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Abstract—The equations governing the flow of an electrically 
conducting, incompressible viscous fluid over an infinite flat plate in 
the presence of a magnetic field are investigated using the homotopy 
perturbation method (HPM) with Padé approximants (PA) and 4th

order Runge–Kutta method (4RKM). Approximate analytical and 
numerical solutions for the velocity field and heat transfer are 
obtained and compared with each other, showing excellent 
agreement. The effects of the magnetic parameter and Prandtl 
number on velocity field, shear stress, temperature and heat transfer 
are discussed as well.

Keywords—Electrically conducting elastico-viscous fluid; 
symmetry solution; Homotopy perturbation method; Padé 
approximation; 4th order Runge–Kutta; Maple.

I. INTRODUCTION

HE boundary layer flow of an electrically conducting, 
incompressible viscous fluid over a continuously flat plate 
is often encountered in many engineering and industrial 

processes such as polymer technology, aerodynamic extrusion 
of plastic sheets and so on. 

The problem of a fluctuating flow of a magneto-elastico-
viscous fluid along an infinite flat plate under the condition of 
very small elastic parameter was studied in [1–3]. This type of 
problems may be approximated to a problem of fluctuating 
flow of a magneto-viscous fluid in case of consideration a 
very small elastic parameter. Frater [2] pointed out that the 
solution for the velocity should tend to the Newtonian value 
when the elastic parameter vanishes. 

In this paper the flow of an electrically conducting, 
incompressible elastico-viscous fluid along a flat plate 
coinciding with the plane y=0 is considered, such that the 
flow is confined to the region y>0. The magnetic field is 
assumed to be normal to the plate on which the boundary 
layer is formed. The main purpose of this work is to 
investigate the effects of the magnetic field parameter and 
Prandtl number on the velocity and shear stress of the fluid 
analytically using the classical homotopy perturbation method 
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(HPM) with the enhancement of Padé approximants (PA) and 
using the developed HPM as well; and numerically using the 
well-known 4th order Runge–Kutta method (4RKM). 

The classical homotopy perturbation method, based on 
series approximation, is one among the newly developed 
analytical methods for strongly nonlinear problems and has 
been proven successful in solving a wide class of nonlinear 
differential equations [5–9]. The developed HPM can be 
achieved by introducing addition linear operator(s) with 
unknown parameter(s) that can be chosen suitably to fulfill 
certain desirable criteria and identified optimally [10–12]. 

In this paper, we are interested in applying the classical 
HPM with PA technique, developed HPM and 4RKM for 
obtaining analytical and numerical solutions of the boundary 
layer flow of an electrically conducting elastico-viscous fluid 
along an infinite flat plat with heat transfer in presence of a 
magnetic field normal to the plate. The comparison of the 
analytical solutions with the numerical solution has been made 
and excellent agreement noted.  

II.GOVERNING EQUATIONS

In terms of the stream function  the governing equations 
of a steady two-dimensional incompressible flow of an 
electrically conducting elastico-viscous fluid over a semi-
infinite flat plate coinciding with the plane y=0, such that the 
flow is confined to the region y>0 under the influence of a 
constant transverse applied magnetic field normal to the plate 
on which the boundary layer is formed are given in [2, 3]. The 
magnetic Reynolds number is assumed to be small and 
negligible in comparison to the applied magnetic filed. 

The governing equations describe fluid motion and 
temperature are given by 
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where M is the magnetic parameter, k is a small elastic 
parameter representing the non-Newtonian character of the 
fluid and Pr is the Prandtl number. 
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The boundary conditions of the problem are: 
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where T0 and 0  are constants. 
Because of being the elastic parameter k is small and may 

be neglected, the solution of the problem described by Eqs. (1) 
and (2) may be approximated to the solution of the Newtonian 
fluid described by the following equations:           
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under the same boundary conditions.   
This approximation gives excellent results in case of small 

values of k as we will see in next sections.

III. INVARIANT TRANSFORMATION

Using one-parametric group transformation included in 
PDEtools package of Maple software, the two-independent 
variables PDEs (5) and (6) will be transformed into ODEs in 
only one-independent similarity variable. 

A. The complete set of invariants 
The invariants set obtained by Maple 11 are:  
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where  is the similarity variable, F and  are invariants of the 
dependent variables  and T respectively and g is an arbitrary 
function. 

From the invariants set (7)–(10), it is clear that the 
invariants in Eq. (10) are the only which makes both of  and 
T a function in x and y. Therefore, we used Eq. (10) for doing 
the similarity transformation of PDEs (5) and (6).  

B. The ordinary differential equations invariant 
transformation 

Substituting Eq. (10) into PDEs (5) and (6) yields the 
following system of ODEs: 
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By examining invariants in Eq. (10) and boundary 
conditions (3) and (4), function g (x) should be equal to zero 
in order to make the left boundary point constant at y=0. 
Therefore, the suitable similarity invariants are: 
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where c is an arbitrary constant (left boundary point of the 
similarity boundary problem). Hence, the appropriate 
corresponding conditions are: 
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                      (15) 

It is obvious that Eq.(11) is the Blasius equation in case of 
M = 0 [4]. 

For convenience and comparison with results in [3], let 0 = 
T0 = 1, c=0 and =6. 

IV. ANALYTICAL SOLUTION USING THE CLASSICAL HPM WITH 
PA TECHNIQUE

Following the standard procedures of the HPM described 
in [5–9], the system (11) and (12) should be written in the 
classical homotopy form, 
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where 

0 0 0 0,  ,   and .U F V F U c F c V c c
One can now try to obtain a solution of system (21) and 

(22) in form of, 
2
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where Un and Vn, n=0, 1, 2, … are functions yet to be 
determined. 

Substituting Eqs. (18) and (19) into system (16) and (17), 
and arranging the coefficients of "p" powers yields: 
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with corresponding initial conditions, 

0 0 0 0 00 0,   0 0,   0 ,   0 1,   0 ,U U U V V

0,  at  0,    for  1,2,3,...,n n n n nU U U V V n  (21) 
where unknown initial values  and  can be calculated using 
the boundary conditions in Eq. (15) after obtaining  a closed 
form expression to the solution. 

We continued solving system (20) corresponding to initial 
conditions (21) for Un and Vn, n=0, 1, 2, … until n=6 and 

hence obtained a six-term approximations 
6
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It is known that Padé approximations (PA) [13] have the 
advantage of manipulating the polynomial approx-imation 
into a rational function of polynomials. This manipulation 
provides us with more information about the mathematical 
behavior of the solution. Besides that, a power series solution 
is not useful for large value of . Therefore, the combination 
of the series solution through HBM or any other series 
solution method with the Padé approximation provides an 
effective tool for handling boundary value problems on semi-
infinite domains. It is a known fact that Padé approximation 
converges on the entire real axis if the solution is free of 
singularities on the real axis. 
So, the more accurate analytical solutions will be obtained 
after applied PA [M/N] to both of F6 and 6 such that M+N
(highest power of  in the series solution). We have been 
applied PA [10/10] to obtain the analytical solution for the 
problem, say F6[10/10] and 6[10/10].

V.ANALYTICAL SOLUTION USING DEVELOPED HPM

According to the developed HPM [10–12], a homotopy of 
the system (11) and (12) may be written as 
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where a and b are unknown constants to be further identified.  
Using p as an expanding parameter as that in the classic 

perturbation method, we have 
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Solving the system (24) and setting p = 1, we obtain a 
first-order approximate solution which reads 
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There are many approaches for identification of the 
unknown parameters in the obtained solution. One of those 
methods is weighted residuals, especially the least squares 
method [10–12]. For the present problem, we set 
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to identify the unknown constants a and b,where RF and R  are 
the residuals 

1 ,
2F F FFR F M  and  1 Pr .
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VI. RESULTS AND DISCUSSION

With the analytical solution given by F6[10/10] and 6[10/10]
using the classical HPM with PA technique, approximate 
values of = F˝(0) and = (0) can be calculated using the 
conditions in Eq. (15). Some numerical results of  and  that 
obtained from F 6[10/10]( )= 0 and 6[10/10]( )=0 are
presented in Table I for different values of M and Pr when 

=6 and 0=1.   
With the first-order approximate solution arises in Eqs. 

(25) and (26), approximate values of unknown constants a and 
b are optimally identified using Eqs. (27) and (28) and 
presented in Table II for M=0 and M=0.5 at Pr=0.7. 

In order to obtain a numerical solution, we have solved the 
initial value problem of Eqs. (11) and (12) corresponding to 
conditions in Eq. (14) and the numerical values arise in Table 
I using the well-known 4RKM.  

Figs. 1(a), (b) and (c) show the variations of the fluid 
stream function, velocity and shear stress with . As shown in 
Figs. 1(a) and (b), the stream function F and fluid velocity F
decrease and come near to each other as the magnetic 
parameter M increases. In addition, Fig. 1(b) shows that the 
smaller the value of M, the faster it reaches the maximum 
value of F . From Fig. 1(c), it is clear that the behavior of the 
shear stress F˝ depends on the magnetic parameter and the 
distance. In case of M=0, the shear stress starts with the high 
value, and then decreases with increasing distance. Oppositely 
for M>0, the shear stress starts with a lower value, and then 
increases with the distance.  

Figs. 2(a) and (b) show the variations of the temperature 
and heat transfer with . As shown in Fig. 2(a), the 
temperature  increases with the increasing of M. For M=1,
the temperature almost linearly depends on . From Fig. 2(b), 
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it is clear that the heat transfer starts with a higher value for 
the lower values of M and then decreases. In addition, for the 
higher values of M, the behavior of the heat transfer with 
tends to be uniform and takes a horizontal shape. 

Figs. 3(a) and (d) illustrate the effect of Prandtl number Pr 
on the temperature and heat transfer at M=0. The results are 
obtained for Pr = 0.5, 1, 2 and 3. Form Fig. 3, it clear that the 
temperature and heat transfer rapid decrease as the Prandtl 
number increases. Moreover, the rapid decrease of  and –
becomes more obvious for larger values of Pr. 

To demonstrate the acceptability and accuracy of 
developed HPM results, even though we used only the first-
order approximate solution, the behaviors of the fluid stream 
function, velocity, temperature and heat transfer using the 
closed form solutions in Eqs. (30) and (31), with the values in 
Table II, are illustrated in Figs. 4(a), (b), (c) and (d) in a 
comparison with 4RKM results. 

It is obvious that the results of  and  obtained by the 
classical HPM with PA technique are used for obtaining the 

numerical solution using 4RKM by converting the boundary 
value problem to an initial value one. Moreover, the analytical 
solutions using the classical HPM with PA technique and 
developed HPM in great agree with the numerical solution 
using the 4th order Runge–Kutta method.      

The results obtained in this investigation, in case of the 
elastic parameter k=0, agree with that obtained in [3] in case 
of k=0.2. Hence, the problem of fluctuating flow of a 
magneto-elastico-viscous fluid over a semi-infinite flat plate 
under the condition of a very small elastic parameter k can be 
approximated to the problem of fluctuating flow of a 
magneto-viscous fluid, i.e. k=0. The present results of F for 
M=0 agree with that obtained in [4] as well. 

TABLE II: NUMERICAL VALUES OF A AND B FOR M=0 AND M=0.5 AT 
PR=0.7

M a b 
0.0 0.07060198460 –0.0  608015174  
0.5 –0.0  7567076914  –0.  02106461217  

TABLE I: NUMERICAL VALUES OF = F˝(0) AND = (0)FOR DIFFERENT VALUES OF M AND PR

M
Pr=0.5 Pr=0.7 Pr=1.0 Pr=2.0 Pr=3.0 

0.0 0.33465139 –0.26444536 –0.29502831 –0.33329657 –0.42496497 –0.49297215 
0.5 0.02846081 –0.18468413 –0.19143043 –0.20104155 –0.22873935 –0.25055399 
1.0 0.00571327 –0.17366347 –0.17639173 –0.18040127 –0.19294501 –0.20402326 

                                               
                                                                                              (a) 

         
                                               (b)                                                                                        (c) 

Fig. 1. Profiles of (a) stream function; (b) velocity and (c) shear stress using analytical results of F6[10/10]; F 6[10/10] and F 6[10/10] respectively 
and numerical results of 4RKM for various values of M at Pr=0.7 
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         (a)                                                                                                (b) 

Fig. 2. Profiles of (a) temperature and (b) heat transfer using analytical results of 6 [10/10] and – 6[10/10] respectively and numerical results of 
4RKM for various values of M at Pr=0.7 

      
          (a)                                                                                             (b) 

Fig. 3. Profiles of (a) temperature and (b) heat transfer using analytical results of 6 [10/10] and – 6[10/10] respectively and numerical results of 
4RKM for various values of Pr at M=0

         (a)                                                                                       (b) 

                                                             (c)                                                                                       (d) 

Fig. 4. Profiles of (a) stream function; (b) velocity; (c) temperature and (d) heat transfer using developed HPM analytical results and 4RKM 
numerical results for M=0 and M=0.5 at Pr=0.7 
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VII. CONCLUSION

The homotopy perturbation method is applied to the system 
of nonlinear differential equations that describe a magneto-
viscous fluid along a semi-infinite flat plate in presence of a 
magnetic field. The excellent agreement of the analytical 
solution with the 4RKM numerical one shows the reliability 
and efficiency of the HPM. The behaviors of fluid stream 
function, velocity, shear stress, temperature and heat transfer 
illustrated by the graphs are consistent with the graphs 
obtained in [3, 4] and therefore further establish the reliability 
and effective-ness of the HPM. It has been demonstrated that 
the HPM can be applied advantageously even when the flow 
is governed by a BVP consisting of more than one differential 
equation. 
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