
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:1, 2008

113

Perturbation Based Search Method for Solving
Unconstrained Binary Quadratic Programming

Problem
Muthu Solayappan, Kien Ming Ng, and Kim Leng Poh

Abstract—This paper presents a perturbation based search method
to solve the unconstrained binary quadratic programming problem.
The proposed algorithm was tested with some of the standard test
problems and the results are reported for 10 instances of 50, 100, 250,
& 500 variable problems. A comparison of the performance of the
proposed algorithm with other heuristics and optimization software is
made. Based on the results, it was found that the proposed algorithm
is computationally inexpensive and the solutions obtained match the
best known solutions for smaller sized problems. For larger instances,
the algorithm is capable of finding a solution within 0.11% of the
best known solution. Apart from being used as a stand-alone method,
this algorithm could also be incorporated with other heuristics to find
better solutions.

Keywords—unconstrained binary quadratic programming, pertur-
bation, interior point methods

I. INTRODUCTION

QUADRATIC Programming is a special type of mathe-
matical optimization problem, which involves minimiza-

tion of a quadratic function subject to linear constraints. Un-
constrained binary quadratic programming problem (UBQP)
refers to minimizing a quadratic function subject to variables
being 0 or 1. A general formulation of the UBQP problem is
given below:

min f(x) = xT Ax

s.t. x ∈ {0, 1}n (1)

where A is a symmetric n×n matrix. It is an NP-hard problem
and has a multitude of applications ranging from the problem
of ranking a sports team [1] to that of determining the native
conformation of molecules [2]. Most of the quadratic inte-
ger programming problems resulting from different problem
scenarios could be formulated as a standard unconstrained
binary quadratic programming problem, and hence developing
solution techniques for problems of this type serves a much
wider purpose.

In spite of the rich literature available on solving the
problems of type (1), most of the exact methods proposed
are based on the branch and bound technique varying in the
development of cuts and bounds, forcing rules and prepro-
cessing techniques. Solution methods thus developed rely on
the quality of bounds or the efficiency of cuts generated to
constrain the feasible region. Moreover, only medium sized

Muthu Solayappan (muthu@nus.edu.sg), Kien Ming Ng
(isenkm@nus.edu.sg) and Kim Leng Poh (isepohkl@nus.edu.sg) are
with the Department of Industrial and Systems Engineering, National
University of Singapore.

problems were attempted. On the other hand, heuristics such
as simulated annealing, tabu search and genetic algorithm,
coupled with hybrid approaches were more often used. Per-
turbation methods, though commonly used to solve problems
that are not amenable to exact methods, have been uncommon
in the area of unconstrained binary quadratic programming
problems. As perturbation methods may have certain strengths
that apply to our problem of interest, we have developed
a solution technique using such methods coupled with a
particular search direction to solve problems of type (1). In
particular, this technique involves solving the relaxed version
of problem (1) by suitably perturbing the matrix A. Such a
perturbation gives us a chance to explore the neighborhood
of the current iterate to look for improved solutions, with the
possibility of avoiding the situation of being trapped at local
optimal solutions.

The rest of the paper is organized as follows: Section
II presents a brief literature survey of methods used to
solve problems of type (1), whereas section III introduces
the problem statement together with some background on
the perturbation approach and the direction of search. The
perturbation based search method that is being proposed is
then explained in detail in section IV. Section V provides a
brief note on the parameter initializations. Numerical results
and the performance of the algorithm are discussed in section
VI. Section VII provides concluding remarks and areas of
future research.

II. RELATED WORK

UBQP has been in existence for a long period of time and
various solution techniques, both exact methods and heuristics,
have been proposed. The branch and bound method has been
used to develop exact solution techniques for solving UBQP
[3]–[5], and [6] develops an approximate algorithm using
bounding techniques to solve the UBQP problem. Semidefinite
relaxation of UBQP coupled with the addition of cuts to
the feasible region [7] proves to be an effective method
when solved by the ellipsoidal algorithm for moderately sized
problems.

Variants of tabu search, simulated annealing and genetic
algorithm have been extensively used to solve UBQP. Tabu
search involving strategic oscillation between adding and drop-
ping variables progressively produced some excellent results
[8]. A similar two-phase approach has been used to solve the
UBQP reformulation of uncapacitated task allocation problem

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:1, 2008

114

[9] and the vertex coloring problem [10]. Simulated annealing
based on a local search with a simple cooling schedule and
multiple annealing process starting from different tempera-
tures, though successfully applied to the UBQP, is limited by
its running time [11]. Solution techniques inspired from the
ideas of genetic algorithm have been used to solve quadratic
assignment problems [12], [13], which are closely related to
the UBQP.

III. PROBLEM STATEMENT

The problem that we are trying to solve is similar to the
standard formulation of the unconstrained binary quadratic
programming problem except that the objective is to maximize
the quadratic function. In order to solve problem (1), its
relaxed version is solved with the hope that the solution
would converge to integral values by an appropriate choice
of perturbation strategies. The relaxed version of the problem
of interest is stated below:

max f(x) = xT Ax

s.t. 0 ≤ x ≤ e
(2)

where e is an n-dimensional vector of 1’s, A is an n × n
symmetric matrix and x is an n-dimensional vector.

A. Perturbation

In order to explore the neighborhood of the current iterate
and and its potential to escape some local minima, we looked
at different strategies of perturbation to be employed, while
searching in a particular descent direction. We perturb the
matrix A by a small quantity and see if this change could
lead to a better solution. The perturbation of matrix A alters
the landscape of the original objective function, and masks
the original local minima points, thereby enabling the search
process to be more efficient. This helps in handling the local
minima points, which otherwise would have become more
difficult for the solution process. However, the perturbed
problem would have its own local minima points, which is
countered by iteratively updating the perturbation parameter
based on the values of the x-vector. The perturbed version of
the problem formulation is given below:

min fp(x) = xT Qx

s.t. 0 ≤ x ≤ e
(3)

where Q = −A + P and P is an n × n matrix used for
perturbing the matrix A. Entries of the matrix P are randomly
generated such that 0 ≤ Pij ≤ 1. The solution method that
is being proposed is applied to this perturbed version with a
view to solve the problem formulation in (1).

B. Direction of search

The objective function in (3) cannot be classified as convex
or nonconvex due to the varying nature of matrix Q. Only
when Q is positive semidefinite, the objective function is
convex and search directions could be derived from the first
principles. This cannot always be the case as the entries of
the matrix Q are problem specific. In order to get out of this

conundrum, we use search directions that were derived for
problems of similar nature in [14]. This particular reference
deals with solving problems of the form 1

2x
T Qx + cT x, l ≤

x ≤ u. They convert the problem to a convex optimization
problem by adding a barrier function to the objective and hence
obtain the search direction from first principles. We intend to
use the same search direction which is also proved to be a
direction of descent.

IV. PROPOSED SOLUTION METHOD

The original unconstrained binary quadratic programming
problem has been re-formulated as a continuous nonlinear
programming problem with a perturbed objective function as
shown in formulation (3). As the problem is unconstrained,
any of the search techniques which takes into account the
bounds on the variables can be used to solve the problem.
However, such methods would not always guarantee to give
a global optimum or near global optimum solution. In order
to avoid getting trapped at poor solutions or exploring the
feasible region along poor directions, we propose a solution
method which may give a solution in the ε-neighborhood of
the global optimum solution.

For a randomly generated initial solution, 0 < x < e, the
perturbed problem could be solved by moving in the direction
of descent obtained from [14]. The descent direction that is
being used is given below:

descent direction, dir(x) = d(x)− x

where di(x) =
ui + liγi(x)
1 + γi(x)

γi(x) = exp
(

1
β

∂fβ(x)
∂xi

) (4)

The function fβ is a type of barrier function that has been well-
experimented in [14] and as such, we will adapt it to solve
the problem on hand. Based on the above-mentioned direction,
coupled with perturbation of matrix A, the solution method
that is being proposed is shown in Algorithm 1. The barrier
parameter, β, is an arbitrarily large value which is reduced at
every iteration by a factor γ ∈ (0, 1) when the current iterate
is in the ε−neighborhood of the stationary point. Generally
the value of γ is set to a value close to 1, so that any drastic
changes that might occur otherwise could be avoided. The
values li and ui in (4) represent the lower and upper bounds
on the variable xi, respectively. The method terminates when
both the descent direction and barrier parameter are less than
the given tolerance levels, ε and εβ , respectively.

A search method is included in the algorithm to calculate
the step length α for the calculated descent direction dir(xk).
This is often solved as a subproblem and could be stated as
shown in (5):

min ϕ(α) = fp(xk + αdir(xk))
s.t. 0 ≤ α ≤ 1

(5)

This is a one-dimensional problem in the variable α and
many methods are available to solve problems of this type.
However, we prefer a method that does not require derivative
information to reduce the overall computational time. Hence

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:1, 2008

115

Algorithm 1 Perturbation Based Search Method

Let β0 = initial barrier parameter
ε = tolerance for the function
εβ = tolerance for barrier parameter
γ = reduction factor
n = number of variables
P = n× n matrix used for perturbing A
k = iteration counter
α = step length
x0 = feasible starting vector

Set flag = 0
k = 0
β = β0

γ = any value in (0, 1), preferably close to 1

while flag = 0
Compute Q = −A + P
for i = 1, . . . , n

Compute the descent direction, diri(xk)
end for
if ||dir(xk)|| ≤ ε

if β > εβ

β = γβ
else

flag = 1
end if

else
α = search method()
xk+1 = xk + αdir(xk)
P = perturbation method()
k = k + 1

end if
end while

we have chosen the golden section method for minimizing the
function ϕ(α) over the interval [0, 1]. The standard framework
of the method has been used and for details of implemen-
tation, the reader is referred to [15]. Matrix A is perturbed
at every iteration of Algorithm 1 by a separate procedure,
perturbation method(), and the way it is implemented is
detailed in Algorithm 2. For every vector x generated during

Algorithm 2 perturbation method()

Let δ = perturbation parameter such that 0 < δ < 1
n = number of variables
for i = 1, . . . , n

if NOT (x(i) = 1 OR x(i) = 0)
ith row and ith column of P is assigned δ

else
ith row and ith column of P is assigned 0

end if
end for

the execution of the algorithm, the method assigns a small
value δ to the ith row and ith column of the matrix P if the ith

component of vector x is neither 1 nor 0. The matrix P is then
used to perturb the matrix A by using an additional operator.
This would alter the matrix A thereby affecting the magnitude
of the descent direction that is being generated. This would
in turn help the algorithm to explore the neighborhood of the
current iterate to see if better solutions could be found. At
the same time, poor solutions could also be identified and
discarded.

V. PARAMETER INITIALIZATION

In order to start the proposed solution method, an initial
interior feasible point must be provided. For our procedure,
we randomly generate the starting vector x such that every
component of x belongs to the set, (0, 1)n. Since interior point
methods such as the proposed method depend on the quality of
the initial solution, we generate altogether 10 different starting
vectors and the algorithm is run for each of these vectors. By
doing so, it gives us an opportunity to select the best of 10
solutions provided by the algorithm.

The barrier parameter β is initially assigned an arbitrarily
large value, say 1000, and is reduced at every iteration by a
factor γ ∈ (0, 1), preferably close to 1. For the golden section
search method, the reduction ratio α is set at a constant value
of

√
5−1
2 and the tolerance for the interval of uncertainty, l, is

set at 0.01.
Though the magnitude of the objective function value is

important, equally essential is the components of the solution
vector being binary. Solving the relaxed version of the problem
does not help to resolve this issue. However, this issue can be
tackled by the perturbation approach we are proposing. As can
be seen from Algorithm 2, a small value of δ is being added to
every component of the solution vector that is not binary. This
may serve as a penalty being added to the objective function
for every component of the x-vector that is not binary. As the
objective function is to be minimized, the algorithm avoids the
addition of the penalty δ by forcing the variables to either 0 or
1. Hence we almost always find the values of x to be binding.
However, the value of δ is set to a relatively small value,
ranging from 0.0001 to 0.01. This is because a large value of
δ might alter the matrix A considerably, resulting in flawed
search directions which would cause the algorithm to produce
poor solutions. Consequently, in certain problem instances, we
do have solution vectors with certain components being non-
integral. In such cases, instead of simply rounding off the
solution, different permutations of 0’s and 1’s are tried and
the best solution is reported.

VI. PERFORMANCE EVALUATION

A. Numerical Results

In order to evaluate the performance of the algorithm, we
conducted several experiments on 40 different problem in-
stances contained in the OR-Library [16]. It presents a variety
of test problems differing in the number of binary variables
that are required to be solved. We tested our algorithm on
problems of size n = 50, 100, 250 and 500 variables. The

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:1, 2008

116

TABLE I
COMPARISON OF OBJECTIVE FUNCTION VALUES.

Problem Best Known Solution Reported by Perturbation %
Instance TS-B SA-B GLS SA-KN Method Difference
beas50-1 2098 2098 2098 2098 2098 0
beas50-2 3702 3702 3702 3702 3702 0
beas50-3 4626 4626 4626 4626 4626 0
beas50-4 3544 3544 3544 3544 3544 0
beas50-5 4012 4012 4012 4012 4012 0
beas50-6 3693 3693 3693 3693 3693 0
beas50-7 4520 4520 4520 4520 4520 0
beas50-8 4216 4216 4216 4216 4216 0
beas50-9 3780 3780 3780 3780 3780 0
beas50-10 3507 3507 3507 3507 3507 0

beas100-1 7970 7942 7970 7970 7904 0.83
beas100-2 11036 11036 11036 11036 11036 0
beas100-3 12723 12723 12723 12723 12723 0
beas100-4 10368 10368 10368 10368 10368 0
beas100-5 9083 9083 9083 9083 9083 0
beas100-6 10210 10210 10210 10210 10122 0.86
beas100-7 10125 10125 10125 10125 10098 0.27
beas100-8 11435 11435 11435 11435 11435 0
beas100-9 11455 11455 11455 11455 11455 0

beas100-10 12565 12565 12565 12565 12547 0.14

beas250-1 45607 45607 45607 45607 45579 0.06
beas250-2 44810 44810 44810 44810 44502 0.69
beas250-3 49037 49037 49037 49037 49019 0.04
beas250-4 41274 41274 41274 41274 41236 0.09
beas250-5 47961 47961 47961 47961 47948 0.03
beas250-6 41014 41014 41014 41014 40996 0.04
beas250-7 46757 46757 46757 46757 46757 0
beas250-8 35726 35726 35726 35726 35666 0.17
beas250-9 48916 48916 48916 48916 48733 0.37

beas250-10 40442 40442 40442 40442 40442 0

beas500-1 116586 116586 116586 116586 116452 0.11
beas500-2 128223 128204 128339 128339 128255 0.07
beas500-3 130812 130812 130812 130812 130812 0
beas500-4 130097 130077 130097 130097 130045 0.04
beas500-5 125487 125315 125487 125487 125397 0.07
beas500-6 121719 121719 121772 121772 121118 0.54
beas500-7 122201 122201 122201 122201 122159 0.03
beas500-8 123559 123469 123559 123559 123421 0.11
beas500-9 120798 120798 120798 120798 120616 0.15

beas500-10 130619 130619 130619 130619 130608 0.01

TS-B - Tabu Search as in [17]
SA-B - Simulated Annealing as in [17]
GLS - Genetic Local Search as presented in [18]
SA-KN - Simulated Annealing as presented in [19]

objective function to be maximized is of the form xT Qx,
where Q is an n × n matrix with integer entries and density
of 0.1.

Each and every problem type has 10 different instances
and for each of these instances, the algorithm is run from
10 different starting vectors. Thus, a total of 400 runs of
the algorithm were executed and the best solution for each
problem instance is reported in Table I. Columns 2 to 5 of
the table provide the best known solution value reported by
[17]–[19]. The column titled, Perturbation Method, presents
the solution that has been found using the proposed algorithm.
The next column gives the percentage deviation by which our
solution differs from the best known solution, calculated using
100(1− fP M

fbest
).

The algorithm was implemented in Matlab version 7.2. All
the experimental runs were performed on the same Pentium

IV PC running at 3.06GHz and 2GB of RAM. The algorithm
was terminated when there is no improvement in the objective
function value for a predefined number of iterations. Ten sets
of initial solutions were randomly generated and the same sets
were used for all the 10 instances of a particular problem type.

B. Comparison with other heuristics

In order to assess the performance of the proposed method,
the numerical solutions obtained are compared with heuristic
methods that have been developed to solve similar problems.
Table I shows the best objective function value found by dif-
ferent heuristics and the best one among them is highlighted.
The genetic local search proposed in [18] and the simulated
annealing along with reannealing proposed in [19] matches the
solution reported by [17] and in some cases even finds better
solutions. Our method outperforms the simulated annealing

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:1, 2008

117

method proposed in [17] for some instances. The solution
proposed by our method is in the neighborhood of the best
reported solution with an average deviation of less than 0.11%,
even for the larger problem instances.

The above-mentioned heuristics, as is the case generally,
build on a randomly generated solution through a precondi-
tioning phase and then after finding a good solution, there is
normally an improvement phase where a search for further
improvement in solution quality is performed. The proposed
perturbation method, however, lacks such complications and is
comparatively easy to implement. Moreover, the time taken to
obtain the final solution is significantly lesser when compared
to the other methods. Table II compares the time taken
(seconds) by different algorithms to that of the proposed
method. It should be noted that the running times reported for
[18] and [19] are for one phase only. Figure 1 compares the

TABLE II
COMPARISON OF RUNNING TIME WITH OTHER HEURISTICS.

Problem Total Time as Reported by Perturbation
Instance TS-B SA-B GLS SA-KN Method
beas50-1 14 19 - - 0.65
beas50-2 16 20 - - 0.56
beas50-3 17 21 - - 1.3
beas50-4 16 21 - - 1.05
beas50-5 16 20 - - 1.8
beas50-6 16 22 - - 1.1
beas50-7 17 22 - - 1.7
beas50-8 17 22 - - 1.7
beas50-9 17 22 - - 1.6
beas50-10 17 21 - - 1

beas100-1 34 31 - - 1.4
beas100-2 35 34 - - 1.3
beas100-3 37 34 - - 3.1
beas100-4 33 33 - - 1.5
beas100-5 36 33 - - 2.3
beas100-6 36 34 - - 1.3
beas100-7 36 32 - - 1.1
beas100-8 36 31 - - 3.5
beas100-9 35 32 - - 1.3
beas100-10 38 36 - - 2.9

beas250-1 238 226 - - 2.4
beas250-2 239 226 - - 4.4
beas250-3 254 240 - - 4.1
beas250-4 234 218 - - 2.7
beas250-5 245 232 - - 4.2
beas250-6 240 221 - - 3.3
beas250-7 250 232 - - 2.5
beas250-8 225 212 - - 4.8
beas250-9 246 229 - - 2.7
beas250-10 235 218 - - 3.5

beas500-1 956 1006 - 10 8.79
beas500-2 979 1009 - 10 8.6
beas500-3 987 1030 - 10 7
beas500-4 1003 1061 - 10 11.96
beas500-5 964 1030 - 10 13.1
beas500-6 966 1028 - 10 12.6
beas500-7 952 1014 - 10 12.7
beas500-8 1006 1050 - 10 15.4
beas500-9 954 998 - 10 15.6
beas500-10 971 1012 - 10 13.3

- indicates time not reported

running time of our method to that of [17]. It is only natural
to find that the running time increases with problem size.
Direct empirical comparison of running time is not possible

50 100 250 500
0

5

10

Problem Size, n

T
im

e
in

 s
ec

on
ds

50 100 250 500
0

500

1000

1500

Problem Size, n

T
im

e
in

 s
ec

on
ds

Perturbation Method

TS−B
SA−B

Fig. 1. Comparison of running time with other heuristis.

because of the difference in computer configurations and
softwares used. Having factored that in, we still feel that with a
modest computer configuration, we were able to produce some
good solutions with reasonable computation time. Hence, this
method can be used to provide some good starting points from
which other heuristics can use to search for global optimal or
near-global optimal solutions.

C. Comparison with exact methods

The comparison with other heuristics in the previous section
does not justify the performance evaluation of the proposed
method thoroughly. It will only be appropriate to compare
our method with other exact methods which are available to
solve similar problems. However, most of the exact methods
proposed for solving the unconstrained binary quadratic pro-
gramming problems do not report solutions for the standard
test problems that we are attempting to solve. Hence, we
decided to compare our performance with that of ILOG
OPL version 3.7. ILOG OPL uses the CPLEX (version 9.0)
engine to solve linear, integer and mixed-integer programming
problems. In particular, we used it to solve a linear integer
programming formulation of the problem (1) and is shown in
(6):

max
n∑

i=1

n∑
j=1

aijyij

subject to yij ≤ xi

yij ≤ xj

yij ≥ xi + xj − 1
yij ∈ {0, 1}
xi ∈ {0, 1}

i = 1, . . . , n; j = 1, . . . , n;

(6)

The CPLEX MIP solver engine solved each instance of the
50 variable problem to optimality within 3 seconds. The
performance for solving the 100 variable problem is shown

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:1, 2008

118

TABLE III
COMPARISON OF RUNNING TIME WITH OPL.

Problem OPL - CPLEX Engine Perturbation Method
Instance Solution Time(sec) Solution Time(sec)

beas100-1 7970 4560 7904 1.4
beas100-2 10681† 3591 11036 1.3
beas100-3 12723‡ 1380 12723 3.1
beas100-4 10368 1546.8 10368 1.5
beas100-5 9083 1369.8 9083 2.3
beas100-6 10210 10602 10122 1.3
beas100-7 10125 1771 10098 1.1
beas100-8 11435 758 11435 3.5
beas100-9 11455 126 11455 1.3

beas100-10 12565 1222 12547 2.9

† recorded at 3591 seconds, program did not terminate for up to 3 hours
‡ recorded at 1380 seconds, program did not terminate for up to 3 hours

and compared to that of the proposed algorithm in Table III.
However, the program was not able to read the data for the
250 variable problem from a text file and so we are unable
to show the corresponding computational results for the larger
instances. The largest computation time to achieve optimality
is seen in the beas100-6 instance. This can be attributed to the
highest number of non-zero entries (1038) in the matrix A for
this particular instance. Another problem instance, beas100-
2, with 976 non-zero entries does not solve to optimality.
This could be due to the fact that the CPLEX MIP solver
engine depends on the matrix structure to efficiently solve the
problem. A comparison of computation time between OPL and
that of our method is shown in Figure 2. Since the observed
values of computation time cover a wide range, the time
comparison has been made on a logarithmic scale. Though the
CPLEX MIP engine solves the problem to global optimality

1 2 3 4 5 6 7 8 9 10
0

0.5
1

2

3

4

5

6

7

8

9

10

Problem Instance

Lo
ga

rit
hm

 (
T

im
e

in
 s

ec
on

ds
)

PM
OPL

Fig. 2. Comparison of running time with OPL.

most of the time, it is not as good as the perturbation approach
in terms of computation time needed to solve the instances.
Moreover, OPL has difficulty handling problem instances with
more than 100 variables.

D. Effect of random starting points

As mentioned earlier, we use 10 different random starting
points from which the algorithm is run. Starting from different
points gives us a set of solutions from which the best is
selected. Here, the solutions that have been obtained from 10

TABLE IV
ANALYSIS OF SOLUTION QUALITY FOR 500 VARIABLES

Problem Best Average Avg. % Standard SD %
Instance Solution Solution deviation Deviation BS†

beas500-1 116452 116448.8 0.002 2.08 0.002
beas500-2 128255 128215.1 0.031 54.27 0.042
beas500-3 130812 130809.2 0.002 4.66 0.004
beas500-4 130045 129980.4 0.048 55.64 0.043
beas500-5 125397 125387.8 0.007 6.20 0.005
beas500-6 121118 121080.5 0.092 61.53 0.051
beas500-7 122159 122129.7 0.03 26.01 0.021
beas500-8 123421 123473.1 0.045 45.10 0.037
beas500-9 120616 120577.6 0.032 44.01 0.036

beas500-10 130608 130591.4 0.022 33.49 0.026

†-Standard Deviation as % of best known solution

different random starting points for each instance of the 500
variable problem are analyzed. The average solution quality
and its associated statistics are presented in Table IV. The
average of the objective values of the solutions obtained and
their standard deviations are also provided for each instance.
For each and every solution obtained from a random starting
point, the average percentage deviation from the best solution,
100(1 − fP M

fbest
), is given. Though the method is started from

different points, on the average, both the percentage deviation
and the standard deviation are around 0.03% of the best known
solution. This is within an acceptable range, considering the
problem being solved is one of the larger instances (500
variables) in the OR Library.

VII. CONCLUSIONS

In this paper, a perturbation based search method has
been proposed to solve the unconstrained binary quadratic
programming problem. In order to assess the performance of
the proposed algorithm, standard test problems were solved
and the solutions are reported. The results obtained were also
compared with that obtained by some of the solution methods
in the literature. We found that the proposed algorithm is
computationally inexpensive and produces some best known
solutions. On the average, the results reported were only 0.11%
less than the best known solution.

In order to enhance the method further, some heuristic
techniques can be incorporated along with the existing method.
This would help to improve the solution quality. Wider ranges
and different combinations of the parameters used in the
method can be tested to see if they affect the solution obtained.
Since we have found that the algorithm implemented here
is effective for solving the unconstrained binary quadratic
programming problem, its application in other areas of solving
similar optimization problems could also be explored.

ACKNOWLEDGMENT

This research was supported in part by the Academic
Research Council, Ministry of Education, Singapore under the
following grants: R-266-000-033-112 and R-266-000-033-133.

REFERENCES

[1] C. R. Cassady, L. M. Maillart, and S. Salman, “Ranking sports teams: A
customizable quadratic assignment approach,” Interfaces, vol. 35, no. 6,
pp. 497–510, November 2005.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:1, 2008

119

[2] A. T. Phillips and J. B. Rosen, “A quadratic assignment formulation of
the molecular conformation problem,” Journal of Global Optimization,
vol. 4, no. 2, pp. 229–241, March 1994.

[3] P. M. Pardalos and G. P. Rodgers, “A branch and bound algorithm for
the maximum clique problem,” Computers and Operations Research,
vol. 19, no. 5, pp. 363–375, July 1992.

[4] K. G. Palubeckis, “A tight lower bound for a special case of quadratic
0–1 programming,” Computing, vol. 77, no. 2, pp. 131–145, April 2006.

[5] P. M. Pardalos and G. P. Rodgers, “Computational aspects of a branch
and bound algorithm for quadratic zero-one programming,” Computing,
vol. 45, no. 2, pp. 131–144, June 1990.

[6] H. van Maaren and J. P. Warners, “Bounds and fast approximation
algorithms for binary quadratic optimization problems with application
to max 2sat,” Discrete Applied Mathematics, vol. 107, no. 1-3, pp. 225–
239, December 2000.

[7] C. Helmberg and F. Rendl, “Solving quadratic (0,1)-problems by
semidefinite programs and cutting planes,” Mathematical Programming,
vol. 82, no. 3, pp. 291–315, August 1998.

[8] F. Glover, G. A. Kochenberger, and B. Alidaee, “Adaptive memory tabu
search for binary quadratic programs,” Management Science, vol. 44,
no. 3, pp. 336–345, March 1998.

[9] M. Lewis, B. Alidaee, and G. Kochenberger, “Using xQx to model and
solve the uncapacitated task allocation problem,” Operations Research
Letters, vol. 33, no. 2, p. 176 182, March 2005.

[10] G. A. Kochenberger, F. Glover, B. Alidaee, and C. Rego, “An uncon-
strained quadratic binary programming approach to the vertex coloring
problem,” Annals of Operations Research, vol. 139, no. 1, pp. 229–241,
October 2005.

[11] K. Katayama and H. Narihisa, “Performance of simulated annealing-
based heuristic for the unconstrained binary quadratic problem,” Euro-
pean Journal of Operations Research, vol. 134, no. 1, pp. 103–119,
October 2001.

[12] Z. Drezner, “A new genetic algorithm for the quadratic assignment
problem,” INFORMS Journal on Computing, vol. 15, no. 3, pp. 320–330,
Summer 2003.

[13] A. Lodi, K. Allemand, and T. M. Liebling, “An evolutionary heuristic for
quadratic 0–1 programming,” European Journal of Operations Research,
vol. 119, no. 3, pp. 662–670, December 1999.

[14] C. Dang and L. Xu, “Barrier function method for the nonconvex
quadratic programming problem with box constraints,” Journal of
Global Optimization, vol. 18, no. 2, pp. 165–188, October 2000.

[15] M. S. Bazaraa and C. M. Shetty, Nonlinear Programming: Theory and
Algorithms. Singapore: John Wiley & Sons, 1990, pp.252–330.

[16] J. E. Beasley, “OR-library: Distributing test problems by electronic
mail,” The Journal of the Operational Research Society, vol. 41, no. 11,
pp. 1069–1072, November 1990.

[17] J.E.Beasley, “Heuristic algorithms for the unconstrained binary quadratic
programming problem,” Management School, Imperial College, London,
UK, Tech. Rep., December 1998.

[18] P. Merz and B. Freisleben, “Genetic algorithms for binary quadratic
programming,” in GECCO-1999: Proceedings of the Genetic and Evo-
lutionary Computation Conference, California, 1999, pp. 417–424.

[19] K. Katayama and H. Narihisa, “Performance of simulated annealing-
based heuristic for the unconstrained binary quadratic programming
problem,” European Journal of Operational Research, vol. 134, no. 1,
pp. 103–119, October 2001.

Muthu Solayappan is currently a Ph.D student at the Department of Industrial
and Systems Engineering, National University of Singapore. He obtained
his M.S in Industrial and Systems Engineering from University of Florida.
His research interests are in the areas of interior point methods in nonlinear
programming and its applications in computational biology.

Kien Ming Ng is currently an assistant professor at the Department of
Industrial and Systems Engineering, National University of Singapore. He
obtained his PhD in Management Science and Engineering from Stanford
University. His research interests are in optimization, numerical algorithms
and operations research applications in military & logistics.

Kim Leng Poh is currently an associate professor at the Department of
Industrial & Systems Engineering, and Deputy Director of Temasek Defense
Systems Institute at the National University of Singapore. He received his
PhD in Engineering-Economic Systems from Stanford University. His current
research and consulting interests include decision analysis, investments & risk
analysis, automated decision making under uncertainty & resource constraints
and large-scale optimization.

