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Elliptic Divisibility Sequences over Finite Fields
Betül Gezer, Ahmet Tekcan and Osman Bizim

Abstract—In this work, we study elliptic divisibility sequences
over finite fields. Morgan Ward in [14], [15] gave arithmetic theory
of elliptic divisibility sequences and formulas for elliptic divisibility
sequences with rank two over finite field Fp. We study elliptic
divisibility sequences with rank three, four and five over a finite field
Fp, where p > 3 is a prime and give general terms of these sequences
and then we determine elliptic and singular curves associated with
these sequences.

Keywords—Elliptic divisibility sequences, singular elliptic divisi-
bility sequences, elliptic curves, singular curves.

I. INTRODUCTION

A divisibility sequence is a sequence (hn) (n ∈ N) of
positive integers with the property that hm|hn if m|n. The
oldest example of a divisibility sequence is the Fibonacci
sequence (see [5], [12], [13]). There are also divisibility
sequences satisfying a nonlinear recurrence relation. These
are the elliptic divisibility sequences and this relation comes
from the recursion formula for elliptic division polynomials
associated to an elliptic curve.

An elliptic divisibility sequence (or EDS) is a sequence of
integers (hn) satisfying a non-linear recurrence relation

hn+mhn−m = hn+1hn−1h
2
m − hm+1hm−1h

2
n (1)

and with the divisibility property that hm divides hn whenever
m divides n for all m ≥ n ≥ 1.

EDSs are generalizations of a class of integer divisibi-
lity sequences called Lucas sequences in [11]. EDSs were
interesting because of being the first non-linear divisibility
sequences to be studied. Morgan Ward wrote several papers
detailing the arithmetic theory of EDSs [14], [15]. For the
arithmetic properties of EDSs, see also [2], [3], [4], [6], [10].
The Chudnovsky brothers considered prime values of EDSs in
[1]. Rachel Shipsey [6] used EDSs to study some applications
to cryptography and elliptic curve discrete logarithm problem
(ECDLP). EDSs are connected to heights of rational points on
elliptic curves and the elliptic Lehmer problem.

II. SOME PRELIMINARIES ON ELLIPTIC DIVISIBILITY
SEQUENCES AND ELLIPTIC CURVES.

There are two useful formulas (known as duplication for-
mulas) to calculate the terms of an EDS. These formulas are
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obtained from (1) setting first m = n + 1, n = m and then
m = n+ 1, n = m− 1 and so

h2n+1 = hn+2h
3
n − hn−1h

3
n+1 (2)

h2nh2 = hn(hn+2h
2
n−1 − hn−2h

2
n+1). (3)

A solution of (1) is proper if h0 = 0, h1 = 1 and h2h3 �= 0.
Such a proper solution will be an EDS if and only if h2, h3, h4

are integers with h2|h4. The sequence (hn) with initial values
h1 = 1, h2, h3 and h4 is denoted by [1 h2 h3 h4]. The
discriminant of (hn) is defined by

Δ(h2, h3, h4) = h4h
15
2 − h3

3h
12
2 + 3h2

4h
10
2

−20h4h
3
3h

7
2 + 3h3

4h
5
2 (4)

+16h6
3h

4
2 + 8h2

4h
3
3h

2
2 + h4

4.

Definition 2.1: An elliptic divisibility sequence (hn) is said
to be singular if and only if its discriminant Δ(h2, h3, h4)
vanishes.

In this work, we discuss behavior of EDSs over a finite
field Fp, where p > 3 is a prime and the elliptic and singular
curves associated to (hn). To classify singular EDSs modulo
p we need to know the following definition.

Definition 2.2: An integer m is said to be a divisor of the
sequence (hn) if it divides some term with positive suffix. If
m divides hρ but does not divide hr if r divides ρ, then ρ is
called a rank of apparition of m in (hn).

Theorem 2.1: Let p be a prime divisor of an elliptic divisi-
bility sequence (hn), and let ρ be rank of apparition. Let hρ+1

is not congruent to 0(mod p). Then hn ≡ 0(mod p) ⇔ n ≡ 0
(mod ρ). [15]

Ward says that the multiples of p are regularly spaced
in (hn). A sequence (sn) of rational integers is said to be
numerically periodic modulo p if there exists a positive integer
π such that sn+π ≡ sn(mod p) for all sufficiently large n. If
last equation holds for all n, then (sn) is said to be purely
periodic modulo p. The smallest such integer π for which this
equation is true is called the period of (sn) modulo p. All
other periods are multiples of it. The following theorem of
Ward shows us how the period and rank are connected.

Theorem 2.2: Let (hn) be an EDS and p an odd prime
whose rank of apparition ρ is greater than three. Let a1 be an
integral solution of the congruence a1 ≡ h2

hρ−2
(mod p) and let

e and k be the exponents to which a1 and a2 ≡ hρ−1(mod p),
respectively belong modulo p. Then (hn) is purely periodic
modulo p and its period π is given by the formula π = τρ,
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where τ = 2α[e, k]. Here [e, k] is the least common multiple
of e and k and the exponent α is 1 if e and k are both odd, −1
if e and k are both even, both divisible by exactly the same
power of 2 or 0 otherwise. [15]

We will now give a short account of material that we
need. All of the theory of elliptic curves can be found in [7],
[9]. Consider an elliptic curve defined over rational numbers
determined by a short Weierstrass equation y2 = x3 + ax+ b
with the coefficients a, b ∈ Q and the discriminant is Δ =
−16(4a3 + 27b2). Ward proved that EDSs arise as values of
the division polynomials of an elliptic curve. The following
theorem shows us the relations between EDSs and the elliptic
curves (for further details see [6], [8], [10], [15]).

Theorem 2.3: Let (hn) be an elliptic divisibility sequence
with initial values [1 h2 h3 ch2]. Then there exists an elliptic
curve E : y2 = x3 + ax+ b with discriminant Δ, where

a = 33

⎛
⎝ (−h16

2 − 4ch12
2 + (16h3

3 − 6c2)h8
2

+(8ch3
3 − 4c3)h4

2

−(16h6
3 + 8c2h3

3 + c4)

⎞
⎠ (5)

b = 2.33

⎛
⎜⎜⎜⎜⎝

h24
2 + 6ch20

2 − (24h3
3 − 15c2)h16

2

−(60ch3
3 − 20c3)h12

2

+(120h6
3 − 36c2h3

3 + 15c4)h8
2

+(−48ch6
3 + 12c3h3

3)h
4
2

+(64h9
3 + 48c2h6

3 + 12c4h3
3 + c6)

⎞
⎟⎟⎟⎟⎠ (6)

Δ = 28312h9
3h

8
2

⎛
⎝ ch12

2 + (−h3
3 + 3c2)h8

2

+(−20ch3
3 + 3c3)h4

2

+(16h6
3 + 8c2h3

3 + c4)

⎞
⎠ (7)

and a non singular rational point

P = (x1, y1) =
(
3(h8

2 + 2ch4
2 + 4h3

3 + c2),−108h3
3h

4
2

)
(8)

on E such that ψn(x1, y1) = hn for all n ∈ Z where ψn is
the n−th polynomial of E. [8]

By Theorem 2.3, we can say that the EDS with the initial
values [1 h2 h3 ch2] is associated to E : y2 = x3 + ax + b
and rational point P ∈ E. Ward showed that the discriminant
of the elliptic divisibility sequence is equal to discriminant of
elliptic curve associated to this sequence.

III. ELLIPTIC DIVISIBILITY SEQUENCES IN CERTAIN
RANKS AND ASSOCIATED CURVES.

In this section we work with elliptic divisibility sequences
having special initial values in certain ranks over Fp, and we
will see that all EDSs with rank two and three are singular and
so these are associated to singular curves. Also we will see that
EDSs with rank four and five are associated to elliptic curves
or singular curves and so we then determine which of these
sequences are associated to elliptic and singular curves. Firstly,
we define the elliptic sequences and then elliptic divisibility
sequences over Fp, where p > 3 is a prime.

Definition 3.1: An elliptic sequence over Fp is a sequence
of elements of Fp which is a particular solution of (1).

If (hn) is an elliptic sequence over Fp, then (hn) is
an elliptic divisibility sequence over Fp since any non-zero
elements of Fp divides any other. Therefore the term elliptic
sequence over Fp will mean, in this paper, elliptic divisibility
sequence over Fp. Note that as in the integral sequences,
elliptic divisibility sequences satisfy the further conditions
h0 = 0, h1 = 1 and two consecutive terms of (hn) can
not vanish over Fp. So we can give an alternative theorem of
Theorem 2.1 for finite fields.

Lemma 3.1: Let (hn) be an elliptic divisibility sequence
with rank ρ over Fp. Then hρn ≡ 0(mod p).

Proof: If (hn) has rank ρ, then hρn ≡ 0(mod p) since
hρ divides hρn for ρ divides ρn.

A. Sequences with Rank Two and Associated Curves.

Now we consider the EDSs with rank two. We know that
if h2 = 0, then we must have h2n = 0 for all integers n �=
0. Thus every term of sequence with even subscript is zero
(except for the term h0). Ward proved that such a sequence is
given by the following theorem.

Theorem 3.1: Let (hn) be an elliptic divisibility sequence
with initial values [1 0 h3 0] for h3 ∈ F∗

p = Fp\{0} and n is
odd. Then (hn) is given by

(hn) = (−1)�n
4 �h

n2−1
8

3 ,

where �x� denotes the lower function. [15]

We will find associated singular curves to (hn) with rank
two. Note that all elliptic divisibility sequences with rank two
are singular since their discriminant is zero.

Theorem 3.2: Let (hn) be a singular elliptic divisibility
sequence with initial values [1 0 h3 ch2] for c ∈ Fp and
h3 ∈ F∗

p. Then (hn) is associated to a singular curve given
by the equation

E : y2 = x3 − 27(4h3
3 + c2)2x+ 54(4h3

3 + c2)3.

Also if P = (x1, y1) is a point on E, then P = (3(h3
3+c2), 0).

Proof: Since (hn) is a singular elliptic divisibility se-
quence, the associated curve is singular. Putting h2 = 0 in the
equations (5), (6) and (8), we have

a = −27(16h6
3 + 8c2h3

3 + c4) = −27(4h3
3 + c2)2

b = 54(64h9
3 + 48c2h6

3 + 12c4h3
3 + c6) = 54(4h3

3 + c2)3

and P = (3(4h3
3 + c2), 0).

Theorem 3.2 says that the singular elliptic divisibility se-
quence [1 0 h3 ch2] for c ∈ Fp and h3 ∈ F∗

p is associated to
the singular curve E : y2 = x3 − 27(4h3

3 + c2)2x+ 54(4h3
3 +

c2)3. So if we write α = 4h3
3+c

2 and β = 3α2, then we obtain
a = −3β2 and b = 2β3. Hence E : y2 = x3 − 3β2x + 2β3

and P = (β, 0).
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The singular elliptic divisibility sequence with initial values
[1 0 h3 ch2] for c ∈ Fp and h3 ∈ F∗

p is an improper EDS.
So when we determine the fourth term ch2, we choose all
elements of Fp for the number c. Therefore such sequences
can be associated with more than one curve. For example in
F5, the sequences [1 0 1 0], [1 0 2 0], [1 0 3 0] and [1 0 4 0]
are associated to singular curves

y2 = x3 + 3x+ 1 y2 = x3 + 2x+ 2 y2 = x3 + 2x+ 3
y2 = x3 + 3x+ 4 y2 = x3 y2 = x3 + 2x+ 3
y2 = x3 + 3x+ 1 y2 = x3 + 2x+ 2 y2 = x3 + 2x+ 3
y2 = x3 + 2x+ 4 y2 = x3 + 2x+ 2 y2 = x3

respectively.

B. Sequences with Rank Three and Associated Curves.

We know that h3n = 0 for all integers n �= 0. Note that
all elliptic divisibility sequences with rank three are singular
since their discriminant is zero. We give general terms of (hn)
when h4 = 1 and h4 = −1 in the following theorems.

Theorem 3.3: Let (hn) be a singular elliptic divisibility
sequence with initial values [1 h2 0 1] for h2 ∈ F∗

p. Then
(hn) is given by the following formula

hn =
{

hk
2 if n ≡ 1, 2, 4, 5(mod 12)

−hk
2 if n ≡ 7, 8, 10, 11(mod 12),

where k = (t−1)t
2 for n = 3t + 1 and k = (t+1)(t+2)

2 for
n = 3t+ 2.

Proof: By setting m = 2 in (1), we have

hn+2hn−2 = hn+1hn−1h
2
2 (9)

since h3 = 0. It suffices to prove our main result by induction
based on equation (9). If we take n = 3 in this equation, then
we obtain h5 = h3

2 and we observe that this is true since k = 3
and so h5 = h3

2. Hence we assume that n > 3.
Now first suppose that n + 1 ≡ 1(mod 12). Then we can

write n = 12r for r ∈ N. Let the equation (9) be true for
n+1. We wish to show that this equation is also true for n+2.
Then t = 4r for r ∈ N and so k = 8r2 + 6r + 1. Therefore
hn+2 = −h8r2+6r+1

2 . Since n+ 1 = 12r+ 1, we have t = 4r
and so k = 2r(4r − 1). Thus we find that hn+1 = h

2r(4r−1)
2 .

Similarly we see that

hn−1 = −h2r(4r+1)
2 and hn−2 = h

(2r−1)(4r−1)
2 .

So if we substitute this relations in the equation (9), then we
have

hn+2h
(2r−1)(4r−1)
2 = h

2r(4r−1)
2 (−h2r(4r+1)

2 )h2
2

and so we obtained that hn+2 = −h8r2+6r+1
2 . Thus we proved

this theorem for n + 1 ≡ 1(mod 12). Other cases of the
theorem can be proved in the same way.

There are p−1 singular EDSs with initial values [1 h2 0 1]
since h2 ∈ F∗

p. Moreover if p ≡ 5(mod 6), then there are
p − 1 alternatives and if p ≡ 1(mod 6), then there are p−1

3
alternatives for the fifth term. It is easily seen that by taking

n = 2 in duplication formula, we have h5 = h4h
3
2 − h3

3 and
since h3 = 0, h4 = 1 we see that h5 = h3

2 ∈ K∗
p, where Kp

denotes the set of cubic residues modulo p and K∗
p = Kp\{0}.

Theorem 3.4: Let (hn) be a singular elliptic divisibility
sequence with initial values [1 h2 0 − 1] for h2 ∈ F∗

p. Then
(hn) is given by the following formula

hn =
{

hk
2 if n ≡ 1, 2, 7, 8(mod 12)

−hk
2 if n ≡ 4, 5, 10, 11(mod 12),

where k = (t−1)t
2 for n = 3t + 1 and k = (t+1)(t+2)

2 for
n = 3t+ 2.

Proof: Theorem can be proved by induction in the same
way as Theorem 3.3 was proved.

Similarly there are also p − 1 singular elliptic divisibility
sequences with initial values [1 h2 0 −1] and if p ≡ 5(mod 6),
then there are p − 1 alternatives and if p ≡ 1(mod 6), then
there are p−1

3 alternatives for the fifth term.

Theorem 3.5: Let (hn) be a singular elliptic divisibility
sequence with initial values [1 1 0 h4] for h4 ∈ F∗

p. Then
(hn) is given by the following formula

hn =
{

hk
4 if n ≡ 1, 2, 4, 5(mod 12)

−hk
4 if n ≡ 7, 8, 10, 11(mod 12),

where k = (t+1)t
2 so that t =

⌊
n
3

⌋
. Moreover two consecutive

terms with suffices not divisible by three of (hn) are equal.

Proof: By setting m = 2 in (1), we have

hn+2hn−2 = hn+1hn−1 (10)

since h3 = 0 and h2 = 1. It suffices to prove our main result
by induction based on equation (11). If we take n = 3, then
we obtain h5 = h4. We observe that this is true, since k = 1
and so h5 = h4. Hence we assume that n > 3.

Now first suppose that n+ 1 ≡ 1(mod 12). Then we have
n = 12r for r ∈ N. Let the equation (11) be true for n + 1.
We wish to show that this equation is also true for n+2. Then
t =

⌊
n+2

3

⌋
= 4r for r ∈ N and so k = 8r2 +2r and therefore

hn+2 = h8r2+2r
4 . Since n+ 1 = 12r+ 1, we have t = 4r and

so k = 2r(4r + 1). Thus we find that hn+1 = h
2r(4r+1)
4 .

Similarly we see that

hn−1 = h
2r(4r−1)
4 and hn−2 = h

2r(4r−1)
4 .

So if we substitute this relations in the equation (11), then we
have

hn+2h
8r2−2r
4 = h8r2+2r

4 h8r2−2r
4 ⇔ hn+2 = h8r2+2r

4 .

Thus we proved for n + 1 ≡ 1(mod 12). Other cases of the
theorem can be proved in the similar way. Moreover if n, n+
1 �= 3k for k ∈ N, then we have hn = hn+1 since t =

⌊
n
3

⌋
=⌊

n+1
3

⌋
.

Note that there are p − 1 singular elliptic divisibility se-
quences with initial values [1 1 0 h4] since h4 ∈ F∗

p.
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Theorem 3.6: Let (hn) be a singular elliptic divisibility
sequence with initial values [1 − 1 0 h4] for h4 ∈ F∗

p. Then
(hn) is given by the following formula

hn =
{

hk
4 if n ≡ 1(mod 3)

−hk
4 if n ≡ 2(mod 3),

where k = (t+1)t
2 so that t =

⌊
n
3

⌋
. Moreover two consecutive

terms with suffices not divisible by three of (hn) have opposite
parity.

Proof: Theorem can be proved by induction in the same
way as Theorem 3.5 was proved.

There are also p − 1 singular elliptic divisibility sequence
with initial values [1 − 1 0 h4] since h4 ∈ F∗

p. We consider
(hn) and (un) with initial values [1 1 0 1] and [1 − 1 0 1].
Then by using the equations (2) and (3) we find that

h5 = h4h
3
2 − h1h

3
3 = 1

h7 = h5h
3
3 − h2h

3
4 = −1

h8 = h4(h6h
2
3 − h2h

2
5) = −1.

Similarly we can find other terms of the sequence. Then (hn)
and (un) are

0 1 1 0 1 1 0 − 1 − 1 0 − 1 − 1 · · ·
and

0 1 − 1 0 1 − 1 · · · ,
respectively. Notice that these are singular EDSs with rank 3
and period 12, rank 3 and period 6, respectively. So we proved
the following theorem.

Theorem 3.7: Let (hn) and (un) be two singular elliptic
divisibility sequences with initial values [1 1 0 1] and [1 −
1 0 1]. Then (hn) and (un) are the sequences

0 1 1 0 1 1 0 − 1 − 1 0 − 1 − 1 · · ·
and

0 1 − 1 0 1 − 1 · · ·
periods of (hn) and (un) are 12 and 6, respectively.

Now we determine singular curves associated to (hn) with
rank three.

Theorem 3.8: Let (hn) be a singular elliptic divisibility
sequence with initial values [1 h2 0 ch2] for c, h2 ∈ F∗

p. Then
(hn) is associated to a singular curve E given by the equation

E : y2 = x3 − 27(h4
2 + c)4x+ 54(h4

2 + c)6.

Also if P = (x1, y1) is a point on E, then P = (3(h4
2+c)2, 0).

Proof: Since (hn) is a singular elliptic divisibility se-
quence then the associated curve is singular. Putting h3 = 0

in the equations (5), (6) and (8), then we have

a = −27(h16
2 + 4ch12

2 + 6c2h8
2 + 4c3h4

2 + c4)
= −27(h4

2 + c)4

b = 54(h24
2 + 6ch20

2 + 15c2h16
2 + 20c3h12

2 +
15c4h8

2 + 6c5h4
2 + c6)

= 54(h4
2 + c)6

and P = (3(h8
2 + 2ch4

2 + c2), 0) = (3(h4
2 + c)2, 0).

By Theorem 3.8, we see that singular elliptic divisibility
sequence [1 h2 0 ch2] for c, h2 ∈ F∗

p is associated to the
singular curve E : y2 = x3 − 27(h4

2 + c)4x + 54(h4
2 + c)6.

So if we write α = h4
2 + c and β = 3α2, then we obtain

a = −3β2 and b = 2β3. Hence E : y2 = x3 − 3β2x + 2β3

and P = (β, 0).

Theorem 3.9: If P = (x1, y1) = (3(h4
2 + c)2, 0) is a point

on E : y2 = x3 − 27(h4
2 + c)4x+ 54(h4

2 + c)6, then

x1 ∈ Qp ⇔ p ≡ ±1(mod 12)

and

x1 /∈ Qp ⇔ p is not congruent to ± 1(mod 12),

where Qp denotes the set of quadratic residues modulo p.
Therefore there are p−1

2 alternatives for the point P in both
cases.

Proof: Note that (h4
2 + c)2, 3 ∈ Qp ⇔ p ≡ ±1(mod 12).

So we have 3(h4
2 + c)2 = x1 ∈ Qp ⇔ p ≡ ±1(mod 12).

Further since |Qp| = p−1
2 , there are p−1

2 alternatives for the
point P in both cases.

Theorem 3.10: Let (hn) be a singular elliptic divisibility
sequence with initial values [1 1 0 c] or [1 −1 0 c] for c ∈ F∗

p.
Then

a = −27(c+ 1)4, b = (c+ 1)6 and P = (3(c+ 1)2, 0).

In particular if c = −1, then singular elliptic divisibility
sequences [1 1 0 − 1] or [1 − 1 0 − 1] are associated to the
singular curve E : y2 = x3.

Proof: If we take h2 = 1, then by (5), (6) and (8), we
have a = −27(c+ 1)4, b = (c+ 1)6 and P = (3(c+ 1)2, 0).
In particular if we write c = −1 in these equations, then we
have the singular curve E : y2 = x3.

Theorem 3.11: If P = (x1, y1) = (3(c + 1)2, 0) is a point
on E : y2 = x3 − 27(c+ 1)4x+ 54(c+ 1)6, then

x1 ∈ Qp ⇔ p ≡ ±1(mod 12)

and

x1 /∈ Qp ⇔ p is not congruent to ± 1(mod 12).

Therefore there are p−1
2 alternatives for the point P in both

cases.
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Proof: Theorem can be proved in the same way as
Theorem 3.10 was proved.

Theorem 3.10 tells us that singular elliptic divisibility
sequences [1 1 0 − 1] or [1 − 1 0 − 1] are associated to
the singular curve E : y2 = x3. Conversely if P is a not a
singular point on E, then we can not have these sequences,
that is, even though we have curves from sequences we can not
have sequences from a nonsingular point on E. For example,
if y2 = x3 is a singular curve over F5, then we have the points
O, (0, 0), (1, 1), (1, 4), (4, 2), (4, 3) on E. Notice that only the
point (0, 0) is a singular point and we find that other points
on this curve give the singular elliptic divisibility sequences
[1 2 3 4], [1 3 3 1], [1 4 3 3] and [1 1 3 2], respectively. Note
that we do not have the singular EDSs [1 1 0 4] and [1 4 0 4].
This is because the EDSs [1 1 0 − 1] and [1 − 1 0 − 1] are
improper sequences.

Theorem 3.12: Let (hn) be a singular elliptic divisibility
sequence with initial values [1 h2 0 1] for h2 ∈ F∗

p. Then
(hn) is associated to E given by the equation

E : y2 = x3 − 27
(
h5

2 + 1
h2

)4

x+ 54
(
h5

2 + 1
h2

)6

.

Also if P = (x1, y1) is a point on E, then

P =

(
3

(
h5

2 + 1
h2

)2

, 0

)
.

In particular, the elliptic divisibility sequence [1 − 1 0 1] is
associated to the singular curve E : y2 = x3.

Proof: Recall that singular EDSs with h3 = 0 are
associated to curve

E : y2 = x3 − 27(h4
2 + c)4 + 54(h4

2 + c)6. (11)

Since h4 = ch2 = 1 we have c = 1
h2

. If we substitute this in
(11), then we have

E : y2 = x3 − 27
(
h5

2 + 1
h2

)4

x+ 54
(
h5

2 + 1
h2

)6

.

With the same argument, by using the point P = (3(h4
2 +

c)2, 0) on E, we find that

P =

(
3

(
h5

2 + 1
h2

)2

, 0

)
.

In particular, if we substitute h2 = −1 in the last equation,
then we find that the singular EDS [1 − 1 0 1] is associated
to the singular curve E : y2 = x3.

Theorem 3.12 tells us that singular elliptic divisibility se-
quence [1 h2 0 1] for h2 ∈ F∗

p is associated to elliptic curve

E given by the equation E : y2 = x3 − 27
(

h5
2+1
h2

)4

x +

54
(

h5
2+1
h2

)6

. So if we write α = h5
2+1
h2

and β = 3α2, then we
obtain a = −3β2 and b = 2β3. Hence E : y2 = x3 − 3β2x
+2β3 and P = (β, 0).

Theorem 3.13: Let (hn) be a singular elliptic divisibility
sequence with initial values [1 h2 0 − 1] for h2 ∈ F∗

p. Then
(hn) is associated to E given by the equation

E : y2 = x3 − 27
(
h5

2 − 1
h2

)4

x+ 54
(
h5

2 − 1
h2

)6

.

Also if P = (x1, y1) is a point on E, then

P =

(
3

(
h5

2 − 1
h2

)2

, 0

)
.

In particular, the elliptic divisibility sequence [1 1 0 − 1] is
associated to the singular curve E : y2 = x3.

Proof: Theorem can be proved in the same way as
Theorem 3.12 was proved.

Theorem 3.13 shows us that singular elliptic divisibility
sequence (hn) with initial values [1 h2 0 − 1] for h2 ∈ F∗

p

associated to an elliptic curve E given by E : y2 = x3 −
27

(
h5
2−1
h2

)4

x + 54
(

h5
2−1
h2

)6

. So if we write α = h5
2−1
h2

and
β = 3α2, then we obtain a = −3β2 and b = 2β3. Hence
E : y2 = x3 − 3β2x+ 2β3 and P = (β, 0).

C. Sequences with Rank Four and Associated Curves.

Now let (hn) be an elliptic divisibility sequence with rank
four. We know that h4n = 0 for all integers n �= 0. These
sequences are not singular at all. So we first give the general
terms of the EDSs and then we will determine when these
sequences are singular, then we find associated elliptic and
singular curves.

Theorem 3.14: Let (hn) be an elliptic divisibility sequence
with initial values [1 h2 h3 0] for h2, h3 ∈ F∗

p. Then (hn) is
given by the following formula:

hn =
{
εhk

3 if n is odd
εhk

3h2 if n ≡ 2(mod 4),

where

k =
{

r(r+1)
2 if n = 2r + 1

2r(r + 1) if n = 4r + 2

and

ε =
{

+1 if n ≡ 1, 2, 3(mod 8)
−1 if ≡ 5, 6, 7(mod 8).

Proof: By setting m = 2 in (1), we have

hn+2hn−2 = hn+1hn−1h
2
2 − h3h1h

2
n . (12)

It suffices to prove our main result by induction based on
equation (12). If we take n = 3 in this equation and since
h1 = 1, h4 = 0 we obtained that h5 = −h3

3 and we observe
that this is true, since k = 3, ε = −1 and so h5 = −h3

3 .
Now first suppose that n+1 ≡ 2(mod 8). Then n = 8r+1

for r ∈ N. Let the equation (12) be true for n+ 1. We wish
to show that this equation is also true for n + 2, that is, we
want to show that if n+ 2 ≡ 3(mod 8), then n+ 2 = 8r + 3
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for r ∈ N and hence k = (4r+1)(4r+2)
2 . Since ε = 1, we have

hn+2 = h8r2+6r+1
3 . Further since n + 1 = 8r + 2, we have

k = 4r(2r+1) and since ε = 1 we find that hn+1 = h
4r(2r+1)
3 .

Similarly we see that hn = h
2r(4r+1)
3 for hn−1 = 0

and hn−2 = −h2r(4r−1)
3 . So if we substitute this relations

in the equation (12), then we have hn+2(−h2r(4r−1)
3 ) =

−h3(h
2r(4r+1)
3 )2 and hence hn+2 = h8r2+6r+1

3 . Thus we
proved this theorem for n+1 ≡ 2(mod 8). Other cases of the
theorem can be proved in the same way.

There are (p − 1)2 EDSs with initial values [1 h2 h3 0]
since h2, h3 ∈ F∗

p. Moreover if p ≡ 5(mod 6), then there are
p − 1 alternatives and if p ≡ 1(mod 6), then there are p−1

3
alternatives for the fifth term since h5 = −h3

3 ∈ K∗
p.

Theorem 3.15: Let (hn) be an elliptic divisibility sequence
with initial values [1 h2 h3 0] for h2, h3 ∈ F∗

p. Then the period
of (hn) is

π(hn) =
{

4(p− 1) if h3 is a primitive root in Fp

4q or 8q otherwise,

where q is a prime divisor of p− 1.

Proof: It is clear that rank of the (hn) is ρ = 4. Then
since a1 = h2

hρ−2
= h2

h2
= 1 and a2 = hρ−1 = h3, we see

that orders of a1 and a2 are e = 1 and k = p − 1 if h3 is
a primitive root in Fp or k = q otherwise. Thus [e, k] = k.
If h3 is a primitive root in Fp, then α = 0 and in this case
τ = 2α[e, k] = p − 1. Then π(hn) = 4(p − 1), since ρ = 4.
If h3 is not a primitive root in Fp, then the order of h3 is q
a prime divisor of p − 1. So in this case α = 0 or 1. Then
τ = q or 2q. So π(hn) = 4q or 8q since ρ = 4.

Now we will see when the EDSs with rank four are singular.

Theorem 3.16: Let (hn) be an elliptic divisibility sequence
with initial values [1 h2 h3 0] for h2, h3 ∈ F∗

p. Then (hn) is a

singular elliptic divisibility sequence if and only if h3
3 = h8

2
16 .

Proof: Putting h4 = 0 in (4), we find that Δ = h3
3h

4
2

(−h8
2 + 16h3

3). So

Δ = 0 ⇔ 16h3
3 − h8

2 = 0

since h2h3 �= 0.

Now we will find elliptic curves associated to (hn) with
rank four.

Theorem 3.17: Let (hn) be an elliptic divisibility sequence
with initial values [1 h2 h3 0] for h2, h3 ∈ F∗

p. Then (hn) is
associated to an elliptic curve E given by the equation

E : y2 = x3 + 27(−h16
2 + 16ch3

3h
8
2 − 16h6

3)x
+54(h24

2 − 24h3
3h

16
2 + 120h6

3h
8
2 + 64h9

3).

Also if P = (x1, y1) is a point on E, then P = (3(h8
2 +

4h3
3),−108h3

3h
4
2).

Proof: Since h4 = 0 and h2h3 �= 0 we obtain c = 0.
Putting c = 0 in (5), (6) and (8), we find that

a = 27(−h16
2 + 16ch3

3h
8
2 − 16h6

3) (13)
b = 54(h24

2 − 24h3
3h

16
2 + 120h6

3h
8
2 + 64h9

3) (14)

and

P = (3(h8
2 + 4h3

3),−108h3
3h

4
2) (15)

as we claimed.

Now we determine which of these curves are singular.

Theorem 3.18: Let (hn) be an elliptic divisibility sequence
with initial values [1 h2 h3 0] for h2 ∈ F∗

p and h3
3 = h8

2
16 .

Then (hn) is associated to the singular curve E given by the
equation

E : y2 = x3 − 27
16
h16

2 x− 54
64
h24

2 .

If P = (x1, y1) is a point on E, then P =
(

15h8
2

4 ,−27h12
2

4

)
.

Proof: Note that E is a singular curve if and only if
(hn) is a singular sequence and also h3

3 = h8
2

16 by assumption.
Putting these quantities in (13), (14) and (15), then we have
the desired results.

By Theorem 3.18, we see that elliptic divisibility sequence
[1 h2 h3 0] is associated to the singular curve E : y2 =
x3 − 27

16h
16
2 x− 54

64h
24
2 . So if we write α = 3

4h
8
2 and β = 3α2,

then we obtain a = −β and b = −2β3. Hence E : y2 =
x3 + βx+ 2β3.

Remark 3.19: Note that if Q ∈ E is a singular point on E,
then Q is a node. Indeed (hn) is associated to E : y2 = x3

when h2 = 0. In this case we have h2 �= 0.

D. Sequences with Rank Five and Associated Curves.

Now let (hn) be an elliptic divisibility sequence with rank
five. We know that h5n = 0 for all integers n �= 0. First
consider the case where h4 = 1.

Theorem 3.20: Let (hn) be an elliptic divisibility sequence
with initial values [1 h2 h3 1] for h2, h3 ∈ F∗

p and h5 = 0.
Then (hn) is given by

hn =
{

(−1)khr for n ≥ 15
hr for n < 15,

where n = 15k + r or n = 15 − r for r > 0.

Proof: First we will see that this equation holds for n <
15, we have h5 = h4h

3
2 − h3

3 = h3
2 − h3

3 = 0. So we have to
consider two cases to determine terms of this sequence.

i) Let p ≡ 1(mod 6). Then the solutions of the congruence
h3

2 ≡ h3
3(mod p) are h3 ≡ h2, h2ω, h2ω

2(mod p), where ω
is the cubic root of unity. So there is three alternatives for the
term h3 for the given term h2.
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ii) Let p ≡ 5(mod 6). Then the solutions of the congruence
h3

2 ≡ h3
3(mod p) is only h3 ≡ h2(mod p).

Now we will prove the theorem only for p ≡ 1(mod 6) and
h3 ≡ h2ω

2(mod p). Other cases can be seen in the same way.
Therefore using the duplications formulas we get,

h6 =
h3(h5h

2
2 − h2

4)
h2

= −ω2

h7 = h5h
3
3 − h2h

3
4 = −h2

h8 =
h4(h6h

2
3 − h2

5h2)
h2

= −h2

and similarly h9 = −ω, h10 = 0, h11 = 1, h12 = ωh2, h13 =
h2, h14 = 1, h15 = 0. Thus h15−r = hr for n < 15.

Now we consider the equation

hn+2hn−2 = hn+1hn−1h
2
2 − h3h1h

2
n. (16)

Since h15 = 0 it suffices to prove our result by induction
based on equation (16) for n > 15. We want to show that
the equation (16) is true for n = 16. If we take n = 14 in
this equation and since h12 = h3, h14 = 1, then we obtain
h16 = −1 and we observe that this is true, since k = 1 we
have r = 1 and so h16 = −1, h1 = −1 namely our result is
true for n = 16.

Let the equation (16) be true for n + 1 > 15. We wish to
show that this equation is also true for n+2. Now first suppose
that n+ 1 = 15k+ 1 for k > 1 ∈ Z. This is not a restriction;
the theorem also holds if we take n + 1 = 15k + 2, 15k + 3
or 15k + 4. So for n = 15k, 15k + 1, 15k + 2, then we have
hn = 0, hn+1 = (−1)kh1, hn+2 = (−1)kh2, respectively and
for n − 1 = 15(k − 1) + 14 and n − 2 = 15(k − 1) + 13,
we have hn−1 = (−1)k−1 and hn−2 = (−1)k−1h2. Therefore
we have hn+2(−1)kh2 = (−1)kh1(−1)k−1h2

2 and so hn+2 =
(−1)kh2. Then we see that the equation (16) is also true for
n+ 2 and this completes the induction.

If we want to have a sequence as in Theorem 3.20 with fifth
term is zero, then we have to think two cases for choosing
second and third term: if p ≡ 1(mod 6), then we must choose
h3 = h2, h2ω and h2ω

2 and if p ≡ 5(mod 6), then we must
choose h3 = h2.

We have seen in Theorem 3.20 that if p ≡ 5(mod 6), then
h2 = h3 and since h2, h3 ∈ F∗

p there are p − 1 EDSs with
initial values [1 h2 h3 1] and h5 = 0 in Fp. Similarly if
p ≡ 1(mod 6), then h3 = h2, h2ω, h2ω

2 and so there are
3(p− 1) sequences in Fp.

Theorem 3.21: Let (hn) be an elliptic divisibility sequence
with initial values [1 h2 h3 1] for h2, h3 ∈ F∗

p and h5 = 0.
Then the period of (hn) is

π(hn) =
{

10 if h3 = h2

30 if h3 = h2ω, h2ω
2.

Proof: It is clear that rank of the (hn) is ρ = 5. Now we
want to see that the period of (hn) is 10 or 30. First suppose
that h3 = h2. Then since a1 = h2

hρ−2
= 1, we see that the order

of a1 is e = 1 and since a2 = hρ−1 = h4 = 1, we see that

the order of a2 is k = 1. Thus α = 1 and since τ = 2α[e, k]
we have τ = 2. So π(hn) = τρ = 10. Now suppose that
h3 = h2ω. Then since a1 = h2

hρ−2
= 1

ω , we derive that the
order of a1 is e = 3 and since a2 = hρ−1 = h4 = 1, we
see that the order of a2 is k = 1. Thus α = 1 and since
τ = 2α[e, k], we have τ = 6. So π(hn) = τρ = 30.

Now suppose that h3 = h2ω
2. Then since a1 = h2

hρ−2
= 1

ω2 ,
we see that order of a1 is e = 3 and since a2 = hρ−1 = h4 =
1, we find that order of a2 is k = 1. Thus α = 1 and since
τ = 2α[e, k], we have τ = 6. So π(hn) = τρ = 30.

Theorem 3.22: Let (hn) be an elliptic divisibility sequence
with initial values [1 h2 h3 1] for h2, h3 ∈ F∗

p and h5 = 0. If
h2 = h3, then the period of (hn) is 10 and terms of (hn) are
given by

0 1 h2 h2 1 0 − 1 − h2 − h2 − 1
0 − 1 − h2 − h2 − 1 · · · .

Proof: If h2 = h3, then we have seen that the period of
(hn) is 10. Therefore by using duplication formulas we have
the desired result.

Theorem 3.23: Let (hn) be an elliptic divisibility sequence
with initial values [1 h2 h3 − 1] for h2, h3 ∈ F∗

p and h5 = 0.
Then (hn) is given by

hn =
{
ε(−1)k+1hr for n ≥ 15
hr for n < 15,

where n = 15k+ r or n = 15− r for r > 0 and ε = −1 if k
is even or +1 if k is odd.

Proof: Theorem can be proved by induction in the same
way as Theorem 3.22 was proved.

In this case, if p ≡ 1(mod 6), then we must choose h3 =
−h2,−h2ω and −h2ω

2 and if p ≡ 5(mod 6), then we must
choose h3 = −h2. Similarly, we see that if p ≡ 5(mod 6),
then there are p−1 EDS with initial values [1 h2 h3 −1] and
if p ≡ 1(mod 6), then there are 3(p− 1) sequences in Fp.

Theorem 3.24: Let (hn) be an elliptic divisibility sequence
with initial values [1 h2 h3 − 1] for h2, h3 ∈ F∗

p and h5 = 0.
Then period of (hn) is

π(hn) =
{

5 if h3 = −h2

15 if h3 = −h2ω,−h2ω
2.

Proof: Theorem can be proved in the same way as
Theorem 3.21 was proved.

Now we find elliptic curves associated to (hn) with rank
five.

Theorem 3.25: Let (hn) be an elliptic divisibility sequence
with initial values [1 h2 h3 h4] for h2, h3, h4 ∈ F∗

p and h5 = 0.
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Then (hn) is associated to an elliptic curve E given by the
equation

E : y2 = x3 +
27(−h16

2 + 12h12
2 c− 14h8

2c
2 − 12h4

2c
3 − c4)x+

54(h24
2 − 18h20

2 c+ 75h16
2 c

2 + 75h8
2c

4 + 18h4
2c

5 + c6).

If P = (x1, y1) is a point on E, then P = (3(h8
2 + 4h3

3),
−108h3

3h
4
2).

Proof: Since h5 = 0 we obtain h3
3 = h4

2c. Putting h3
3 =

h4
2c in (5), (6) and (8) we find the desired results.

In this section, we determine curves associated to (hn) with
rank five and h4 = 1 and then determine that when the EDSs
associated to singular curves.

Theorem 3.26: Let (hn) be an elliptic divisibility sequence
with initial values [1 h2 h3 1] for h2h3 �= 0 and h5 = 0. Then
there exists a singular curve E associated with (hn) if and
only if p = 5 or p ≡ 1, 9(mod 10).

Proof: The sequence (hn) is a singular EDS if and only
if Δ = 0. Since (hn) be an EDS with rank five and h4 = 1,
then we have h3

2 = h3
3. Putting h3

2 = h3
3 and h4 = 1 in (4),

we have

Δ = −h10
2 + 11h5

2 + 1.

Substituting h5
2 = t in the last equation and taking Δ = 0 we

have

t1,2 = h5
2 =

11 ± 5
√

5
2

.

Thus (hn) is associated to a singular curve if and only if p = 5
or 5 is a quadratic residue in Fp. 5 is a quadratic residue in
Fp if and only if p ≡ 1, 9(mod 10).

Corollary 3.27: Let (hn) be a singular elliptic divisibility
sequence with initial values [1 h2 h3 1] for h2h3 �= 0 and
h5 = 0. Then the number of the singular curves associated to
(hn) is 2 or 5.

Proof: The number of the solutions of the congruence
h5

2 ≡ t1, t2(mod p) is 10 (there are 5 solutions for t1 and 5
for t2) if p ≡ 1(mod 10) and 2 if p ≡ 9(mod 10).
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