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Graphs with Metric Dimension Two- 
A Characterization 
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    Abstract—In this paper, we define distance partition of vertex set 
of a graph G  with reference to a vertex in it and with the help of the 
same, a graph with metric dimension two (i.e. 2)( =Gβ ) is 
characterized. In the process, we develop a polynomial time 
algorithm that verifies if the metric dimension of a given graph G   is 
two. The same algorithm explores all metric bases of graph G  
whenever 2)( =Gβ . We also find a bound for cardinality of any 
distance partite set with reference to a given vertex, when ever 

2)( =Gβ . Also, in a graph G  with 2)( =Gβ , a bound for 
cardinality of any distance partite set  as well as a bound for number 
of vertices in any sub graph  H  of G  is obtained in terms of diam 
H . 

 
Keywords—Metric basis, Distance partition, Metric dimension. 

 
I. INTRODUCTION 

VERY network can be viewed as a graph in which the 
vertices represent the processors and an edge between any 
two vertices indicate the connection between the 

processors corresponding to the vertices. In Samir Khuller et 
al [8], navigations are studied in a graph-structured framework 
in which the navigating agent (the robot) moves from vertex to 
vertex of a graph space. The robot can locate itself by the 
presence of the distinct codes assigned for the vertices of the 
graph. There are several methods to associate a code for a 
vertex. For example, in [7], Paul F. Tsuchiya assigned the 
codes by decomposing the network into sub networks. The 
method of approach in [7] is random and the code associated 
depends only on the number of sub divisions. However, a 
mathematical approach for the assignment of distinct codes 
given by F. Harary et al [4] and further studied by various 
other authors [2, 6, 8-13], purely depends on the other 
invariants associated with the network namely, diameter, 
distance between two vertices etc. The codes generated by the 
methods given in the above references can easily be 
implemented to locate any vertex in the graph network. In this 
paper, we define distance partition of vertex set of a graph G  
with reference to a vertex in it and with the help of the same, 
we characterize graphs with metric dimension two 
(i.e. 2)( =Gβ ). In the process, we develop a polynomial time 
algorithm that verifies if the metric dimension of a given 
graph G  is two.The same algorithm explores all metric bases 
of graph G  whenever 2)( =Gβ . 
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We also find a bound for cardinality of any distance partite 
set with reference to a given vertex, whenever 2)( =Gβ . 

Throughout this paper, we write ),( EVG  or simply G, to 
denote a graph on a finite non empty set V of vertices and  E   
of edges. All the graphs considered in this paper are simple, 
finite, undirected and connected.  For all the other basic 
notations we refer to     [1, 3, and 5]. For any two vertices  u  
and  v, the distance between  u and v denoted by ),( vud , is 
the length of the shortest path between them. For a given 
graph G, there are number of properties related to distance 
between two vertices and are widely studied by various 
authors. 
 

II. DEFINITIONS 
 

Definition 2.1: Let ),( EVG =  be a connected, undirected 
graph and  wvu ,,   be vertices in  V . A vertex v  is said to 
resolve the vertices u  and w  if the distance of  u   from  v   
is different from distance of  w   from  v . A set VS ⊆  is a 
resolving set of  )(GV   if for each pair of distinct vertices 

Vwu ∈,  there exists at least one Sv∈  such that  v   resolves  
u  and w . 
 
Remark 2.2:  Note that V   itself is a resolving set of  V . 
 
Definition 2.3:  A resolving set T  with minimum cardinality 
amongst all resolving sets is known as a metric basis of a 
graph  G . Further, the cardinality of any metric basis is the 
metric dimension of  G  and is denoted by )(Gβ .  
Remark 2.4: Clearly, metric basis exists for every given 
graph (by definition) and it need not be unique. For example, 
given a path graph G  with pendant vertices u  and v , { }u  and 
{ }v  are metric bases for G . 
 
Remark 2.5: A metric basis of a graph G  is minimal (set 
theoretic sense) among all resolving sets, but converse need 
not be true. For example, in case of u  and v  adjacent vertices 
in a path graph G  and neither among   u  and  v  are pendant 
vertices, then { }vu,  is a minimal resolving set but not a metric 
basis. 

It is learnt further that a path graph has metric dimension 
one, a cyclic graph has metric dimension two and a complete 
graph on n  vertices has metric dimension )1( −n . 
 
Definition 2.6: Let G  be a graph with vertex set )(GV  and 
v be a vertex in it. Then }.............,,{ 210 kVVVV  is called a 

E
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distance partition of  )(GV  with reference to the vertex  v   
if }{0 vV =  and iV  contains those vertices which are at 
distance i  from v   for ki ≤<0 , where k  is the eccentricity 
of v  in G . The sets kVVVV .............,, 210  are called distance 
partite sets. 

The result given in the following proposition was observed 
by Samir Khuller et al [8], and is an important tool in deriving 
several interesting results of the present paper. 
 
Proposition 2.7 (Samir khuller et al) 

In a graph ),( EVG , consider any three vertices vu,  and 
w  such that Evu ∈),( . If  ),( wudd =  then  ),( wvd   is one 
of  dd ,1−   and 1+d . 

 
In the following corollaries we consider a graph G  with 

2)( =Gβ , metric basis { }21,vv  and distance partite sets 

kVVV ..., 10  with reference to 1v . Proof is immediate from the 
above proposition and the definition of 2)( =Gβ . 

 
Corollary 2.8:  Given any vertex iVv∈  there exist at most 
three vertices in 1+iV  adjacent to  v , where  10 −≤≤ ki . 
Similarly there exist at most three vertices in 1−iV  adjacent to 
v  when   ki ≤≤1 . 
 
Corollary 2.9: Every pair of vertices 1w   and 2w   from 
different distance partite sets are resolved by at least  1v  and 
when 1w  and 2w  are from same distance partite set then 2v  
resolves them. 
 

III. PROPERTIES OF DISTANCE PARTITION 
 

In this section we shall discuss some characteristics of the 
graph due to the properties of distance partition, proofs are 
straight forward. 
Let v  be a vertex in )(GV  and }.............,,{ 210 kVVVV be the 
distance partition of  )(GV  with reference to the vertex  v . 
 
Theorem 3.1: Every vertex in jV  is adjacent to atleast one 

vertex in  1−jV   for every j  with  kj ≤≤2  and every vertex 

in  1V   is adjacent to  v .                              ♦ 
 
Theorem 3.2: Let G be a graph and  nG = . Then the 
following are equivalent: 
i) There exists a )(GVv∈ , such that  1=iV  for each of 

distance partite set iV  of G  with reference to the 
vertex v . 

ii) G  is a path graph and  v  is a pendant vertex in it. 
iii) There exists )(GVv∈  such that  1)( −= nve . 

In fact, in the above there exist exactly two vertices in )(GV  
such that with reference to each of them the number of distinct 
distance partite sets of  G  is equal to n            ♦ 
Theorem   3.3:  Let G  be a graph and  vk  be the number of 
distance partite sets with reference to a vertex  )(GVv∈ . 
Then  2=vk   for every  )(GVv∈  if and only if G  is a 
complete graph.                                                                    ♦ 
 
The following corollary is a result given by Samir Khuller et 
al [8] and  is immediate from Theorem 3.2.   
     
Corollary 3.4:  Metric dimension of a graph G  is one if and 
only if  G is a path graph. 
 

IV. RESULTS 
 

In this section, we establish some results pertaining to 
structure of a graph G  with 2)( =Gβ . 

Let G  be a graph with 2)( =Gβ  and },{ 21 vv be a metric 
basis of G . Further, let }.............,,{ 210 kVVVV  be the distance 
partition of G with reference to the vertex  1v . 

The results of the theorem 4.3, 4.4 and 4.6 are due to Samir 
Khuller et al [8] and we give a simple alternative proof using 
the concept of distance partition. 
  
Theorem 4.1: For any vertex  jVv∈  there exists a shortest 

path of length j  between 1v   and  v . In fact, a shortest path 
from 1v  to v  contains exactly one vertex ii Vw ∈  for 

ji ≤≤1 . , and the distance  ijvwd i −=),( . 
 
Theorem 4.2: If G  is a graph with 2)( =Gβ  and metric 
basis{ }21,vv  ,then there exists a unique shortest path between  

1v   and   2v . 
 
Theorem 4.3:  Let { }21,vv  be a metric basis of G  with 

2)( =Gβ  then degree of both  1v  and 2v  are less than or 
equal to three. 
  
Theorem 4.4: Let  { }21,vv  be a metric basis of  G  where 

2)( =Gβ  .For any vertex  v   on  the unique shortest path 
between 1v  and 2v , there exists at most one vertex adjacent to 
it in the distance partite set with respect to  1v   to which it 
belongs to. Further, v   has exactly one vertex adjacent to it in 
the preceding distance partite set. 
 
Theorem 4.5:  Let { }21,vv  be a metric basis of  G , where 

2)( =Gβ .  The Maximum degree of any vertex v  on the 
unique shortest path between  1v  and 2v is five. In the case of 

5)deg( =v , the adjacency of  v  is as shown in the following 
structure (Figure 1). 
 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:12, 2009

1134

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Proof:   Proof is immediate from Theorem 4.4 and corollary 
2.8.                                                     ♦ 
 
Theorem 4.6: Let { }21,vv  be a metric basis of  G , where 

2)( =Gβ  . Consider distance partite sets kVVV ,..., 10  with 
reference to 1v . Any connected component of the graph 
induced by a distance partite set is a path and in fact, degree 
of any vertex in the graph induced by the distance partite set is 
at most two. 
  

The corollary 4.7 given below is due to Samir Khuller et al 
[8] and corollary 4.8 is due to  Sooryanarayan B [13] and  
corollary 4.9 is due to Sooryanarayan B, Murali,  K.S.Harinath 
[14] are  immediate consequences of the Theorem 4.6. 
 
Corollary 4.7  A graph G  with 2)( =Gβ  cannot have 5K . 
 
Corollary 4.8: Let { }21,vv  be a metric basis of G  with 

2)( =Gβ  . Then for a triangle T  in G  , if any, all the 
vertices of T  cannot be at the same distance from 1v  or 2v . 
Proof:  Proof is immediate from Theorem 4.6.        ♦  
Corollary 4.9:  For any graph G  with 2)( =Gβ , the metric 
basis of  G  cannot have a vertex v  of a sub graph 4K  of G . 
Proof: Let { }21,vv  be a metric basis of G   and  )( 41 KVv ∈ . 

Consider the distance partition of  )(GV   with reference to 1v . 
Then the distance partite set 1V   has the other three vertices of 

4K  which induce a cycle, a contradiction to Theorem 4.6. 
                       ♦ 
  
Definition : The shortest path from vertex 1v  to a vertex ju  

of jV  is said  to be downward extendable if there exists vertex 

1+ju  in 1+jV  such that 1+ju  is adjacent       to ju .  

Note that the path 11 ......... +→→→ jj uuv  is a shortest path 

from 1v   to  1+ju . Any path 

tjjj uuuv ++ →→→→→ ....................... 11  is said to be a 

downward extension of a path juv →→ ...............1  . In the 
following theorem, we shall observe that a maximal 
downward extension of the unique shortest path 

21 ............... vv →→  is unique. 
 
Theorem 4.10: Let { }21,vv  be a metric basis of G  where 

2)( =Gβ  . The maximal downward extension of the unique 
shortest path 21 vv → ( jVv ∈2 ) is unique and has at most one 

vertex tju +  from tjV +   where  jkt −≤≤0 . 
 
Theorem 4.11:  The maximum degree of any vertex in a graph 
G  with 2)( =Gβ   is eight and it is realizable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark 4.12:  The above theorem gives an upper bound for 
degree of any vertex in a     graph G  with 2)( =Gβ . 
 
Theorem 4.13: Let { }21,vv  be a metric basis of G , where 

2)( =Gβ  . Then G  cannot have  eK −5  as a sub graph.  
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 Fig. 1 Vertex u on the unique shortest path between 1v  

and 2v  having degree five 
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Remark 4.14:  From theorem 4.13 it is clear that neither 5K  
nor { }eK −5  can be a sub graph of a graph with metric 
dimension two. so it is of natural curiosity  that how further 
smaller sub graph of 5K  can be excluded from being a sub 
graphs of  a graph from the class of graphs with metric 
dimension two in the following we realize that eK 25 −  could 
be a sub graph of some graph G  with  2)( =Gβ . 
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Similar to the above, we can prove the following theorem. 
 
Theorem 4.15: If G  is a graph with 2)( =Gβ  then G  
cannot have 3,3K  as a sub graph .           ♦ 
 
Theorem 4.16: Let { }21,vv  be a metric basis of G , where 

2)( =Gβ  . Let kve =)( 1  and nGV =)( . Then eccentricity of 

the second resolving vertex  2v  is greater than or equal to 

⎥⎦
⎤

⎢⎣
⎡

−
−

1
4

k
n , 1≠k , where [ ]x  is the integer part of the number x . 

   
Remark  4.17: In  a graph G  with 2)( =Gβ  and metric basis 
{ }21,vv , if sve =)( 2  then  any distance partite set V with 
respect to the vertex  1v  other than the one with 2v   in it 
contains at most s  vertices (to be precise, not more than 

),,(1 2vVds −+  where ),( 2vVd  is shortest of distances 
between  any vertex v  of V  and  2v , distance partite set that 
contains 2v  may have 1+s  vertices.  
Proof: Proof is immediate from Corollary 2.9 and Theorem 
4.6.                                                             ♦  
Though Theorem 4.21 and corollary 4.22 provide much 
stronger result, for general understanding of structure of G  
with 2)( =Gβ , we give following results. 
 

Theorem 4.18: Let G  be a graph with 2)( =Gβ  and  
{ }21,vv  be a metric basis of G  .Let P  be the Petersen graph. 

Then neither of 1v   and 2v  are in ( )PV  . Further, if 
eccentricity of any of  1v  and 2v  is not more than three,  then 
P   cannot be a sub graph of  G . 
Proof: Consider distance partite sets },...,,{ 210 kVVVV  with 
reference to 1v . If )(1 PVv ∈ , then 2V  consists of at least six 
vertices of )(PV  which induces a cycle in 2V  so a 
contradiction. Hence )(1 PVv ∉ . Similarly  )(2 PVv ∉ . 

Suppose that P  is a sub graph of G  and 3)( 2 =ve . 
Now consider distance partite sets with reference to 1v . From 
the remark 4.17 at most one jV  which contains 2v  may have 

four vertices and the remaining iV ’s have no more than three 
vertices. As )(1 PVv ∉  and diameter of 2=P , )(PV  is 
distributed among three jV ’s  such that one having four 

vertices of )(PV  and other two having three  each . This 
implies )(2 PVv ∉ , a contradiction.        ♦ 
 
Theorem 4.19:  Let G  be a graph with 2)( =Gβ  then there  
is no connected sub graph H of G such that diameter of 

1−< mH , where m is cardinality of )(HV . 
Proof: Consider a metric basis { }21,vv  of G , where 

2)( =Gβ , and distance partition { }kVVV ,..., 10  of )(GV  with 
reference to one among the basis elements, say  1v . Let H  be 
any connected sub graph of G  with diameter of H equal to 
D . Any pairs of vertices, among vertices of H  and in the 
same partite set, (say jV  ), are resolved by 2v  . Since distance 

between any pair of vertices from { }jhh VHVvv ∩∈ )(  is not 

more than diameter D of H , ),( 2 hvvd  takes distinct values 
among ,,.....1, Dddd ++  where { }),(min 2vvdd

jVHv ∩∈
= . So, the 

cardinality of jVH ∩  is at most 1+D . Further , as diameter 
DH = , the vertices of H  could be distributed among  at 

most 1+D  consecutive sVi ` . Hence the cardinality of H  is at 

most  )1)(1( ++ DD .  That is 2)1( +≤ Dm , where m is 

cardinality of )(HV . Therefore Dm ≤−1 . This proves the 
result.                                                    ♦ 
 
Corollary 4.20: The complete graph 5K  or the Petersen 
graph P  cannot be a sub graph of a graph G  with 2)( =Gβ . 
Proof: Proof is immediate from the Theorem 4.19 and 5K  is 
of  diam 1 with order 5, and Peterson graph is of diam 2 with 
order 10.                          ♦ 
 
Lemma 4.21: Let G be a graph with 2)( =Gβ  and 
{ }21,vv be a metric basis of G . Further, let { }kVVV ...., 10 be the 

 

Fig. 4.  A Graph G can have eK 25 −   as a sub graph. 
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distance partition of )(GV with reference to the vertex 1v . 
Then every distance partite set can have at most two vertices 
more than the maximum possible cardinality of preceding 
distance partite set. 
 
Theorem 4.22:  Let G be a graph with 2)( =Gβ  and 

},{ 21 vv be a metric basis of G . Further, let { }kVVV ,......, 10 be 
the distance partition of )(GV  with reference to one of the 
vertices in the metric basis. Then maximum number of vertices 
in any distance partite set, say iV , for ki ≤≤0  is )12( +i . 
 

V. BOUND FOR NUMBER OF VERTICES  
IN A GRAPH G  WITH 2)( =Gβ   
 

In the following a sharper bound for number of vertices in a 
graph G  with 2)( =Gβ  is given . 
Let G be a graph with 2)( =Gβ  and },{ 21 vv be a metric basis 
of G . Further, let { }kVVV ,......, 10 be the distance partition of 

)(GV  with reference to 1v  and iVv ∈2 . Let sve =)( 2 . iV  can 
have atmost )1( +s vertices only if 12)1( +≤+ is . Thus to 
find maximum number of vertices that G  with 2)( =Gβ  can 
have, we consider the following two cases. 
 
Case (i): 12)1( +≤+ is , i.e. is 2≤ . 
Then iV  can have )1( +s  vertices. Let t  be the smallest 
integer such that 1)(21 +−≤+− tits  and 

1)1(2 +−−>− tits  i.e. tis −≤ 2  and 12 −−> tis . 
Then the distance partite sets tiii VVV −− ,...., 1  can have atmost 

1,.......,1 +−+ tsss vertices respectively. The distance partite 
sets },,.......,{ 110 −−tiVVV  can have atmost 
1,3,5,….. 1)(21)1(2 −−=+−− titi . vertices respectively and 
finally the distance partite sets kii VVV ,......, 21 ++  can have 
atmost )1(,......1, −−−− iksss  vertices respectively. 
Thus the maximum number of vertices in a graph G  with 

2)( =Gβ  is given by 

∑∑ ∑
−−

=

−

=

−

−=
−+−+−

1

01

1

1
)()()12(

ik

r

ti

m

t

n
rsnsm  

[ ]
2

))(1()(1
2

)1()1()( 2 ikiksikttstti −−−
−−+⎥⎦

⎤
⎢⎣
⎡ +

−
−++−=  

 
Case(ii): 12)1( +>+ is , i.e., is 2> .  
Then obviously, ,........32,12 −−> iis 3,1 
Hence the distance partite sets iVVVV ,.........,, 210  can have at 
most 12,.......3,1 +i  vertices respectively. 
Let t  be the minimum positive integer such that tis 32 +>  
and 332 ++≤ tis . Then distance partite sets 

tiii VVV +++ .,........., 21  can have atmost 
1)(2,........1)2(2,1)1(2 ++++++ tiii  vertices respectively  

and the distance partite sets kti VV ...,.........1++  can have at most 

)1(...,.........1, −−−−−− ikststs  vertices respectively. Thus 
the maximum number of vertices in G  with 2)( =Gβ  is  

∑∑
−−

=

+

=
−++

1

0
)()12(

ik

tn

ti

m
msm  

2
)1(

2
)1()()1( 2 −

+⎟
⎠
⎞

⎜
⎝
⎛ −

−−−+++=
ttkkstikti . 

 
VI. CHARACTERIZATION OF  

GRAPHS WITH METRIC DIMENSION TWO 
 

The following is the characterization of graphs with metric 
dimension two. 
 
Theorem 6.1: Let G  be a graph which is not a path with 

}..........,{)( 21 nvvvGV =  and }..........,{ 10 iikii VVV  be the distance 

partition of )(GV  with reference to the vertex  iv  where ik  is 
the eccentricity of  iv , ni ≤≤1 . The metric dimension of G is 
2 if and only if there exist vertices iv and jv  such that  

1≤∩
lk ji VV    for every k  and l   

with )(1 ivek ≤≤  and )(1 jvel ≤≤ . 

Proof: Given pv  and rv , 1>∩
sq rp VV  for some qp  and 

sr  implies that there exists atleast two vertices, say 1u  and 2u   
in 

sq rp VV ∩  such that quvduvd pp == ),(),( 21  and 

suvduvd qq == ),(),( 21  and hence 1u  and 2u  are not 

resolved by both pv  and rv  so , 1>∩
sq rp VV  for all qp  and 

sr  implies no pair of vertices pv  and rv  resolves )(GV , in 
other words 2)( ≠Gβ .  

Conversely if there exist pv  and rv  such that 1≤∩
sq rp VV  

for all qp  and sr , then given any pair of vertices 1w  and 2w  

from )(GV  we have 
111 sq rp VVw ∩∈  and 

222 sq rp VVw ∩∈  

where at least 
1qp  is different from 

2qp  or 
1sr  is different 

from 
2sr . This implies that 1w  and 2w  are resolved by at least 

one of pv  and rv . So 2)( ≤Gβ  and in fact,   2)( =Gβ  as G  

is not a path.          ♦ 
 
 

VII. ALGORITHM TO CHECK WHETHER THE METRIC DIMENSION 
OF A GIVEN GRAPH G IS TWO  

 
The following algorithm follows from the Theorem 6.1. 
Step 1:  Input: distance matrix   

Input is the distance matrix ordered according to 
vertices of a graph G  which is not a path. 

Step 2 : Check if 2)( ≠Gβ  from number of elements in 
)(GV   
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If number of vertices in G  i.e., 8)1()( 2 +−> DGV  
where D  is the diameter of the graph G  then 

2)( ≠Gβ  (Samir khuller et al) . 
 
Step 3:  Selection of vertices for finding metric basis 

Select only those vertices in G  with degree less than 
or equal to three (Samir khuller et al) . 

Step 4: Formation of distance partitions 
Form distance partition },........,{

10 iikii VVV of )(GV  

with reference to every vertex iv  having degree less 
than or equal to three ni ≤≤1 . 
 

Step 5: Identify the pair of vertices for finding metric basis 
i)  Given a pair ),( 21 uu  if eccentricity of a vertex  2u  is 

less than number of vertices at distance ),( 21 uud  and 
vice versa  then { }21,uu  cannot be a metric basis for 
G . Consider only a remaining pairs.  

ii)  Among the pairs ),( ji uu  remaining, consider only 
the pairs with unique shortest path between them. 

Step 6: Find intersection 
If there exists vertices iv  and jv  )( ji ≠  with 

1≤∩
lk ji VV  for every k  and l  with )(1 ivek ≤≤  

and )(1 jvel ≤≤ , then { }ji vv ,  is a metric basis for the 
graph G  . Otherwise the metric dimension of G is 
not equal to two. 

 
 

VIII.COMPLEXITY 
 

Let G  be a graph with diameter D  on n  vertices. Every 
set in distance partition of )(GV  with reference to a vertex v  
is to be compared with at most Dn )1( − sets. Therefore totally 
there are DDn ))1(( −  comparisons for v . For the next vertex 

the number of comparisons needed is ))2(( 2Dn − . Similarly 
for the last vertex the number of comparisons needed is 

2))1(( Dnn −− . Therefore the total number of set comparisons 
required is  

 

).1.........)2()1(( 222 DDnDn ++−+− = ⎥⎦
⎤

⎢⎣
⎡ −

2
)1(2 nnD . 

In every comparison of two sets there can be at most 2D  
comparisons of elements. Hence total number of element 

comparisons is 22

2
)1( DnnD ⎥⎦
⎤

⎢⎣
⎡ −  . 

Thus the complexity of the algorithm is 4

2
)1( Dnn
⎥⎦
⎤

⎢⎣
⎡ −

= . 
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