
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1203

Abstract—This paper presents a comparative study of Ant
Colony and Genetic Algorithms for VLSI circuit bi-partitioning. Ant
colony optimization is an optimization method based on behaviour of
social insects [27] whereas Genetic algorithm is an evolutionary
optimization technique based on Darwinian Theory of natural
evolution and its concept of survival of the fittest [19]. Both the
methods are stochastic in nature and have been successfully applied
to solve many Non Polynomial hard problems. Results obtained
show that Genetic algorithms out perform Ant Colony optimization
technique when tested on the VLSI circuit bi-partitioning problem.

Keywords—Partitioning, Genetic Algorithm, Ant Colony
Optimization, Non Polynomial Hard, Netlist, Mutation.

I. INTRODUCTION

HE advancement in VLSI semiconductor technology has
led to a phenomenal development in Electronics Industry,

leading to more chip complexity and higher integration.
However as the chip density increases numerous issues like
ease of design, testing, increased delay, interconnect area
optimization arise which need to be handled at the design
stage. Improved physical design tools are necessary to handle
these issues. Circuit net list partitioning is an important step in
VLSI physical design. This involves the breakup of a circuit
into smaller parts for ease of design, layout and testability.
The main objectives of circuit partitioning can include
minimization of number of interconnections between the
partitions, minimization of delay between partitions, power
consumption optimization and Area optimization [12].

In the present work the versatility of the techniques of Ant
colony and Genetic algorithms in solving the bi-partitioning
problem is evaluated. Multiple partitions can be obtained by
recursively applying the Method on obtained partitions.
Recursive bi-partitioning has been rated better than direct
multiway partitioning [15].

Efficient easily applied algorithms for optimal clustering to
minimize delay in digital networks have been developed by
Lawler et al.[1]. Kernighan and Lin [2] propose a heuristic for
two way partitioning which is the first interactive algorithm
based on swapping of vertices. A more practical model based

Sandeep Singh Gill is Asstt. Prof. (Deptt. of ECE) at Guru Nanak Dev
Engg. College, Ludhiana, Punjab, India. (e-mail: ssg270870@yahoo.co.in).

Rajeevan Chandel is working as Asstt. Prof. & Head of Deptt. of ECE at
National Institute of Technology, Hamirpur, India.

Ashwani Chandel is working as Asstt. Prof. (Deptt. of Electrical Engg.) at
National Institute of Technology, Hamirpur, India.

on hyper graphs is proposed, but was inefficient due to time
complexity [3]. A new data structure bucket list for cell gains
and proposed cell move with better time complexity is
proposed [4]. Krishnamurthy [5] modified [4] to introduce the
concept of look ahead to choose the cell move.

Various multiway partitioning algorithms are proposed by
modifying [4] [5] and developing appropriate data structures
[6], top down clustering and iterative primal-dual approach
[7], dual intersection graph representation and ratio cut metric
[8]. Ariebi and Vanneli [9] describe the application of Tabu
search to circuit partitioning problem.

A Genetic Algorithm based evolutionary approach for
circuit partitioning giving a significant improvement in result
quality is proposed [10]. Comparative evaluation of Genetic
algorithm and Simulated annealing is done with Genetic
algorithm giving better results [11]. A new hyper graph
partitioning algorithm hMetis is proposed, giving faster and
better cutsize [13].

Areibi [14] discusses the implementation issues for
applying memetic algorithm for VLSI physical design. A
multi objective hMetis partitioning for simultaneous cutsize
and circuit delay minimization is proposed [16].

Various algorithms using different optimization techniques
are developed for SoC and hardware software partitioning
[17] [18].

Banos et al. [20] give a parallel evolutionary algorithm
where parallelism improves the solutions found by
corresponding sequential algorithm. Sait et al. [21] prepare a
new heuristic called PowerFM which modifies FM algorithm
and also considers minimization of power consumption.

Kolar et al. [22] obtain good results by using simulated
annealing for two way partitioning of a circuit. Ghafari et al.
[24] focus on minimizing the dynamic and sub threshold
leakage power in CMOS circuits. An algorithm for application
partitioning on programmable platforms using Ant Colony
optimization is proposed [26]. Ariebi and Ali [28] develop an
embedded computing system based on FPGA chip to
accelerate the FM algorithm for circuit partitioning with
excellent results. Comparative study of Evolutionary model
and clustering methods in circuit partitioning is given [29].

From the review of literature it is found that various
researchers have applied numerous optimization techniques
for the partitioning optimization problem with mixed results.

In the present work two excellent optimization methods of
Ant Colony and Genetic algorithms have been applied to the
above problem.

Comparative study of Ant Colony and Genetic
Algorithms for VLSI circuit partitioning

Sandeep Singh Gill, Rajeevan Chandel, and Ashwani Chandel

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1204

II. PROBLEM FORMULATION

Problem of VLSI circuit partitioning is non polynomial
hard and cannot be effectively solved by deterministic
algorithms. Ant colony and Genetic algorithms belong to
probabilistic and iterative class of algorithm and are stochastic
in nature. Therefore they can be effectively applied for VLSI
circuit partitioning.

The problem involves dividing the circuit net list into two
subsets and some of the connections (edges) are also cut. The
number of edges belonging to two different partitions is the
cost of a partition. The objective function captures the
interconnection information and partitioning solution is
optimized with respect to interconnection between the
partitions with the constraint of forming balanced partitions.

The mathematical representation of the objective function is
given as

Minimize the cost function as shown in eq (1) below:

)(
1 1

jiC
k

i

k

j
ijI (1)

Where i, j are the vertices of an edge
C = cost of cut
Iij = cost of an edge.
As the problem involves bi-partitioning of a circuit so

equality condition must be satisfied as eq (2):
k

j
j

k

i
i nm

00

(2)

Where mi and nj are nodes in the two partitions.

III. SOLUTION METHODOLOGY: ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is a multi agent approach
that simulates the foraging behavior of ants for solving
difficult combinatorial optimization problems. Ants are social
insects whose behavior is directed more towards the survival
of colony as a whole than that of a single individual of the
colony. An important and interesting behavior of an ant
colony is its indirect co-operative foraging process. While
walking from the food sources to the nest and vice versa, ants
deposit a substance, called pheromone trail. Ants can smell
pheromone; When choosing their way they tend to choose,
with high probability, paths marked by strong pheromone
concentration (shorter path). Also, other ants can used
pheromone to find the location of food sources found by their
nest mates. Therefore, ACO simulates the optimization of ant
foraging behaviour [27].

 Mathematical Formulation/Algorithm for circuit
partitioning using ACO:

a) Take file as input and convert it into the matrix form.
b) Total ant or nodes equal to Ni Where i varies from 1 to

n.
c) Now divide the circuit into two parts.

Partition Pj and Pk

i. Where j varies from1 to n1 and k varies from (n1+1)
to n.
ii. The no. of nodes in both partition should be equal i.e.

Balance criteria as shown in eq (3) and eq (4):

PP kj
(3)

 and

PPN kji
(4)

d) Calculate the gain(g) of the circuit using Internal cost
(I) and External cost (E) as follows:

nnnncnncI :1,:1:1,:1 1111
(5)

1111 :1,:1:1,:1 nnncnnncE (6)

IEg (7)

e) Start the movement of ants and initialize the parameters.
f) Take the first ant suppose from Pj and Move the ant

based on the following probability:

Pvv pc
pgvp

min
)((8)

Where vc is the number of vertices adjacent to v, g is the
connectivity weight or gain and vp is the amount of
pheromone of the animat’s species on vertex v, p is the
pheromone weight and Pmin is a fixed amount added to
prevent any probabilities from being zero.

a) Update the pheromone value of the nodes by using
following formula

 valuePheromone (9)
Where = Pheromone value=Previous
pheromone value

i. Increment in pheromone value

e xxy)((10)

ii. Forage Pheromone X-Scale=X = 0.4
iii. Forage Pheromone Y-Scale=Y = 1.5

Graph of above function shown in Fig. 1.
b) Evaporate the pheromone value based on the following

formula:

e r))((* valuePheromone (11)

Where = Pheromone value = Previous
pheromone value

 Evaporation rate r =0.025
Graph of pheromone evaporation is shown in Fig.
2.

c) Store the node in tour.

d) Note down the cutset

e) Repeat the above steps for different nodes and note down
the cut set value.

f) Store the cut set values for different partition in a
variable and find the minimum cut set value.

Repeat the above steps until stopping criterion is met.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1205

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Pheromone Updation

iteration

ph
er

om
on

e

Fig. 1 Update Pheromone value after Every Movement

1 2 3 4 5 6 7 8 9 10
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5
Pheromone Evaporation

iteration

ph
er

om
on

e

Fig. 2 Evaporation of Pheromone value

Genetic algorithms [23] are evolutionary computational
models based on Charles Darwin’s theory of natural evolution
based on the concept of the survival of the fittest. Darwin
observed that, as variations are introduced into a population
with each new generation, the less-fit individuals tend to die
off in the competition for food and this survival of fittest
principle leads to improvements in species. The concept of
natural selection was used to explain how species have been
able to adapt to changing environments and how,
consequently, species that are very similar in adaptivity may
have evolved.

All genetic algorithms work on a population or a collection
of several alternate solutions to the given problem. Each
individual in the population is called a string or chromosome,
in analogy to chromosomes in natural systems. The population
size determines the amount of information stored by the GA.
The GA population is evolved over a number of generations.
All information required for the creation of appearance and
behavioural feature of a living organism is contained in its
chromosome.

The proposed algorithm follows the following steps –
Net list processing Circuit information is accepted in the

form of circuit netlist, in accordance with ISPD 98 benchmark
suite [30]. Netlist processing is done so as to convert the
circuit netlist in the form of chromosome.

BFS Algorithm: The information of interconnection between
the components in the netlist is converted in form of
adjacency matrix. This Adjacency matrix information is then
used to traverse the circuit in BFS algorithm so that the
connected components remain clustered together as far as
possible.
Initial population: Once the BFS order of components is
obtained it is processed to form the initial solution for GA by
converting it into 32-bit chromosome. The 32-bit chromosome
contains integer values, with each integer value corresponding
to each element of chromosome encoded to represent the
partition number assigned and number of elements clustered
to form single chromosome element.

In the Fig. 4, Value of jth cell of chromosome is n1n2,
where, n1 indicates the partition number assigned and n2
indicates the number of components clustered.

Fig. 3 Flow Chart for Circuit Partitioning Using ACO: Genetic
Algorithms (GA)

Fig. 4 32-bit Chromosome

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1206

Though other sorting data structure algorithm can be used
such as depth first search algorithm, spanning tree algorithm
etc, breadth first search algorithm has been found to capture
circuit information more effectively [19]. Using the initial
solution, random population is generated of the population
size specified by the user. For each individual of the
population, cost is computed. Objective function captures the
cost of number of interconnections cut between the partitions.

Fitness Evaluation: Using the cost computed, each
individual is evaluated for its fitness function. Based on
Fitness values individuals are randomly selected using roulette
wheel selection for crossover operation.

Crossover: Each individual is considered for selection as
parent for crossover, with probability of selection proportional
to its fitness value. Flexibility is incorporated in crossover
operation with the user specifying the value for multipoint
crossover. Offsprings generated from crossover replace the
lowest fit individuals of the population if their fitness value is
higher else, no replacement is made in the original population.
In this algorithm, new offsprings replace the equivalent
number of worst solutions from previous population which
helps in survival of better solutions over several generations.

Mutation: After population replacement, mutation is
performed on the bits randomly with small probability of
mutation. Probability of mutation is very important, because
the number of bits to be mutated depends on this probability.
Mutation of bits is not similar to the traditional binary
mutation operator, which is simple inversion of any random
bits (depending on Probability of mutation), in the population.

Mutation changes the partition assigned to random number
of components, where number of components depends on the
probability of mutation. Even the partition assigned is
generated randomly. Generally low values of probability of
mutation are preferred so that population is not changed
drastically which is critical. The population with mutated bits
is then evaluated for fitness and again whole cycle of
selection, crossover, replacement and mutation is followed
and repeats for number of iterations of GA specified by the
user.

No stopping criteria is specified in the algorithm itself
because one of the advantages of evolutionary approach to
partitioning is availability of ready solution at any stage,
which if not globally optimal at least guarantees a good
solution. But if no improvement is seen in the fitness and
mincut results for consecutive 100 runs on a small scale
circuit, GA is terminated.

The proposed algorithm is shown as flowchart in Fig. 5.

IV. RESULTS AND DISCUSSION

The performance of the ACO and GA algorithms in tested
on circuit partitioning instances (net lists) given on the
MARCO GSRC VLSI CAD Bookshelf website [30]. The
circuit net lists are in the ISPD 98 net list format. (.Net D
files). Table I shows the comparison of average results for
ACO and GA based partitioners on numerous net lists.

Fig. 5 Flowchart of the GA based partitioning algorithm

TABLE I
COMPARISON OF MINCUT RESULTS FOR GA AND ACO BASED PARTITIONERS

File Name Size No. of
Files

Mean
Cut by

GA
based

Partitio
-ner

Mean
Cut by
ACO
based

Partitio
-ner

Percent
age

Variati
on

Spp-N10 series 10 483 4.05 4.52 10.4%

Spp-N15 series 15 184 5.29 7.10 25.49%

Spp-N20 series 20 121 7.12 8.5 16.23%

Spp-N25 series 25 107 8.0 10.10 20.79%

Spp-N30 series 30 52 7.8 9.22 15.4%

Spp-N35 series 35 31 10.32 11.50 10.26%

Spp-N40 series 40 41 8.5 10.56 19.5%

Spp-N45 series 45 28 10.8 12.55 13.91%

Spp-N50 series 50 24 10.75 12.95 16.98%

Spp-N55 series 55 20 11.5 12.8 10.15%

Spp-N60 series 60 9 11.4 14.55 21.6%

Spp-N65 series 65 6 10.8 12.50 13.6%

The average results have been obtained on multiple number
of partitioning instance groups in each size range. The

Mutation of the population
with probability Pm

Initial Population
Generation

Fitness evaluation of the individuals
in the population

Select parents with highest fitness for
crossover via Roulette wheel selection

Crossover

Fitness Evaluation of the new
generated population

Netlist

Breadth First Search order
of components

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1207

partitioning instances have been generated by the top down
partitioning based placement process employed by the UCLA
Capo Placer.

As seen from Table I, average results obtained by GA based
partitioner are consistently better than these obtained by ACO
based partitioner for all partitioning instances over all size
ranges. Percentage improvement varies between 10.40 percent
to 25.49 percent with an average variation of 16.19 percent.

V. CONCLUSION

Genetic and Ant Colony algorithms are applied to VLSI
circuit partitioning problem. While both the algorithms have
been successfully applied to this Non polynomial hard
problem, GA’s outperform ACO by an average of 16.19
percent over all test instances.

The main problem of a pure genetic based partitioning
algorithm is that its run time increases quickly as the problem
size increases. In order to reduce the run-times, a fast
hybrid/memetic algorithm that employees local optimization
in every generation is worth evaluating. GA combined with
ACO for local search may give good solutions in less run
time.

REFERENCES

[1] Eugene L. Lawler, Karl N. Levitt, and James Turner, “Module
Clustering to minimize delay in Digital Networks”, IEEE Transactions
on Computers, Vol. C-18 , No.1, pp. 47-57,Jan, 1969.

[2] B.W. Kerhinghan, S. Lin, “An efficient heuristic procedure for
partitioning graphs”, Bell System Tech. Journal, Vol. 49, pp. 291 – 307,
Feb,1970.

[3] D.G. Schweikert and B.W. Kernighan, “A proper model for the
partitioning of electrical circuits,” Proc. ACM/IEEE Design Automation
Workshop, pp. 57-62, 1972.

[4] C.M. Fiduccia and Mattheyses, “A Linear time heuristic for improving
network partitions”, Proc. 19th IEEE Design and Automation
Conference, IEEE Press, Piscataway, NJ, USA , pp. 175-182, 1982..

[5] B. Krishnamurthy, “An improved min-cut algorithm for partitioning
VLSI circuits”, IEEE Trans. on Computers, Vol. C-33, May, 1989.

[6] L.A. Sanchis, “Multiple way network partitioning”, IEEE Trans. on
Computers, Vol. 38, No. 1, pp. 62-81 ,1989.

[7] Wei and Cheng, “Ratio-cut partitioning for hierarchical design”, IEEE
transc. on Computer Aided Design, pp. 911-921, July 1991.

[8] Jason Cong,L.Hagen, Andrew Kahng, “Net partitions yield better
module partitions” , 29th ACM/IEEE Design Automation Conference ,
Anaheim, CA, USA , pp. 47-52 ,1992.

[9] Shawki Areibi and Anthony Vannelli, “Circuit partitioning using a tabu
search approach”, IEEE International Symposium on Circuits and
Systems , Chicago, Illinois, pp. 1643-1646, March,1993.

[10] K.Shahookar and Mazumder “Genetic Multiway partitioning”, IEEE 8th
International Conference on VLSI Design, New Delhi, India, pp. 365-
369, 4-7 Jan 1995.

[11] James Cane, Theodre Manikas, “Genetic Algorithms vs Simulated
Annealing: A comparison of approaches for solving circuit partitioning
problem”, Technical report, University of Pittsburgh.

[12] S. M. Sait, and H. Youseff, “VLSI Physical Design Automation”,
McGraw Hill Publishers, New Jersey, 1995.

[13] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar,
“Multilevel Hypergraph Partitioning: Applications in VLSI Domain”,
IEEE 34th Design Automation Conference., Anaheim, California,
United States, ACM Press New York, NY, USA., pp 526-529,1997.

[14] S. Areibi, “Memetic Algorithms for VLSI Physical Design:
Implementation Issues”, Genetic and Evolutionary computation
Conference, San Fransisco, California, pp140-145, July, 2001.

[15] S. Areibi, “Recursive and flat partitioning for VLSI circuit design”, The
13th International Conference on Microelectronics, Rabat, Morocco,
pp.237-240, 2001.

[16] C. Ababei, S.Navaratnasothie, K. Bazargan and G. Karypis, “Multi-
objective Circuit partitioning for Cutsize and path-base delay
minimization”, IEEE International Conference on Computer aided
Design,2002.

[17] Maurizio Palesi,Tony Givargis, “Multi-Objective Design Space
Exploration Using Genetic Algorithms”, Proceedings of the 10th
International symposium on Hardware/software codesign, ACM Press,
Estes Park, Colorado , pp. 67-72 ,2002.

[18] Greg Stitt, Roman Lysecky, Frank Vahid, “Dynamic Hardware/Software
Partitioning: A First Approach” ACM/IEEE Design Automation
Conference 2003, Anaheim, California, USA,pp 250-255, June 2-6,
2003.

[19] P. Mazumder, E.M. Rudnik, “Genetic Algorithms for VLSI Design,
Layout and Test Automation”, Pearson Education, 2003.

[20] R. Banos, C. Gil, M.G. Montoya, and J. Ortega, “A Parallel evolutionary
algorithm for circuit partitioning”, Proceedings of the Eleventh
Euromicro conference on Parallel, Distributed, and network based
Processing, 2003.

[21] Sadiq M. Sait, Aiman H.El-Maleh, and Raslan H. Al-Abaji, “Enhancing
performance of iterative heuristics for VLSI net list partitioning”,
ICECS-2003, pp. 507-510, 2003.

[22] D. Kolar, J. Divokovic Puksec and Ivan Branica, “VLSI Circuit
partitioning using Simulated annealing Algorithm”, IEEE Melecon,
Dubrovnik, Croatia, May 12-15, 2004.

[23] D.E. Goldberg, “Genetic Algorithms in Search, Optimization and
Machine learning”, Pearson Education, 2004.

[24] P. Ghafari , E. Mirhard, M.Anis, S. Areibi and M. Elmary, “ A low
power partitioning methodology by maximizing sleep time and
minimizing cut nets”, IWSOC, Bauf, Alberta, Canada, pp. 368-371, July,
2005.

[25] Naveed Sherwani, “Algorithms for VLSI Physical Design and
Automation”, Third edition, Springer (India) Private Limited, New
Delhi, 2005

[26] G. Wang, W. Gang and R.Kastner, “Application Partitioning on
programmable platforms using Ant Colony Optimization”, Journal of
Embedded Computing, Vol.2, Issue 1, 2006.

[27] Marco Dorigo and Thomas Stutzle, “Ant Colony Optimization”, Prentice
Hall of India Private Limited, 2006.

[28] Shawki Areibi and Fujian Ali, “A Hardware/Software co-design
approach for VLSI circuit partitioning”, IEEE International Workshop
on SoC, Cairo, Egypt, pp.179-184, December, 2006.

[29] K.A. Sumitra Devi, N.P. Banashree and Annamma Abraham,
“Comparative Study of Evolutionary Model and Clustering Methods in
Circuit Partitioning Pertaining to VLSI Design”, Proceeding of World
Academy of Science, Engineering and Technology, April, 2007.

[30] http://www.gigascale.org/bookshelf

