed spatial FCM is more
tolerant to noise than the conventional one. Based on the
speckle texture and image intensity, it copes with the speckle
noise and fuzziness of boundaries in ultrasound images.
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