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Abstract—Let G, B (}/, 5) denote the class of function
f(2), 7(0)=£"(0)~1=0 which satisfied Re e’ {af(z)+ fz/"(z)} > »
in the open unit disk D :{z el :|z| < 1} for some aell (a ;tO),

pell and yell (0<y<a) where |§|<7z and acosé—y>0. In

this paper, we determine some extremal properties including
distortion theorem and argument of f '( z) .
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I. InTRODUCTION

E denote G, ﬂ(y,é‘) the class of normalized analytic
function f* in the open unit disk, D:{z el :|z| <1}

where
flz)=z+ Zanz"
n=2
satisfying  Ree’® {qf’(z)+ Bef"(z)}>y, ze D for some

aell (aiO), pell and yell (0£y<a).

Many of the subclasses of G, 4 (}/, 5) have been studied
by some other researchers as [1] for G, 4 (7,0) of some
aeD,ﬂeD(ﬂ;ﬁO)and 76D(0£7<0¢), [2] for
Gip (7/,0) where a >0,8<1, [3] for G, (y,O), [4] for
Gy, (0,0), [5] for leo(y,d) where |§|< 7 and cosé -y >0,

[6] for Gy (0,5) where || <§ and [7] for G, (0,0).
There is a relationship of the class P in the form of

p(z):1+2cnz” with the extremal information of each
n=1
selected classes. Writing
i5 ’ " . .
AL ) e

clearly f €G, 4(7,8) if pe P, the class of functions with

positive real parts.
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We make use the result of representation theorem

(e)= ‘j l[_ew[em‘ —zl]z—(zLi(SA)}log(l—xz) )

a nf+a

where 4 = (a coso — }/) given by [8] in order to determine the
distortion theorem and argument of f’(z) for this class of

function.

II. EXTREMAL PROPERTIES
We begin by finding the radius and centre of G, 4 (7/, 5)
that will be used for later results.

Theorem 3.1 Let f(z)e Gaﬁ(y,é'). Then f’(z) maps |z| <r

into disc D, with centre and radius

—id
_e,,g[e,,-(; _Q} 2e70AM | 24Mr

(04 1-#2 1—#2

1
where A=acosé—y, M = respectively.
n

+a
Proof. 1If a and b are complex numbers with |b|<1 and if
0<r<1, the range of the function (1+arw)/(1+brw) where

|w| <1 is a disc with center and radius respectively.

1—abr?

1—|b|2r2

|a—b|r
1—|b|2r2

By taking a = 1_3e"5[ei‘S —2—7]xr and b =xr where |x| =1,
a

we see that maps |z| <r onto D, . By convexity, any linear

combination of functions of this form also maps D onto D, .
Since for some probability measure y, we have

1+ Be™™ (eii‘s - 2—}/]xz

1—xz

B
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— . . that gives ;
1+ Be ™ [e_”; —27/sz
1) d

B
k (l—xz)
x|=1

2 AM, 2AMcos§—(1—r2{2cosz5—1—2—70056)
- 2r <Re f'(z)- > =
1-r 1-r
2 nﬂe_[(g - nﬂe‘zw +a
where B =-<& , 50, the result follows. 2AMr
nf+a S 3
1-r
and
Corollary 3.11f f(z)e Gy p (7,5) then
2AM) Lol s 2 2e70AM | 24M)
o o 2] ] 2
1+Bef”;[ef”s——}/jz 1-r a 1-r 1-r
f’(z) <B @ zeD .
-z ’ that gives
- 2A[sin 5[1\4 - ij + r[M + Mj]

The simple geometry of a circle enables us to deduce from ad d <Im f'(z) <
Theorem 3.2, upper and lower bounds for 1-r? '
Re [’ I d ' h

/() mf (=) |7'(2) andwref)when (sinof L-aa o[ -2
1(2)=G, 4(7.6). «

1-r?
Theorem 3.2 If f(z) €G,p (7, 5), then

1+B+r*(24R—1)-2AMr

2
. A+ . A+
Since cosd = Y and siné = 1—( Y
<Ref'( )<1+B+r2(2AR71)+2AMr a
S Re zZ)s
1-72 1-72

, We can write

a J

the inequalities in this form
24(A+y)(Ma -1

where B = ( 7)2( a-l) and R:(AJ;}/) , and

a

1+2A(A+y{M“_1j+r2(2A(A”)—1)
a _24Mr oo a o 24AMr
<Ref'(z)~
1-r2
A({M— +1 M

) o)

and

2
where T = |1 —(ﬂ

2
2 r 1—[ﬂj
A+y 1
} and all bounds are sharp for any -2 1_[ J ( - J+r M+
a
extreme point f(z) of Ga,p(7>5)~

5 <Im/(z)
1-r
Proof. By Theorem 3.1, we can write
A+y ’
_ P 2 | 7|1 o
) s s 2y 27 AM || 24Mr 2 17[—” j (77Mj+ M-
So that 1—2
2AM) s s 27) 2e70AM | 24M) 24(A+y)(Ma -1
:SRC f'(Z)erlJ(elé __7]_ . (S 2r Letting B= ( 7)( “ ), R= (AH/) and
I-r a 1-r l1-r a? a’
A 2
T= 1_[Jj , we obtain the above inequalities as
o

required. It is clear that each inequality is sharp for some z on
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|z| =r when fis an extreme point.

Our next result is to obtain a distortion theorem for

f(2)€ G, 4(r.6).

Theorem 3.3 If then

e < e} + 225

flz)e Ga,ﬁ(755),

where

C(r)—[ Ly, _4AM {AMa
a all—r

3
sl o

Proof. Let
-is
()= —e [e—ib‘ _ Zj + ZE_AZM 3)
a 1-r
and from (1), we have
. 2AM;
|f (z)—l"(r] < l—rzr
so that
2AM 2AM
()P ()| + H; =C(r)+ H;

as required.

If 20, then f' is non-zero throughout D and has
continuous argument whereas if y <0 and f, is any extreme
function of Ga,p( ,5), then at some points in D, f; has a
zero, thus, there is no argument. We next obtain bounds for
arg f'(z) when f(z)e G, 4(y.6) with restricted value of ||
for the case of y <0. Furthermore, we will use the following
property for argument: for given J in [— 7r,7r] and as x varies

in some interval [O,C], so that e +x #0, &5 (x) is continuous

argument of ¢’” +x# 0 for which &5 (0) =9 . We have

tan ™! (%j x+cosd >0
oSO+ x
#s(x)= ﬁ+tanl(%j X+c0sS <0
oSO+ x
% x+coso=0

when 0<d <7 and —7<6<0 for 6=0, 7.

Theorem 3.4 Let and

f(z)e Ga’ﬁ(y,é') put

x(,,)zz( AA/[2 —ﬁj (OSrSI). Let
1-r a

1 720

ro = -
0 \/1_4aAM(aAM A+y) , <0

(4A}/—a2)

Then, for 0< |z| =r <y, and for a suitable determination of

argument
2AMr

1-r? (r)
where ¢§(x) is defined on [O,x(ro)) as above and C(r) is
given by (2). The result is sharp.

|argf’(z)+ o—¢s (x(r)] <sin”!

Proof. To make sure that f ’(z);t 0, we restrict the values of
|z| =r by the condition
2AM s 2y
_| e _ 2L
1-72 (4

Squaring both sides, we have

2AMr

1-#2

>

4
AAM” +1+ aAmM [Z}/—ctoséj—é‘y(cosa_aj >0
(l—rz) (l—rz) a a

and since 4 = @ cosd — y , hence

14 A1 (AM—(A_y)j—4Ay>O
=) « ) o

a
The inequality holds for all r in [0,1) if y=0and for

0<rs l_4aAM(aAM—A+y)
(4A7/—a2)

the restricted on ‘z‘ in the statement of the theorem.

if y<0. This establishes

From (1) then with F(r) given by (3) and C(r):|l"(r], we

have

C(r)=(1+4A2A2/’( M _lj+4A(a00§§—A)[lMa —IJ]Z

1-r 1-72 « o

and deduced to [arg f (z)-arg F(r) <sin™ " 2

also
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AM A

Put x(r) = 2(1 5 ——] , then argT(r) = =6 + g5 (x(r)) .
-7 a

We obtain another theorem that replaced arg f' '(z) with

restricted range of |z| as arg(f ’(z)+ k) for some real number

k that satisfied f'(z)+k =0 for ze Dand f € G, 4(y.5). By

taking |0]# /2 as any choice of k with kcosd+y >0 will

ensure that above conditions are fulfilled and this is important
for the following result to be valid. In the following theorem,
for a given J e [— 7z,7z] and as x varies in same interval [O,C),

so that (k + l)eid +x#0, 1//5(5) is the continuous argument of

(k + l)ei‘s +x for which w (0) is principal.

Theorem 3.5 For |o|%7/2, f(z)eG,;(r.0) and put

x(r)zz(lAM2 —éJ (0<r<1). Let kacoss+y >0 where k
o

is a real number. Then, for l//(g(x) defined on [0,00),

larg(f"(2)+ &)+ 6 -y 5(x(r)) <sin”" 2/;Mr where
1-r 1(r)
Cl(r):{4AT(kcos§+£(T+1)+1j+(k+1)2} r-M__1
a a 1-r° «a

Proof. Let |6|# /2 and k satisfied kacoss+y>0. Using

(1), we have

(/) 0) () 1) < 2AM7°

1-r
where
r(r)= e*iﬁ[e—m 27)+ 2e70AM _ ZAE_M(M - ; +ij
“ 1-r* 1-72
Hence
|arg(f'(z)+ k)—arg(D(r)+ k) < sin™ 24Mr W

where

1

2 2

(k+1)2+4A2(7M —lj +kcosd +coso
-7 «

44 M 1 M 1
+ 2 ol 2,
1-r \l-r « 1-r° «a
M 1

——, we have
1-r? «a

o (r) = ‘F(r) + k‘ =

Let 7=

Cl(r)—{4AT(kcos§+2(T+1)+ZJJr(kH)zF

Now

arg(C(r)+ k)= arg(ei‘s (M—A/g Lo ke[ﬁn

1-r «
-5+ arg[(k 1)’ + 2A(1 it/[rz _éD
=-5+ l//g(x(r))

and with (4) this completes the proof.
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