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Abstract—A clustering is process to identify a homogeneous This paper talks deal with a robust clustering psscfor

groups of object called as cluster. Clusteringrie steresting topic
on data mining. A group or class behaves similahgracteristics.
This paper discusses a robust clustering procestafa images with
two reduction dimension approaches; i.e. the twmedisional
principal component analysis (2DPCA) and princigaimponent
analysis (PCA). A standard approach to overcome phoblem is
dimension reduction, which transforms a high-dinemal data into
a lower-dimensional space with limited loss of imnfiation. One of
the most common forms of dimensionality reductisrihie principal
components analysis (PCA). The 2DPCA is often dadlevariant of
principal component (PCA), the image matrices vebrectly treated
as 2D matrices; they do not need to be transforimeda vector so
that the covariance matrix of image can be contdudirectly using
the original image matrices. The decomposed clalssiavariance
matrix is very sensitive to outlying observatiofihe objective of
paper is to compare the performance of robust nmig vector
variance (MVV) in the two dimensional projection RG2DPCA)
and the PCA for clustering on an arbitrary datagenahen outliers
are hiden in the data set. The simulation aspefctebustness and
the illustration of clustering images are diseas$n the end of
paper

Keywords—Breakdown point, Consistency, 2DPCA, PCA,
Outlier, VectorvVariance

|. INTRODUCTION

data images with two reduction dimension approgdhesthe
two dimensional principal component analysis (2DP@Ad
principal component analysis (PCA). One of the ntoshmon
forms of dimensionality reduction is the princigaimponents
analysis (PCA), see Jolife [5]. A principal compahanalysis
focused on reducing the dimensionality of a datanserder to
explain as much information as possible. The fmsncipal
component is the combination of variables that a&xgl the
greatest amount of variation. The second prinaipahponent
is defined as the next largest amount of variatom is
independent to the first principal component. Tdiep will be
continued for the entire principal components csponding to
the eigenvectors of covariance matrix sample.
disadvantage of PCA is the elaborate computation.

Yang et.al [6] proposed the application of two disienal
Principal Component (2DPCA) for reducing of compiotaal
time of standard PCA on face recognition. The 2DPGA
often called a variant of principal component (PCH) the
2DPCA, the image matrices were directly treated 28s
matrices; the images do not need to be transforimed a
vector so that the covariance matrix of image can
constructed directly using the original image nuasi The
2DPCA has two important benefits over PCA, it isieato

LUSTERINGis one common technique for statistical datavaluate the covariance matrix and it has the tess for

analysis used in many fields. A clustering is pescéo
identify a homogeneous groups of object called laster. A
group or class behaves similarly characteristite dlustering
algoritms are generally classified into hierachieasld non
hierarchical algorithms. This paper discusses rommn
hierarchical clustering process for data image$ weduction
dimension. A cluster of image is built from robulstance;
which is measured from central location observation

determining the eigenvectors.

The decomposed information variation of classie@lA
and 2DPCA becomes pointless if outliers are preserthe
data. The decomposed classical covariance matrixery
sensitive to outlying observations. The first compuat
consisting of the greatest variation is often pdstmvard the
anomalous observations.

Robust statistics a convinient modern way of sunsiray

Reduction dimension has been used widely in mamgsult when outliers are hidden in the data setli@us often

application involving high dimensional data,
application on image processing. The digital numirevalue
of image pixels have loaded resemble charactetheémear
neighbour pixels. It means that the one of vargldan be
written as a near linear combination of the othaiables, and
the dispersion of data is close to singularity peob A
standard approach to overcome this problem is dioan
reduction, which transforms a high-dimensional dai® a
lower-dimensional space with limited loss of infation.
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suchs adifficult to be identified through visual inspeatiavithout the

analytic tools. There are many different robusingstor of
location estimator. In this paper we discuss théusbd
estimator of minimum vector variance (MVV). The etiive
of paper is to compare the performance of robusimizing
vector variance (MVV) in the two dimensional prdjea PCA
(2DPCA) and the PCA for clustering of the arbitratgta
image. Minimum vector variance (MVV) is the robustasure
in an attempt to determine the location estimatod a
covariance matrix based on a data subset
approximately an half data which give the minimuector
variance, see Herwindiati et. al [1]. The algorittoh two

methods and the clustering cases are comprehensivel

discussed. The aim of paper is to give the explansitand
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comparison of robust minimizing vector variance (MVin
the two dimensional projection PCA (2DPCA) and Bh@A
for clustering of the arbitrary data image

The MVV robust PCA is an impressive method for
interpreting the application of PCA, such as tresslfication
and the clustering process. The algorithm of MVYust PCA
is composed with three stages generally listediésafs,

Stage 1. Start with a singular value decompositiérthe
mean centered data matrix

Stage 2. Estimate the location and covariance matsing
MVV robust approach.

II. THE ROBUST PRINCIPAL COMPONENT ANALYSIS
The main idea of principal component analysis (PGAp
reduce the dimensionality of data set consistingalafrge
number of interrelated variable, while retaining rasch as

possible of variation in the data set, see Jolifelp the image 1. Let H,, be an arbitrary subset containing
processing, PCA is the statistical teqnique usetulfind N+ K+l
pattern in data image of high dimension. h:[ }data points. Compute the mean vector

Suppose that the random vectdf of p components has

the classical covariance matr&which is a px p symmetric Xy, @and covariance matrixS, —of all observations

and positive semi definite. belonging taH,,, . Then compute,

_ = t - =
S-ll SZ §p df‘c\d (I) = (XI - XHOld ) $(:]lld ( XI - x'IJ\d )
_ S, S §p .
S=| : : : forali=1,2,...n

T 2. Sort these distances in increasing order,

St %2 v S 3. Define H,,, from the order distancél =
Covariance matri$ has eigenvaluesi, 24,2--24, 20 %% %
{ ) Mr(2) n(h)}

and eigenvectot) such thal)'SU = L; where L is diagonal

matrix. 4.
The principal components are uncorrelated linear

combinationsY whose variances are as large as possible. Tg'e

first principal component is given by, =U; X which has the stopped IfTr(SﬁW) = Tr(sﬁold )

largest proportion of total variance. Tecnically, pacipal Otherwise, the process is continued until kka iteration

component can be defined as a linear combination of jt

optimally-weighted observed variable.

CaIcuIate)?Hnew, S, andd;i (i).

If Tr(Sﬁm) =0, repeat steps 1 to 5 and. The process is

The proportion of total variance the principal component
k

is often explained by the ratio of the eigenvaluels = > A .

The determination ofk is an important role to the PCA

analysis. A largerk gives a better fit in PCA, but a largér
has the larger redundancy of information. The regteent of

original variable p to the k principal component must be

considered as a goal in optimizing. The decompatzssical

The k principal component becomes unreliable if outliare
present in the original variabfe. The k principal component

consisting of the largest proportion of total vada Sis often
pushed toward the outliers.

Regarding the fact, Huber et al [8] introduced & neethod
for robust principal component (ROBPCA). ROBPCAIBA
method combining two advantages of both projecparsuit
and robust covariance estimation. The robust egtimes
computed by the MCD ideas of covariance matrix.eglasn
our experience in computations, ROBPCA is an effecand
efficient method. Herwindiati and Isa [2] propogke robust
principal component minimizing vector variance (MM
based on the good properties of ROBPCA.

()2 T(S)2 T( §)2-= T §= T 3)

Stage 3. Do the clustring images using the MVV sbbu

squared Mahalanobis distance defined as,

dr\2/|vv ( >a<i ’ T—MVV) :( S(i - TMVV)I S\Alvv ( ﬂX_ 4va) ; for all
i=1,2,..,nandT,, andS,, are the location and
covariance matrix given by that process

The Subseh in the first stage has the important role in the
covariance matrixs is very sensitive to outlying observations.estimator.

Hubert et al [8]
subseh = max{[an] [(n+ K+ /2}} , Where ais chosen

suggested to

as any real value between 0.5 and k},, as a maximal

number of components that will be computed, however
Rousseeuw and van Driessen [10] stated that theesub

h= [n hl k+1} has the high breakdown point estimator.

Breakdown point is the smallest fraction of dataicivh
causes the value of estimator to be infinity whas value of
all data in the fraction are changed to be infinRpusseeuw
and Leroy [9]. The good robust estimator must bghhi
breakdown point. The higher breakdown point estmat
means the more resistant estimator to agains thi&aminant
data.

take
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Two subsets; h = max{[an] {(n+ Kk, +3 /2]}
_|n+k+1},
" _[ 2 }
points as seen in the Figure 1 and Figure 2. Tligsees

and

ConsiderX,, X,,--+, X is a MX prandom image matrix,

let V is an p dimensional unitary column vector, the idea of
are simulated to compare the breakdow . . S .
P I%DPCA is to project X ont& by linear transformation

Y=XV (1)

reveal the fact that the breakdown pointfgf is higher and pefine the image covariance matrix:

more stable than the one bf.

E3
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Fig. 1 MVV Breakdown point usingh :[n * k+l}
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Fig. 2 MVV Breakdown point usingh =0.75n

Ill. THE ROBUSTTWO DIMENSION PRINCIPAL COMPONENT(
RoOBUST2DPCA)

S, = E[( X-EX)"(X- EX)}Which isa px p non negative

definite matrix. The covariance matrix of projecfedture of
sample is defined as

S, =V'E[(X-EX)' (X-EX)|[V=V"§, V )
Suppose there at¢image matrice§X }, i=12,-- N and
_ N
denote the average imagehsﬁzxi , then S, can be

i=1
evaluated by

> (%, -%)" (%, -X) @)

In line with the PCA algorithm, to have a projeatio
direction of 2DPCA is done by reducing the dimenaidy of
a data set in order to explain as much informagispossible,
S, has the important rule of Iettiﬁ@op‘ as the eigenvector of
S, corresponding to the largest eigenvalue. A séioorarmal
projection directions\V,,V,,---,V, are the orthonormal

eigenvector ofS, corresponding to thel largest eigenvalues,

ie. V,, :[\71 v, \7[,] . Projecting a matrix X ont¥, _ is

opt

V=XV, k=12,-,d @)

Two dimensional Principal Component (2DPCA) was |, this section author discusses the robust 2DPZAsing
proposed by Yang et. al [6]he method using the projection he measure of minimizing vector variance (MVV).€THVV

technique is developed for the gray scale face gmtion.
Though the 2DPCA is often called as a variant ahgipal

robust 2DPCA is primarily a robust approach whigsatibes
the variance covariance structure through a

component (PCA), the 2DPCA has two important beésefiyanstormation of the original variables. The tégbe is a

over PCA. It is easier to evaluate the covarianaé&rimnand it
has the less time for determining the eigenvectbrsthe

useful device for representing a set of variablgsabmuch
smaller set of composite variables that accounirfach of the

2DPCA, the image matrices are directly treated & 2yariance among the set of original variables. Tratad

matrices; the images need not be transformed invector so
that the covariance matrix of the image can be tcocted
directly using the original image matrices.

Observation N x, x,, X, i
X
X, 3
Observation 2 i S Ay T e
x,
x| - X, | Tl e e Al
Xy i
Observation 1
Xl
Tt X Bt X5
Classl......cccoeeeevvinennn. Clads

Fig. 3 The lllustration of k Clustering data Images

reduction based on the classical approach beconre$iable
if outliers are present in the data. The decompadaskical
covariance matrix is very sensitive to outlying ehsitions.
The first component consisting of the greatestatam is
often pushed toward the anomalous observations.

The algorithm of MVV robust 2DPCA has no signifitan
difference with MVV robust PCA except for the critm
projection, Herwindiati [3]. SupposeX,, X,,---, X, is a
mx prandom image matrix.

linear
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Stage 1. Start with a construction the covarianerix by
using theN original two dimensional (2D) matrices
Find the orthonormal eigenvectors correspondinght®

dlargest eigenvalues S,, V= [\71 v, \Z,} .
Projecting a matrix X onto \7[th is
Y, =XV, k=1,2.-,d

Stage 2.Estimate the location and covariance matrix of

projected matrix X, by using MVV robust

approach.
1. Let H,, be an arbitrary subset containing
+k+
h:{n K 1} matrix data points. Compute the average

matrix as )_(Hold and covariance matrixs, =~ of all

belonging td,,. Then
Bri=(X Xy, ), k=1,2,+,d

observations calculate

2. Computed;, (i)= ﬁtS,]tm D, foralli=1,2,... N

whereD,, is defined as mean of rows in eactk column
k:]_,zl... ,d :
. Sort these distances in increasing order,

. DefineH,, :{X X o X

() Rnfa) n(h)}
. CalculateX,, 'S, andd] (i).

o 00 b~ W

1f Tr(S, ) =0, repeat steps 1 to 5.

If Tr(Sﬁm) = Tr(SZHDId ) the process is stopped.

Otherwise, the process is continued untilrttle iteration if

() 2Tr(S)2Tr(§) 22 Tr () =Tr (S,

Stage 3.Cluster the matrix data based on
distance

diw (1) = Dy Siy, Dyw, foralli=1,2, ... N.

IV. THE ILUSTRATION OF CLUSTERING IMAGESUSING MVV
RoBUSTPCAAND 2DPCA

A.The lllustration 1

A sample set included 97 grass images and 7 woadéem
are selected for experiment. Two two kinds of inmapave
different color. The extraction of each pixel inetktolor
feature is represented as a point in a 3D RGB cgpaice .
Assume that we do not know the caracteristics wipga. Two
approaches of MVV robust reduction dimension aedufor
clustering process.

robust MVV

The Wood Image

o

The MVV Robust 2PCA Distance
- o
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:

%
:

N R N
60 80 100 120
The Images

Fig. 5 The Clustering of Grass and wood with MVViRet 2DPCA
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Fig. 6 The Clustering of Grass and wood with MVViRet PCA

B.The lllustration 2

In this illustration author shows the classificatiof two
kinds of cities; that are cities having the higmsity and low
high of population. The images are captured frotallgz. We
assume that the dense roof means the dense populéiie
have 55 images of the high density and 4 imagesowf
density
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Fig. 8 The Clustering Cities with MVV Robust 2DPCA

.

140+ B
Cities with low population

-

.
100 o

E o o

‘ Cities having a high density of population

The MWV Robust PCA Distance

. v, e . w

O‘ .
. - . . . - * - . -
aut 0T s * POl LI * anun
L . LI we | "w ) .
0 10 20 30 1

vt et

~

0 50
The Observations

Fig. 9 The Clustering Cities with MVV Robust PCA

Two illustrations tell us that the two robust approaches; i.e.
MVV Robust PCA and MVV Robust 2DPCA; have the good
performance for clustering process of images. The approaches
can separate clearly two classes having different
characteristics.

V. THE COMPUTATION TIME OF MVV RoBUST PCA AND
2DPCA

The 2DPCA is often caled as a variant of principa
component (PCA). To distinguish PCA from 2DPCA, al of
the 2D data must be previously transformed into 1D vector
before they are processed by PCA approach. The
transformation leads to a high dimensional vector space. The
2DPCA has the less time for determining the eigenvectors, the
image matrices are directly treated as 2D matrices and the
covariance matrix can be constructed directly using the

origina image matrices, see Yang et a [6].The efficiency or
running time of an algorithm is related the length time or the
number of steps. In this section authors are going to compare
the computational time of MVV robust 2DPCA and MVV
robust PCA. To generate n random matrices of 40x40, and
defined them as X, X,, -+, X, for experiment. The next step

is to calculate the average of computationa time of MVV
robust PCA and MVV robust 2DPCA for 100 experiment .
Werepeat the actionsusing n=20, 30, 40,...,100 .

The computation time of two methods is presented by
Figure 9. The graphic pattern of The MVV robust 2DPCA is
more stable than the MVV robust PCA graph. The difference
computation time of two methods is more biger for larger of
datasize.

260

200 + The MVV Robust PCA 2 4

150 | - |

100 b -

Computation Time (Second)

S0 -

2 " . , , . . . .
20 30 40 50 60 70 80 a0 100 110
Number of Matrix

Fig. 10 The Computation Time of MVV robust 2DPCA and MVV
robust PCA

VI. THE CONSISTENCY ESTIMATOR

The section discusses the consistency of estimator of the
MVV robust PCA and the MVV robust 2DPCA. The
Estimation is the process by which sample data are used to
indicate the value of an unknown quantity in a population. An
estimator is any quantity calculated from the sample data
which is used to approximate the unknown parameters. The
one desirable property of estimator is the value of an
estimator is closed to the value of the true parameter. An
estimator for a parameter is consistent if the estimator
converges in probability to the true value of the parameter,
Kendal and Stuart [11]. Consider an estimatort,, computed

from a sample of n values, will be said to be a consistent
estimator if thereissome N  suchthat the probability that

t,-6<e 5)
is greater than (1-7)for aln>N. In the notation of the
probability theory,

P{lt,-6| <} >1-n
for any positive € and 7 however small.

The sample estimator should have a high probability of
being close to the population value for large sample size. The
formulate (5) means that the distributions of the estimators
become more and more concentrated near the true value of the

n>N (6)
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parameter being estimated, so that the probabdjftythe and Recognition”)EEE Transaction on Pattern Analysis and machine
. : : : Intelligence,Vol 26, No 1, pp 131 -137, 2004

eSt!mator being arbitrarily close % converges to one.The [71 M.A Dijauhari,“Improved Monitoring of Multivariate Bcess

estimator of MVV robust PCA and the MVV robust 2D#C Variability”, Journal of Quality TechnologyNo 37, pp 32-39, 2005

are consistent estmator. To prove the starementdavéwvo [8] M. Hubert, P.J. Rousseeuyv, _K. vanden Branden, RCC)BPa New

experiments with 100 replication of an each experimFor Approach to Robust Principal Component Analysisloumal.

Technometrics47, pp 64-79, 2003

the first experiment, we generate the multivariatrmal [91 P.J. Rousseeuw and A.M. Leroy, “Robust Regressiod @utlier
N, ([I,Z) ,p=25, and 7=0; Y =1,and n=200. The Detection”, John Wiley, New York, 1987 _

. . o [10] P.J. Rousseeuw and K.van Driessen, “A Fast Algoritfor The
contaminant data present in a data set beginningah® Minimum  Covariance Determinant Estimator” Journal.
gradually to be higher; i.e. 2%; 3%; 4% and soilbd® %. Technometrics4l, pp 212-223, 1999

[11] S.M Kendall and A. Stuart, “The Advanced Theory Sfatistics”,

The following figure is the result of simulationpsriment CharlesGriffin & Co Ltd, Vol. 2, Fourth EditionLondon, 1979

for consistency. The figure illustrates that thehability of

MVV robust PCA and MVV robust 2DPCA converge t®.0.
Moreover, we see that the line of robust PCA apph; the
blue line; is more stable than robust 2DPA apprpt@hgreen
line. It means that the MVV robust PCA is moresistent
against of contaminant.

Probability
2 8

02F  Red : Classics Approach
Green - MVV 2DPCA
01F Blue - MVV RPCA

1 2 3 4 9 10

5 3 7 8
Percentage of Contaminant

Fig. 11 The Comparison of Concistency of ClassitgV Robust
PCA and MVV Robust 2DPCA estimator

VIl. CONCLUSION

The MVV Robust PCA and MVV Robust 2DPCA can be
considered as measure for clustering data images.good
properties of robust can reduce the anomolous imagene
times coming from human error or different  seftin
instrument when the images are captured. The MPQA
is more efficient computation than the time of M\RoObust
PCA. The simulation experiments of consistent estiim
suggestions that the MVV Robust PCA is better perémce
of clustering than the MVV 2DPCA performance
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