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Vibration of Functionally Graded Cylindrical
Shells under Effects Free-free and Clamed-

clamped Boundary Conditions
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Abstract—In the present work, study of the vibration of thin
cylindrical shells made of a functionally gradient material (FGM)
composed of stainless steel and nickel is presented. Material
properties are graded in the thickness direction of the shell according
to volume fraction power law distribution. The objective is to study
the natural frequencies, the influence of constituent volume fractions
and the effects of boundary conditions on the natural frequencies of
the FG cylindrical shell. The study is carried out using third order
shear deformation shell theory. The analysis is carried out using
Hamilton’s principle. The governing equations of motion of FG
cylindrical shells are derived based on shear deformation theory.
Results are presented on the frequency characteristics, influence of
constituent volume fractions and the effects of free-free and clamped-
clamped boundary conditions.
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principle.

. INTRODUCTION

YLINDRICAL shells have found many applications in

the industry. They are often used as load bearing
structures for aircrafts, ships and buildings. Understanding of
vibration behavior of cylindrical shells is an important aspect
for the successful applications of cylindrical shells.
Researches on free vibrations of cylindrical shells have been
carried out extensively [1-5]. Recently, the present authors
presented studies on the influence of boundary conditions on
the frequencies of a multi-layered cylindrical shell [6]. In all
the above works, different thin shell theories based on Love-
hypothesis were used. Vibration of cylindrical shells with ring
support is considered by Loy and Lam [7]. The concept of
functionally graded materials (FGMs) was first introduced in
1984 by a group of materials scientists in Japan [8-9] as a

means of preparing thermal barrier materials. Since then,
FGMs have attracted much interest as heat-shielding
materials. FGMs are made by combining different materials
using power metallurgy methods [10]. They possess variations

* M.R.Isvandzibaei is PhD Student in Mechanical Engineering and Faculty
Member Islamic Azad University, Andimeshk Branch, Iran.

(corresponding author to provide phone: +98 916 344 2982; e-mail:
esvandzebaei@yahoo.com).
AliJahani, Islamic Azad University, Qom Branch, Iran. E-mail:
(ali_jahani60@yahoo.com).

in constituent volume fractions that lead to continuous change
in the composition, microstructure, porosity, etc., resulting in
gradients in the mechanical and thermal properties [11-12].
Vibration study of FGM shell structures is important. In this
paper a study on the vibration of FG cylindrical shells is
presented. The FGMs considered are composed of stainless
steel and nickel where the volume fractions follow a power-
law distribution. The study is carried out based on third order
shear deformation shell theory. The analysis is carried out
using Hamilton’s principle. Studies are carried out for
cylindrical shells with free-free (F-F) and clamped-clamped
(C-C) boundary conditions. Results are presented on the
frequency characteristics, influence of constituent volume
fractions and the effects of free-free boundary conditions.

Il. FUNCTIONALLY GRADED MATERIALS

For the cylindrical shell made of FGM the material
properties such as the modulus of elasticity E, Poisson
ratiov and the mass density o are assumed to be functions of
the volume fraction of the constituent materials when the
coordinate axis across the shell thickness is denoted by z and
measured from the shell’s middle plane. The functional
relationships between E ,v and L with Z for a stainless

steel and nickel FGM shell are assumed as [13].
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The strain-displacement relationships for a thin shell [14].
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Fig. 1 Geometry of a generic shell
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where A and A, are the fundamental form parameters or Lame
parameters,U;, U, and U; are the displacement at any point
(oq.ay,03), Ry and Ry are the radius of curvature related to

04,05 and g respectively. The third- order theory of Reddy

used in the present study is based on the following
displacement field:
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These equations can be reduced by satisfying the stress-free
conditions on the top and bottom faces of the laminates, which

are equivalent to ¢ ,=c,,=0at 7 — J_rh Thus,
2
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Wherec1 =i2. Substituting Eq. (12) into nonlinear strain-
3h
displacement relation (4) - (9), it can be obtained for the third-
order theory of Reddy
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Where (%, »°) are the membranes strains and (k,k’,»?,y°) are
the bending strains, known as the curvatures.
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I1l. FORMULATION

Consider a cylindrical shell as shown in Fig. 2, where R is
the radius, L the length and h the thickness of the shell. The
reference surface is chosen to be the middle surface of the
cylindrical shell where an orthogonal coordinate system
X, 8, 7 is fixed. The displacements of the shell with reference
this coordinate system are denoted byU;,U, and Uj in

the X,@ and Z directions, respectively.

Fig. 2: Geometry of a cylindrical shell

For a thin cylindrical shell, the stress -strain relationship are
defined as
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For a isotropic cylindrical shell the reduced stiffness Qij(i ,
j=1, 2 and 6) are defined as
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o - 0y, = 22)
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where E is the Young's modulus and v is Poisson's ratio.
Defining

B0 6 F G, Hj[=fv22Qj{1, 0%, &08',08',08 08| g (24)
where Qij are functions of z for functionally gradient
materials. Here A; denote the extensional stiffness, Dy; the
bending stiffness,Bij the bending-extensional coupling
stiffness and Eij,Fij,
coupling, and higher-order stiffness. For a thin cylindrical
shell the force and moment results are defined as

Gij,Hij are the extensional, bending,
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IV. THE EQUATIONS OF MOTION FOR VIBRATION OF A
GENERIC SHELL

The equations of motion for vibration of a generic shell can
be derived by using Hamilton's principle which is described

by

a‘jt‘:(n—K)dt:o , H=U-V (28)

Where K,IT,U and Vv are the total Kinetic, potential, strain

and loading energies, t, and 1, are arbitrary time. The kinetic,

strain and loading energies of a cylindrical shell can be written
as:

1 . . .
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The infinitesimal volume is given by
dv=AAdada,de, (32)

with the use of Egs. (11)-(20) and substituting into Eq. (28),
we get the equations of motions a generic shell.
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For Egs. (33) — (37) are defining as
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V. EQUATIONS OF MOTION FOR VIBRATION OF CYLINDRICAL
SHELL

The curvilinear coordinates and fundamental from
parameters for a cylindrical shell are:
1
R, = 8= 0A, =aA =0a, = a,a, =0a, =X (39)

Substituting relationship (39) into Egs. (33)-(37) the equations
of motions for vibration of cylindrical shell with the third-
order theory of Reddy are converted to
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The displacement fields for a FG cylindrical shell and the
displacement fields which satisfy these boundary conditions
can be written as

U =A 0¢(x)
OX

u, = B ¢(x) sin(né) cos(wt)

=C ¢ (x)cos(nd) cos(wt)

¢_Da¢(>

#, = E4(x) sin(n@)cos(wt)

cos(nd) cos(mt)

(45)

cos(n@) cos(wt)

where, A,B,C ,D and E are the constants denoting the
amplitudes of the vibrations in the x,0 and z
directions, ¢, and @, are the displacement fields for higher
order deformation theories for a cylindrical shell, ¢(x) is the

axial function that satisfies the geometric boundary
conditions. The axial function ¢(x)is chosen as the beam

function as

The axial function ¢ (x) is chosen as the beam function as

¢(x)=%cos@+yzcos@)—gm(%sinh@()w‘tsin(ﬂ%)) (46)
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The geometric boundary conditions for free boundary
conditions can be expressed mathematically in terms of

#(x)as:

Clamped boundary condition

#(x)=9¢'(x)=0 (47)
Free boundary condition
¢"(0)=¢"(L)=0 (48)

Substituting Eq. (45) into Eqgs. (40) - (44) for third order
theory we can be expressed

det(C; -M; 0?)=0 (49)

Expanding this determinant, a polynomial in even powers
of @ is obtained

B0 + Bo® + Broo® + Bra® + Bua® + P = (50)

where g, (i =0.1,2,3,4,5) are some constants. Eq. (50) is solved

five positive and five negative roots are obtained. The five
positive roots obtained are the natural angular frequencies of
the cylindrical shell based third-order theory. The smallest of
the five roots is the natural angular frequency studied in the
present study. The FGM cylindrical shell is composed of
Nickel at its inner surface and Stainless steel at its outer
surface. The material properties for stainless steel and nickel,
calculated at T = 300K , are presented in table 1.

TABLE | PROPERTIES OF MATERIALS

Stainless Steel Nickel
E Vv 0 E Vv Yo

Coefficients

Po 201.04X10° 0.3262 8166 223.95X10° 0.3100 8900

Py 0 0 0 0 0 0
P, 3.079X10*-2002X10* 0 -2794X10* 0 0
P, -6534X107 3.797X107 0  -3.998X10° 0 0
Pg O 0 0 0 0 0

2.07788 X 10" 0.317756 8166  2.05098 X 10'* 0.3100 8900

Where P ,P,,P,P, and P, are the coefficients of
temperature T (K) expressed in Kelvin and are unique to the

constituent materials. The material properties P of FGMs are
a function of the material properties and volume fractions of
the constituent material.

VI. RESULTS AND DISCUSSION

In this paper, studies are presented for vibration of FG
cylindrical shell. The boundary conditions, free-free (F-F) is
considered in the study. Natural frequencies of the FG
cylindrical shell for this boundary conditions is computed and
plotted in Fig. 3. For this boundary conditions the frequency
first decreases and then increases as the circumferential wave
number n increases.

Natural frequency (Hz)
N
ol
L

0 \ \ \ \ \ \
0 2 4 6 8 10 12

Circumferential wave number (n)

Fig. 3 Natural frequencies FG cylindrical shell associated with ~ F-
F boundary conditions. (m=1, h/R=0.002, L/R=20)
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Fig. 4 Natural frequencies FG cylindrical shell associated with  C-
C boundary conditions. (m=1, h/R=0.002, L/R=20).

For simplicity, we actually vary the value of power law
exponent whenever we need to change the volume fraction.
Varying the value of power law exponent N of the FG
cylindrical shell, natural frequencies are computed for simply
supported-simply supported boundary conditions. Results are
also computed for pure stainless steel and pure nickel shells.
All these results are plotted in Fig. 5.
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Fig. 5 Natural frequencies FG cylindrical shell associated with
various power law exponent for F-F boundary condition.

VII. CONCLUSIONS

A study on the free vibration of functionally graded (FG)
cylindrical shell composed of stainless steel and nickel has
been presented. Material properties are graded in the thickness
direction of the shell according to volume fraction power law
distribution. The study is carried out using third order shear
deformation shell theory. The analysis is carried out using
Hamilton’s principle. Studies are carried out for cylindrical
shells with free-free (F-F) boundary conditions. The study
showed that in this boundary conditions the frequency first
decreases and then increases as the circumferential wave
number n increases. The minimum frequency occurs in
between n equals 2 and 3 for this boundary conditions. The
results showed that one could easily vary the natural
frequency of the FG cylindrical shell by varying the volume
fraction.
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