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Abstract—Camera calibration is an important step in 3D 

reconstruction. Camera calibration may be classified into two major 

types: traditional calibration and self-calibration. However, a 

calibration method in using a checkerboard is intermediate between 

traditional calibration and self-calibration. A self

is proposed based on a square in this paper. Only a square in the planar 

template, the camera self-calibration can be completed through the 

single view. The proposed algorithm is that the virtual circle and 

straight line are established by a square on planar template, and 

circular points, vanishing points in straight lines and the relation

between them are be used, in order to obtain the image of the absolute 

conic (IAC) and establish the camera intrinsic parameters. To make 

the calibration template is simpler, as compared with the Zhang 

Zhengyou’s method. Through real experiments and s

experiments, the experimental results show that this algorithm is 

feasible and available, and has a certain precision and robustness

 

Keywords—Absolute conic, camera calibration, circle point, 

vanishing point.  

I. INTRODUCTION 

N the process of acquiring three

information from two-dimensional (2D) image

calibration is an indispensable step. Camera calibration usually 

is divided into two classes: traditional calibration and 

self-calibration. The traditional calibration

prepare a high precision geometric calibration object

uses the relationship between world coordinate and image 

coordinate of calibration object to complete the camera 

calibration. In 1992, Hartley and Faugeras first put forward

thought of camera self-calibration, which 

self-calibration by using corresponding relationship of images.

Now, camera self-calibration has become one of hot spot in 

computer vision [1-7]. Zhang Zhengyou (2000) 

one kind more flexible and simple calibration 

was to use a dot matrix template instead of traditional 

calibration object to solve linearly camera intrinsic parameters

via homography between dot matrix and image. 

Zhang Zhengyou’s calibration method, Meng

Zhanyi (2002) [9] put forward a kind of self

based on planar circle, which first introduced the concept of 

circular points into the technology of camera 

From then on, the technology of camera self

a new field—the self-calibration by using circular point
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Camera calibration is an important step in 3D 

reconstruction. Camera calibration may be classified into two major 

calibration. However, a 

checkerboard is intermediate between 

calibration. A self-calibration algorithm 

square in this paper. Only a square in the planar 

calibration can be completed through the 

single view. The proposed algorithm is that the virtual circle and 

straight line are established by a square on planar template, and 

points, vanishing points in straight lines and the relationship 

between them are be used, in order to obtain the image of the absolute 

conic (IAC) and establish the camera intrinsic parameters. To make 

the calibration template is simpler, as compared with the Zhang 

Zhengyou’s method. Through real experiments and simulation 

he experimental results show that this algorithm is 

certain precision and robustness. 

amera calibration, circle point, 

 

acquiring three-dimensional (3D) 

dimensional (2D) image, the camera 

amera calibration usually 

is divided into two classes: traditional calibration and 

The traditional calibration approach needs to 

prepare a high precision geometric calibration object, and then 

relationship between world coordinate and image 

complete the camera 

Hartley and Faugeras first put forward the 

which was called camera 

elationship of images. 

calibration has become one of hot spot in 

2000) [8] put forward 

calibration method which 

template instead of traditional 

amera intrinsic parameters 

between dot matrix and image. On the basis of 

Meng Xiaoqiao and Hu 

self-calibration method 

first introduced the concept of 

o the technology of camera self-calibration. 

self-calibration enters 

calibration by using circular points. Then, 
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many self-calibration methods 

Zhang Zhengyou and Meng Xiaoq

[10], a kind of camera self-calibration 

using two non-parallel rectangles in space plane

circular points. In addition, Li

the shortage of Zhang Zheng

forward a kind of camera self

the similarity of plane scene

[12] proposed a kind of camera 

calibration object similar to Zhang

based on Kruppa equation. In recent years

self-calibration methods based on circular points or vanishing 

points have emerged [13-16]. 

square as calibration object

parameters by circular points

invariance.  

II. CAM

In this paper, we use perspective projection model which 

corresponds to a pinhole camera model

Fig. 1 Pinhole camera model

Let the world coordinate

( )X Y Z  and the corresponding image coordinates

( )u v . ( )0 0
u v  is the coordinates of principal point and 

is skew factor. ,u vf f  represent the focal length of the lens. 

( )ij
r  and ( )x y zt t t  are rotation matrix and translation 

vector. So, the perspective projection

 

1

u

v K R Tλ
 
  = 
  
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alibration for Single-View 

calibration methods appear in succession based on 

Xiaoqiao. Wu Fuchao et al. (2003) 

calibration method was proposed by 

parallel rectangles in space plane to solve 

In addition, Li Xinju et al. (2004) [11] analyzed 

Zhengyou’s calibration method and put 

self-calibration method according to 

plane scene image. Wang Guanghui (2008) 

proposed a kind of camera self-calibration method using 

Zhang Zhengyou’s checkerboard 

n recent years, a large number of 

based on circular points or vanishing 

16]. However, in this paper, we use a 

square as calibration object to solve camera intrinsic 

s, vanishing point and projective 

AMERA MODEL 

In this paper, we use perspective projection model which 

corresponds to a pinhole camera model (Fig.1). 

 
1 Pinhole camera model 

coordinate of a point ( )X  in space be 

he corresponding image coordinates be

is the coordinates of principal point and s  

represent the focal length of the lens. 

are rotation matrix and translation 

erspective projection matrix may be expressed  

[ ]

1

X

Y
v K R T

Z

 
 
 =
 
 
 

  

ased Camera 

iew  
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,  (1) 

where K  is camera intrinsic parameters in Equation (1). In this 

paper, the calibration object is a square on a planar template, so 

the planar template containing square may be defined as 

X Y− plane of world coordinate system (WCS) and the 

coordinate Z of space points is always zero. Now, the simplified 

expressions of perspective projection model can be obtained 
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, (2) 

where H  is called homography matrix from 3D to 2D 

coordinates. 

III. CAMERA SELF-CALIBRATION  

  

    
Fig.  2 (a) and (b) are calibration template in literature [12] and this 

paper, respectively 

 

 
Fig. 3 Virtual calibration template in this paper 

 

Zhang Zhengyou [8] and Wang Guanghui’s [12] 

self-calibration template is in Fig. 2 (a). The calibration 

template of this paper is in Fig. 2 (b). A virtual calibration 

template based on Fig. 2(a) is in Fig. 3. Without loss of 

generality, assume the planar template containing square (Fig. 

2 (b)) is X Y− plane of WCS, in which the origin is a, and 

X-axis, Y-axis are ab, ad, respectively. We can get the 

following conclusion. Several conclusions are drawn.  

Lemma 1. If in Fig. 3, let the side length of square be a on the 

planar template, the equations of virtual circle and virtual lines 

can be determined, and the virtual lines cut the virtual circle at 

, , ,e f g h ,  lines ac, bd cut the virtual circle at , , ,a b c d  are 

known. 

Proof. Suppose the center of the virtual circle is O where the 

two diagonals of a square abcd cross and a length of the 

diagonal is its diameter, as shown in Fig. 3, the coordinates of 

the center of a circle is ( / 2, / 2, 0)a a in the WCS, and the 

algebraic equation of the virtual circle in X Y−  plane is 

 ( ) ( )2 2
22

2 2
a ax y a− + − = .  (3) 

So the virtual lines are arbitrary lines through the center O of 

the virtual circle, without loss of generality, assuming that 

slopes of the virtual lines ge, hf are 1 2,k k , the equations of ge, 

hf are  

 
1 1 1 1

2 2 2 2

,y k x b

y k x b

= +

= +
. (4) 

Take line ge as an example to seek the intersection of virtual 

circle and virtual line. As the virtual line passes through the 

center ( / 2, / 2)O a a  of the virtual circle, replacing Equation 

(4), we can get 

 1 12 2
a ak b= + ,  

 

arrange 

 )1(
2 11 kab −= ,   (5) 

and finally determine line ge. Combining Equations (3), (4) and 

(5), we can get 

 ( ) ( ) ( )2
2 2 2 2

1 1 1 1 1 1 1 1
1 2 2 0

2
ak x k b ak a x b ab a+ + − − + + − − = .(6) 

Solve the monodic quadratic equation (Equation (6)) to get 

two intersections, and then the coordinates of the virtual lines 

and circle can be obtained through Equation (4).  

Lemma 2. Assuming that homography matrix H from 3D to 

2D coordinates is known, image coordinates of any 3D points 

of the planar template can be obtained in image coordinate 

system (ICS), particularly, circular points also can be gotten in 

ICS. 

Proof. From Equation (2), Lemma 2 is obviously true. 

Particularly, [ ]1 0
T

i± are two circular points of the 

calibration plane in the WCS, so the image coordinates of 

circular points are unique 

 
[ ]
[ ]
1 0

1 0

T

i

T

j

m H i

m H i

 ≈ +


≈ −
.  

Obviously, homography matrix H can be estimated by at 

least four matching points. In Fig. 3, the image coordinates of 

four vertices , , ,a b c d  in the square can be obtained by Harris 

Corner Detection [17] and the world coordinates of , , ,a b c d  

are obviously known, so H is estimated by four pairs of 

matching points. Combining Lemma 1 and Lemma 2, the image 

coordinates , , , ,e f g h O and the circular points ,i jm m can be 

gotten. 

(a) (b) 
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Lemma 3. Suppose 
1 2,v v  are vanishing points on mutually 

orthogonal directions, 
1 2

0Tv vω = (
1TK Kω − −= is IAC). 

Proof. Let 
1p ∞ ,

2p ∞  be  points at infinity on mutually 

orthogonal directions, of which image coordinates are
21,vv . 

According to the camera model with imaging principles, we 

have  

 [ ] [ ]1 1 1 2 2 2,v K R T p v K R T pλ λ∞ ∞= = , (7) 

and Equation (7) can be rewritten as 

 [ ] [ ]1 1

1 1 1 2 2 2,R T p K v R T p K vλ λ− −
∞ ∞= = .  

From orthogonality in projective geometry, we have 

 [ ] [ ]1

1 2 1 2 1 2 0
TT T Tv K K v p R T R T pλ λ − −

∞ ∞= = ,  

and therefore 

 
1

1 2 0T Tv K K v− − = .  

In Fig. 3, / /ab cd , the intersection of lines ab and cd is a point 

at infinity of which image is called vanishing point, denoted as 

1
v . Similarly, vanishing points of lines ad and bc, line ac and 

line bd are denotes as
2

v , 
3v  and

4v , respectively. Obviously,

1 2 3 4,v v v v⊥ ⊥ , with Lemma 3 , two constraint equations 

about IAC ω  may be gotten 

 





=

=

0

0

34

12

ωνν
ωνν

T

T

,                                 (8) 

where 
1 2,v v  can be obtained by solving image intersections of 

lines ab, cd and lines bc, ad, respectively, and 
3 4,v v  can also be 

obtain from following lemma. 

Lemma 4. Supposing ( ) ( )1,2,3,4iP l P i∈ = and 

( ) ( )1 2 3 4, 0,1,PP P P k k= ≠ ∞ , where three of
1 2 3 4, , ,P P P P  and 

k  are known, the fourth point can be determined. ( ( )l P is 

point-set of line l .) 

Proof. Supposing that homogeneous coordinates of

1 2 3 4, , ,P P P P  are
1 2, , ,a b a b a bλ λ+ + , have 

 ( ) 1
1 2 3 4

2

,PP P P k
λ
λ

= = . (9) 

Without loss of generality, assuming that known 
1 2 3, ,P P P  are 

1, ,a b a bλ+ , now the solution of the fourth point is 

transformed to determine
2λ . From Equation (9), we have 

 1
2

k

λ
λ = . (10) 

Supposing that homogeneous coordinates of 
1 2 3, ,P P P are equal 

to ( )1 1 1 ,u v  ( )2 2 1 ,u v  ( )3 3 1u v , combining with

3 1P a bλ= + , we have 

                    1 1 2
3

11

u u
u

λ
λ

+
=

+
.  (11) 

 Equation (11) can be rewritten as: 

                                   1 3

1

3 2

u u

u u
λ

−
=

−
.  (12) 

Combining with Equation (10) and (12), 
2λ  can be obtained, 

and then 
4P  can be determined. 

As shown in Fig. 3, take line ac as an example to discuss how 

to solve a vanishing point of diameter of the virtual circle. In 

Lemma 4. If let
1 2 3, , ,P a P o P c= = = 4P P∞= , it is reasonable 

assumption that the length of 
1PP∞  and 

3P P∞
 are equal, and

1

3

1
PP

P P

∞
=

∞
. Based on perspective projection, have

( ) ( )1 2

1 3 2 1 3 2

3 2

,
PP

PP P P PP P
P P

∞ = = , where 
1 3PP  is the diameter 

and
2P  is the centre of the virtual circle, respectively, and

( )1 3 2, 1PP P P∞ = − . Additionally, under the projective 

transformation group, some graphics have projective properties 

and projective invariants .Combining with Lemma 4, we have 

 

 
( )1 3 2

1 3 1

, 1

0

PP P P

PP PP

∞

∞

 = −


× =
 . (13) 

Supposing the image coordinate of P∞  is ( ), ,1u v∞ ∞ , the matrix 

expression of Equation (13) is 

 

( )2 1 1 2 1 2

2 1 1 2 1 2

1 2 2 1 2 1 1 2

1 0 2 / 2

0 1 ( ) 2 / 2

u u u u u u u u
u

v v v v v v v v
v

v v u u u v u v

∞ ∞
∞

∞ ∞
∞

+ − − −  
     = + − − −    
    − − −   

. (14) 

The image coordinate of P∞ can be obtained by the method of 

least squares to solve Equation (14). Similarly, points at infinity 

of any diameter of the virtual circle are gotten.  

Lemma 5 [19, 20]. The sufficient and necessary conditions of 

which two non-isotropic lines are mutually orthogonal are that 

points at infinity of the two non-isotropic lines are conjugated 

with two circular points of the plane where the two 

non-isotropic lines are. 

 
Fig. 4 An image of a plane at infinity 

 

Fig. 4 is an image of a plane at infinity, where ω is absolute 

conic, ,i jm m  are two circular points of the plane π  with the 

line at infinity pq . P is the point at infinity of one non-isotropic 

line in the plane π . From Lemma 5, q corresponds to the point 

at infinity, at which the line on the plane π is perpendicular to 
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the line containing the point p at infinity, 

 ( ) 1, −=pqmm ji .  

Taking line eg as an example, we will discuss how to solve the 

vanishing point of a line which is orthogonal to one of diameter 

of virtual circle. Suppose 
5v  is the vanishing point of line eg 

which is orthogonal to line at vanishing point
6v . 

6v  can be 

gotten based on Lemma 4, Lemma 5 and cross-ratio invariance, 

and then the equation is as follows  

 
6 5 0Tv vω = . (15) 

Combing with Equation (8) and (15), three constraint 

equations can be established aboutω . Similarly, n constraint 

equations with the form of Equation (10) can be obtained from 

n diameters of a virtual circle 

 0T

i jv vω = ,  

where 
iν  is a vanishing point of one diameter of a virtual 

circle, and jv , 
iν  are two vanishing point on their mutually 

orthogonal directions. Let 

1 2 3

2 4 5

3 5 6

ω ω ω
ω ω ω ω

ω ω ω

 
 =  
  

, we have 

 

1 2 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 6

3 4 3 4 3 3 4 2 3 4 3 3 4 4 3 4 5 6

1 2 3 4 5 6

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0i j j i i j i j i j i j

uu u v uv u u vv v v

u u u v u v u u v v v v

uu u v uv u u vv v v

ω ω ω ω ω ω
ω ω ω ω ω ω

ω ω ω ω ω ω

+ + + + + + + + =
 + + + + + + + + =




+ + + + + + + + =

⋮

⋮

.   

 (16) 

Let 

[ ]1 2 3 4 5

T
f ω ω ω ω ω= , 

1 2 2 1 1 2 1 2 1 2 1 2

3 4 4 3 3 4 3 4 3 4 3 4

1

1

1i j j i i j i j i j i j

u u u v u v u u v v v v

u u u v u v u u v v v v

A

u u u v u v u u v v v v

+ + +
 + + +

= 



+ + +

⋮

⋮

, 

Equation (16) can be rewritten as 0Af = .When taking n  

images of the planar template under different views, the 

multiple constraint equations can be gotten aboutC , and f  

can be solved by the method of least squares to obtain ω . By 

Zhang’s method [8], the intrinsic parameters can be calculated. 

Outline of the algorithm is presented below: 

Step 1. Print a square, stick it on the plane and at least take a 

picture. 

Step 2. Obtain image coordinates of four vertexs of the 

square by Harris, and estimate homography matrix H. 

Step 3. According to the Lemma 3, determine image 

intersection coordinates of virtual lines and a virtual circle, and 

image coordinates of circular points. 

Step 4. Obtain vanishing points of parallel sides of the square 

by solving image intersections of parallel sides. 

Step 5. According to Lemma 4, obtain vanishing points of 

two diagonals of the square. 

Step 6. According to Lemma 4 and Lemma 5, obtain any of 

virtual lines and its vanishing point of orthogonal lines. 

Step 7. Obtain ω  by the method of least squares, and then 

obtain K by Zhang’s method [8]. 

IV.  EXPERIMENTS 

A.  Experiments with Simulated Data 

The values of camera intrinsic parameters are set to 

1000, 1100,u vf f= =  
0 0 0, 0u v s= = =  in simulation 

experiments. Simulations adopt three images which correspond 

to extrinsic parameters  

1

0.8080 0.4106 0.4225

0.0695 0.7785 0.6238

0.5850 0.4747 0.6576

R

− 
 = − − 
 − − 

, [ ]1 142.56 34.891 521.456T
′

= − − ； 

2

0.9993 0.0065 0.0361

0.0115 0.8780 0.4785

0.0348 0.4785 0.877

R

− − 
 = − − − 
 − 

, [ ]2 142.56 34.891 67.6T
′

= − − ;  

3

0.0002 0.9244 0.3815

0.0004 0.3815 0.9244

1.0000 0.0000 0.000

R

− − − 
 = − 
 − 

, [ ]3 100 50 260T
′

= − , 

respectively. The origin of WCS is the intersection of two 

diagonals of the square. We adopted three virtual lines, of 

which the corresponding slopes are , ,
12 6 3

π π π
. In order to test 

the robustness of our proposed method, add the Gaussian noise 

where the mean value is zero and the mean square error is from 

0.1 pixels to 5 pixels on the position of pixels. 200 independent 

experiments can be executed for each noise level, and solve 

their averages.  

In the same camera parameters setting, carry out a 

comparative study between ours and Wang Guanghui’s method 

[12] with skew factor s=0. The algorithm is denoted by Square 

in this paper, and Wang Guanghui’s algorithm is denoted by 

Hinf. Comparisons of two algorithms are as follows (Fig. 4): 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 4 Accuracy of two methods concerning the noise level 

B.  Experiments with Real Images 

The factual data can be used for comparing and testing two 

proposed algorithms. The kind of camera is a CCD digital 

camera where the size of the image is320 240× . Fig. 5 (a) and 

(b) are two photos from different calibration templates as 

follows. 

  
(a) Calibration plane of Wang Guanghui  

 
      (b) Calibration plane of this paper 

               Fig. 5 Images of different calibration templates 

 

We carried out a comparative test with Wang Guanghui’s 

calibration algorithm. The results are as follows (Table I): 

 

 
 

In addition, we executed the 3D reconstruction by the 

calibration results as follows 

 

TABLE I 

A COMPARATIVE CALIBRATION RESULTS BY THE PROPOSED METHOD (HINF) 
AND WANG GUANGHUI’S METHOD (SQUARE) 

Camera Intrinsic 
Parameters 

Hinf Square 

uf  51.389731 50.982492 

v
f  51.389731 50.982492 

s  51.389731 50.982492 

0
u  51.389731 50.982492 

0
v  51.389731 50.982492 
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(a) The first viewpoint 

 
 (b) The second viewpoint

Fig. 6 Images and matching points under different viewpoints

Fig. 7 Delaunay triangulations of characteristic point

viewpoint 

Fig. 8 Delaunay triangulations of the 

 

 
 

 
he second viewpoint 

mages and matching points under different viewpoints 

 
characteristic points in the first 

 
of the 3D points 

(a)                       

Fig. 9 (a), (b) and (c) Results of 

viewpoints with texture mapping

V.   CONCLUSIONS

In this paper, use a square as calibration template

square, two diagonals as the diameter

diagonals as the center of a circle create

intersection of diagonals are used as the beam

of virtual lines. First, the homography 

from the four vertexs of the square to obtain image coordinates 

of the circular points and the intersections of 

and virtual lines. In additional, based on 

invariance of projective transformation

between orthogonal vanishing points and circular points, the 

vanishing points of any of lines and the 

points of them can be solved on the beam of virtual lines. So, 

IAC can be obtained by solving 

are made up of mutually orthogonal

intrinsic parameters are determined through Zhan

decomposing method. Experimental data show that the 

algorithm is feasible and available, have a certain precision and 

robustness. In this paper, 

determined only by four vertices of a square, so t

four vertices affect the results 

to effectively improve the accuracy and the 

algorithm, we can consider checkerboard
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                             (b)   

 

 (c) 
esults of 3D reconstruction under different 

with texture mapping 

ONCLUSIONS 

In this paper, use a square as calibration template. In the 

the diameter, the intersection of two 

the center of a circle creates a virtual circle, and the 

intersection of diagonals are used as the beam-center of beams 

omography matrix H is estimated 

s of the square to obtain image coordinates 

he intersections of the virtual circle 

and virtual lines. In additional, based on the cross-ratio 

projective transformation and conjugation 

between orthogonal vanishing points and circular points, the 

vanishing points of any of lines and the orthogonal vanishing 

points of them can be solved on the beam of virtual lines. So, 

IAC can be obtained by solving the constraint equations which 

made up of mutually orthogonal vanishing points. Further, 

are determined through Zhang’s 

. Experimental data show that the 

algorithm is feasible and available, have a certain precision and 

robustness. In this paper, the homography matrix H is 

d only by four vertices of a square, so the accuracy of 

 of calibration. Therefore, in order 

to effectively improve the accuracy and the robustness of the 

checkerboard as calibration plane.  
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