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Abstract—In this paper a deterministic polynomial-time 

algorithm is presented for the Clique problem. The case is considered 
as the problem of omitting the minimum number of vertices from the 
input graph so that none of the zeroes on the graph’s adjacency 
matrix (except the main diagonal entries) would remain on the 
adjacency matrix of the resulting subgraph. The existence of a 
deterministic polynomial-time algorithm for the Clique problem, as 
an NP-complete problem will prove the equality of P and NP 
complexity classes. 
 

Keywords—Clique problem, Deterministic Polynomial-time 
Algorithm, Equality of P and NP Complexity Classes. 

I. INTRODUCTION 
EGARDING the solving time, problems are divided in 3 
categories [1]: 

 P or Tractable problems: Problems which are solvable by 
polynomial–time algorithms. 

 Intractable problems: Problems proven unsolvable by 
polynomial–time algorithms. 

 NP problems: Problems that No polynomial-time 
algorithm has yet been discovered for them, nor has anyone 
yet been able to prove that they are intractable; but the 
positive solution to their corresponding decision problem 
can be verified in polynomial time given the right 
information [2]. 
To study the relation between the P and NP complexity 

classes, the concept of “NP-completeness” is very useful. This 
concept was first introduced by Stephen A. Cook [3]. 
According to [1] and [4], problem C is NP-complete if: 
 C is NP. 
 A α C1 for any A in NP. 

Therefore:  
 B α C for any B in NP-complete. 

Considering the definition of NP-complete problems, a 
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1‘A’ can be reduced in polynomial time to ‘C’ [4] (there exists a procedure 
that transforms any instance of A into an instance of C with the following 
characteristics:  
 The transformation takes polynomial time.  
 The answers are the same. That is, the answer for any instance of A is "yes" 

if and only if the answer for the corresponding instance of C is also "yes.") 

deterministic polynomial-time solution to any of them would 
also be a deterministic polynomial-time solution to every other 
problem in NP. Thus it is sufficient to present a polynomial-
time algorithm for any NP-complete problem to prove that 
P=NP, as mentioned in [4] and [5]. The NP-complete problem 
considered in this paper is the Clique problem which is one of 
Richard Karp's 21 problems as shown NP-complete in his 
1972 paper “Reducibility among Combinatorial Problems” 
[6]. 

II. THE CLIQUE PROBLEM 
Any complete subgraph of an undirected graph is called a 

clique. The size of a clique is the number of vertices it 
contains. The Clique problem is the problem of finding a 
clique of maximum size in an arbitrary undirected graph. This 
problem is NP-complete according to [1], [4] and [6] since it 
is NP and: 

The Boolean Satisfiability Problem α The Clique Problem2 
In this paper a deterministic polynomial-time algorithm is 

presented for the Clique problem which would consequently 
prove the equality of the P and NP complexity classes.  

III. THE DETERMINISTIC POLYNOMIAL-TIME ALGORITHM FOR 
THE CLIQUE PROBLEM 

A. The Basic Idea 
According to the definition of the adjacency matrix of a 

graph [4], it is obvious that all the entries of a complete 
graph’s adjacency matrix are 1 except for 0's on the main 
diagonal. Thus the Clique problem can be considered as the 
problem of omitting the minimum number of vertices from the 
graph so that none of the zeroes on the graph’s adjacency 
matrix (except the main diagonal entries) would remain on the 
adjacency matrix of the resulting subgraph. 

1) The Problem of Maximum Inaccessibility Submatrix of 
Ones 
Since the 0’s on the main diagonal of the adjacency matrix 

are not considered to be deleted in the Clique problem, a 

 
2According to Cook’s theorem presented in [3], the Boolean Satisfiability 

problem is an NP-complete problem which means any problem in NP can be 
reduced in polynomial time to this problem. Thus the reduction of the Boolean 
Satisfiablity problem to the Clique problem in polynomial time will cause the 
reduction of any NP problem to Clique problem in polynomial time as well. 
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relevant adjacency matrix can be defined while working on 
cliques, that is a matrix same as usual adjacency matrices with 
like definition except for the main diagonal entries which 
should be all 1’s. Therefore a vertex is considered to be 
connected to itself, and disconnection is a concept defined 
within different vertices while having no edge in between. 
This new matrix actually presents the disconnections between 
vertices instead of connections and it shall be called the 
inaccessibility matrix. 

Definition 1: Suppose that G = (V, E) is an undirected 
graph, assuming that the vertices are numbered 0,1,2,...,|V|-1 
in some arbitrary manner, then the Inaccessibility matrix 
representation of a graph G consists of a |V| × |V| matrix A = 
[aij], in which aij = 1 if vertex i and vertex j are connected by 
an edge or i = j, and otherwise aij = 0. 

The size of an inaccessibility submatrix can be 
consequently defined as the number of vertices it contains. 
Thus the Clique problem is equivalent to the problem of 
finding an inaccessibility submatrix of maximum size, with all 
entries of 1’s for the input undirected graph.  

2) The Problem of Minimum Nil Sweeper 
Section III.A.1 described that finding a clique of maximum 

size in an undirected graph is equivalent to the problem of 
finding an inaccessibility submatrix of maximum size in it, 
with all entries of 1’s. This is actually the action of detecting 
the minimum set of vertices to be deleted from the graph so 
that the inaccessibility matrix of the remaining subgraph does 
not have any zeroes on its entries. This latter problem shall 
hereafter be called as Minimum Nil Sweeper problem. 

Each zero on the inaccessibility matrix is presenting two 
disconnected vertices, and to omit such zero it is enough to 
delete one of these vertices so that the inaccessibility matrix of 
the remaining graph would not include that vertex and 
therefore the corresponding zero. That is, the 0 at aij is omitted 
if either i-th or j-th vertices is omitted from the graph.  

Therefore the Minimum Nil Sweeper algorithm should 
consider all the zeroes on the inaccessibility matrix of the 
input graph and delete at least one of the vertices 
corresponding to each zero. This will make sure that the 
algorithm will remove all the zeroes, but since the algorithm 
should present the minimum set of vertices to be deleted from 
the graph, there should be an appropriate method of choosing 
the vertex to be deleted for each zero to extract the minimum 
set of vertices or in other words, the Minimum Nil Sweeper.  

B. The Algorithm 
To present the Minimum Nil Sweeper algorithm it is 

necessary to define some concepts.  
Definition 2: Assuming that the zeroes on the 

inaccessibility matrix of an undirected graph are numbered 
0,1,2,...,|N|-1 in some arbitrary manner, then for k≤N, Nil(k) 
is the set of k first zeroes of the inaccessibility matrix 
according to their arbitrary order. 

Definition 3: Assuming that N is the number of the zeroes 
on the inaccessibility matrix of an undirected graph, then for 
k≤N the Minimum Nil Sweeper(k) or MNS(k) is the minimum 

set of vertices to be deleted from the graph so that the 
inaccessibility matrix of the remaining subgraph does not 
include Nil(k). 

Definition 4: Assuming N as the number of zeroes on the 
inaccessibility matrix of an undirected graph, for k≤N having 
Nil(k) and MNS(k-1), if the k-th zero is presented by (x, y) the 
CNS 3(k, x) and CNS(k, y) are defined as follow: 

Supposing that G=(V, E) is the input graph which its 
vertices are numbered 0,1,2,...,|V|-1 in some arbitrary manner 
and that the |V|×|V| matrix A=[aij] is the Inaccessibility 
matrix representation of the graph, then a Set and a Flag can 
be assigned to every Vi∈V (for 0 ≤ i ≤ |V|-1), defined as 
follow: 
 

)}({)( kNilV | aVVSet ijji ∈∈=  (1) 

⎩
⎨
⎧

−∈
−∉

=
)1(1
)1(0

)(
kMNS if V
kMNS if V

VFlag
i

i
i  (2) 

 
Regarding these values the CNS(k, x) and CNS(k, y) can be 

computed as follow: 
 

}) = }; Flag(V Set(v)-{x  V) | MNS(k-{v 
{x})MNS(kCNS(k,x)

ii 11
1

∈∀∈
−∪−=  (3) 

 

}) = }; Flag(V Set(v)-{y  V) | MNS(k-{v 
{y})MNS(kCNS(k,y)

ii 11
1

∈∀∈
−∪−=  (4) 

 
Remark: The relation between the number of vertices in 

MNS(k-1) and the number of vertices in CNS(k, x) and CNS(k, 
y) is as follow:   
 

111 +−≤≤− )||MNS(k|CNS(k,x)|)||MNS(k  (5) 
111 +−≤≤− )||MNS(k|CNS(k,y)|)||MNS(k  (6) 

 
Proof of Remark: Suppose that the k-th zero is presented 

by (x, y), then according to (3) the difference between 
MNS(k-1) and CNS(k, x) arises from: 
 Vertices that are in CNS(k, x) but are not in MNS(k-1): If 

such vertices exist they are surely members of {x}  
 Vertices that are in MNS(k-1) but are not in CNS(k, x): If 

such vertices exist they are surely members of the set 
presented in (3) as follow: 

 
}) = }; Flag(V Set(v)-{x  V) | MNS(k-{v ii 11 ∈∀∈=α  (7) 

 
The set {x} has one member which is the vertex x, thus it 

can only add one vertex to CNS(k, x) which will not happen if 
vertex x is already a member of MNS(k-1), therefore: 
 

11 +−≤ )||MNS(k|CNS(k,x)|  (8) 
 

The set ‘α’ presented by (7) might be empty or have just 

 
3 Candidate Nil Sweeper 
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one member, since if it has more than one vertices as its 
members for the purpose of contradiction, those vertices could 
be removed from MNS(k-1) and be replaced by vertex x and 
produce a set smaller than MNS(k-1), which is a 
contradiction4. The size of ‘α’ is 1, only when x∉MNS(k-1), 
since assuming that the size of the set can be 1 for x∈MNS(k-
1) then it means a vertex exists in MNS(k-1) that the Flag of 
all the members of its Set is 1 which is a contradiction5, 
therefore:  
 

|CNS(k,x)|)||MNS(k ≤− 1  (9) 
 

The combination of (8) and (9) results (5). Same method 
can be used to show (6), thus the remark is proved. 

Lemma: Assuming that Nil(N) is the set of all zeroes on the 
inaccessibility matrix of an arbitrary undirected graph and 
having the MNS(k-1) for k≤N, then MNS(k) can be computed 
in polynomial time as follow: 
 

⎩
⎨
⎧

>
≤

=
),(),(),(
),(),(),(

)(
ykCNSxk if CNSykCNS
ykCNSxk if CNSxkCNS

kMNS  (10) 

 
Proof of Lemma: To prove the lemma, it is needed to show 

that: 
 The output of the lemma is the MNS(k). 
 The lemma takes polynomial time to compute MNS(k).  

Assuming for the purpose of contradiction that V′ is the 
output of the lemma and |MNS(k)|<|V′|, if the k-th zero is 
presented by (x, y) and none of the x or y vertices were added 
to MNS(k-1) in computing V′6 then V′=MNS(k-1)7 which 
results to |MNS(k)|<|MNS(k-1)|. This means MNS(k) which 
can delete Nil(k) and therefore Nil(k-1), contains less vertices 
comparing to MNS(k-1) which is in contradiction with the 
definition of MNS(k-1). Thus the output of lemma is MNS(k) 
if none of the x or y vertices were added to MNS(k-1) in 
computing V′. But this should also be proven if MNS(k-1) 
does not contain any of the x or y vertices and as a result, one 
of them is surely added to MNS(k-1) in computing V′. Since 
 

4 According to definition 4 and the lemma, for k ≤ N there must not be any 
vertex in MNS(k) that the Flag value of its Set members are all 1’s, since this 
means that all its corresponding zeroes in Nil(k) can be deleted by some other 
vertices in MNS(k) which are in its Set and have Flag values of 1’s, thus this 
vertex do not delete any zeroes. Therefore if there exists more than one 
vertices in ‘α’ it means that there are more than one vertices which the Flag 
value of their Set members are all 1’s except for x, that is by adding x to 
MNS(k-1) those vertices could be all deleted from the MNS(k-1) and a 
smaller MNS(k-1) could be achieved which is a contradiction. 

5 A set smaller than MNS(k-1) can be created by deleting this vertex from 
MNS(k-1), since the zero entries corresponding to this vertex can be all 
removed by some other vertices in MNS(k-1) which are in its Set and have 
Flag values of 1’s. 

6 This means MNS(k-1) contains one of these vertices at least. 
7 Supposing that |CNS(k, x)| ≤ |CNS (k, y)| and thus V′= CNS(k, x), since x 

was not added to MNS(k-1) in computing V′, x ∈ MNS(k-1). Considering (3), 
the set ‘α’ is empty since assuming for the purpose of contradiction that it has 
a member it means there exists a vertex in MNS(k-1) that all its corresponding 
zeroes in Nil(k-1) can be deleted by some other vertices in MNS(k-1) which is 
a contradiction. Thus CNS(k, x) = MNS(k-1). Same is for CNS(k, y) 
supposing that |CNS(k, x)| > |CNS (k, y)|, which means V′ = MNS(k-1). 

|MNS(k)|<|V′| (assumed for the purpose of contradiction), 
V1⊂V′ and V2⊂V-V′ can be defined as follow: 
 

0||| 21 ≥> V|V  (11) 
21 VVVMNS(k) ∪−′=  (12) 

 
Considering the lemma V′ is equal to one of the CNS(k, x) 

or CNS(k, y) sets, thus according to the remark mentioned, it 
is obtained that:  
 

111 +−≤′≤− )||MNS(k|V|)||MNS(k  (13) 
 

Equation (13) results to one of the followings: 
 

)||MNS(k|V| 1−=′  (14) 
11 +−=′ )||MNS(k|V|  (15) 

 
The combination of (12) and (14) result to: 

 
||||1 21 VV)||MNS(k|MNS(k)| +−−=  (16) 

 
which lead to followings according to (11): 

 
|V1| - |V2| > 0 
⇒ -|V1| + |V2| < 0 
⇒ |MNS(k-1)| - |V1| + |V2| < |MNS(k-1)|  
 

)||MNS(k|MNS(k)| 1−<⇒  (17) 
 
Equation (17) is a contradiction, since if |MNS(k)| < 

|MNS(k-1)| then MNS(k) which can delete Nil(k) and 
therefore Nil(k-1), contains less vertices comparing to 
MNS(k-1) which is in contradiction with the definition of 
MNS(k-1). 

The combination of (12) and (15) result to: 
 

||||11 21 VV)||MNS(k|MNS(k)| +−+−=  (18) 
 
which lead to followings according to (11): 

 
|V1| - |V2| > 0 
⇒ |V1| - |V2| ≥ 1 
⇒ -|V1| + |V2| ≤ -1 
⇒ |MNS(k-1)| + 1 - |V1| + |V2| ≤ |MNS(k-1)| + 1 - 1 
⇒ |MNS(k-1)| + 1 - |V1| + |V2| ≤ |MNS(k-1)|  

 
)||MNS(k|MNS(k)| 1−≤⇒  (19) 

 
Equation (19) is also a contradiction, since if |MNS(k)| = 

|MNS(k-1)| one of the x or y vertices are surely a member of 
MNS(k-1) which is not possible, and if |MNS(k)| < |MNS(k-
1)| then MNS(k) which can delete Nil(k) and therefore Nil(k-
1), contains less vertices comparing to MNS(k-1) which is in 
contradiction with the definition of MNS(k-1). Thus 
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according to the contradictions of (17) and (19) it is proven 
that the output of the lemma is the MNS(k).  

The next step is to show that the lemma takes polynomial 
time to compute MNS(k). The inaccessibility matrix of a 
graph is diagonal symmetric due to its definition. Thus to 
remove all the zeroes on the inaccessibility matrix it is enough 
to consider only the upper triangle of the inaccessibility 
matrix, since while concentrating on a 0 at aij whether the i-th 
or the j-th vertex is omitted, the corresponding row and 
column of that vertex, are both omitted from the 
inaccessibility matrix and as a result the entry at aji is also 
omitted. Thus the number of zeroes considered in Minimum 
Nil Sweeper algorithm is (|V|2-|V|)/2 at the most or O(|V|2). 

Since to compute each vertices’ Set it is enough to read 
every member of Nil(k-1) like (x, y) and add y to Set(x) and x 
to Set(y), and to compute vertices’ Flag it is enough to read 
MNS(k-1) and set the Flag of its members as 1; the 
computation of all vertices’ Set and Flag will take polynomial 
time: 
 

)|(||)1(|)( 2VOkNilSetsT =−=  (20) 
)(|)1(|)( VOkMNSFlagsT =−=  (21) 

 
According to (3) and (7), the time order needed to compute 

CNS(k, x) is as follow: 
 

)()),(( αTxkCNST =  (22) 
 

To compute ‘α’ all the vertices of MNS(k-1) should be 
considered at the most, and for each of them it is needed to 
check the Flag of every member of its Set. Assume that the 
largest Set is presented by Max_Set, therefore: 
 

)|(||)(||).(|
|_|.|)1(|)),((

2VOVOVO 
SetMaxkMNSxkCNST

=≤

−≤  (23) 

 
Same is for CNS(k, y), therefore: 
 

)O(|V|V|)O(|V|).O(| 
t|)|.|Max_Se|MNS(k)T(CNS(k,y)

2

1
=≤

−≤  (24) 

 
Thus the computation of MNS(k) from MNS(k-1) will take 
polynomial time and the lemma is proven: 
 

)O(|V|O(|V|))O(|V|T(MNS(k)) 223 =+×=  (25) 
 
Theorem: Assuming that Nil(N) is the set of all zeroes on 

the inaccessibility matrix of an arbitrary undirected graph, 
then the Minimum Nil Sweeper(N) of this graph can be 
computed in polynomial time. 

Proof of Theorem: To prove the theorem, it is need to 
present a polynomial-time algorithm which can compute the 
MNS(N). Suppose that N is the number of zeroes on the 
inaccessibility matrix of an arbitrary undirected graph, then 
according to the lemma, MNS(N) can be computed in 

polynomial time having MNS(N-1) which can also be 
computed in polynomial time having MNS(N-2) and so on, 
thus MNS(1) can be computed in polynomial time having 
MSN(0) which is ∅ according to its definition. Therefore 
MNS(N) can be computed by N times repeating the method of 
extracting MNS(k) from MNS(k-1) presented in the lemma 
for any k ≤ N, and this is actually the Minimum Nil Sweeper 
algorithm. The Minimum Nil Sweeper algorithm, presented 
below, computes the MNS(N) in polynomial time which is 
proven in section III.C and III.D. 

The Minimum Nil Sweeper Algorithm: Suppose that G = 
(V, E) is the input graph of the Clique problem with N zeroes 
on its inaccessibility matrix, then: 
 Initialize MNS(0) with ∅.  
 For every Vi∈V (0 ≤ i ≤ |V|) assume that: 

 
φ=)( iVSet  (26) 

0)( =iVFlag  (27) 
 

 For every zero of Nil(N) repeat the lemma method. 
 After N iterations of lemma method, every vertex with Flag 

value of 1 is a member of MNS(N).  

C. The Proof of the Algorithm 
To prove the Minimum Nil Sweeper algorithm, it is needed 

to show that after N iterations of lemma method, MNS(N) 
contains the minimum set of vertices to delete Nil(N) from the 
inaccessibility matrix of the input undirected graph. This may 
be proven by “Mathematical induction”: 

Initial Step: MNS(0) is ∅ and it is obvious that ∅ is the 
minimum set of vertices to delete Nil(0). 

Inductive Assumption: After the (k-1)-th iteration of 
lemma method, MNS(k-1) contains the minimum set of 
vertices to delete Nil(k-1) from the inaccessibility matrix of the 
input undirected graph. 

Inductive Step: After the k-th iteration of lemma method, 
MNS(k) contains the minimum set of vertices to delete Nil(k) 
from the inaccessibility matrix of the input undirected graph. 

The k-th iteration of lemma method considers MNS(k-1) as 
input which contains the minimum set of vertices to delete 
Nil(k-1) from the inaccessibility matrix of the input undirected 
graph according to the inductive assumption. Considering the 
proof of lemma, mentioned in section III.B having the 
MNS(k-1) for k ≤ N, the MNS (k) can be computed using the 
lemma method in polynomial time. Thus the inductive step is 
verified and as the result the algorithm proven. 

D. The Time Order of the Algorithm 
Suppose that N is the number of zeroes on the 

inaccessibility matrix of the input graph of the Clique problem 
and T(N) indicates the time order for computing MNS(N). 
Assuming ‘t’ as the time order for each iteration of lemma 
method, T(N) is computed as follow: 
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t       = N
) + Nt(       = T

)t) + (N-(       = T
       …

t) + (N-       = T
) + tT(N)= T(N-

0
11

22
1

 (28) 

 
))= O(|V|) . O(|V|V|T(N) = O(| 422  (29) 

 
Thus MNS(N) can be computed in polynomial time and the 

Theorem is proven.    

IV. THE FASTER ALGORITHM8 FOR THE CLIQUE PROBLEM 
The Minimum Nil Sweeper algorithm presented in section 

III.B computes the Set and Flag for all vertices each time it 
uses the lemma method, which is not necessary since updating 
is possible.  

Supposing that the Set of each vertex is defined as an array 
of size N, the Sets of all vertices is considered as an N×N 
matrix which is valued after the (k-1)-th iteration as follow: 
 

⎩
⎨
⎧

−∈
−∉

=
)1(),(1
)1(),(0

]][[
kNilVV if 
kNilVV if 

jiSet
ji

ji  (30) 

 
Thus, Set[i][j]=1 means Vi∈Set(Vj) and Vj∈Set(Vi). 

Assuming that the k-th zero is presented as (x, y), Set array 
can be updated after the k-th iteration by making the following 
changes in O(1) time: 
 

1]][[
1]][[

=
=

xySet
yxSet  (31) 

 
According to the remark mentioned in III.B, on each 

iteration of lemma, Flag value of only two vertices might 
change: the one that might have been added to MNS(k-1) and 
the one that might have been removed from MNS(k-1). Thus 
to update Flag values it is enough to change the Flag value of 
these two vertices at the most which will take O(1) time. 

The algorithm also computes the CNS(k, x) and CNS(k, y) 
in O(|V|2) by checking all the Set’s member for every vertex 
of MNS(k-1). But considering the size difference between 
MNS(k-1) and MNS(k)9, they can also be computed faster. To 
improve this time, ‘Zero_Counter’ can be defined as an array 
of length |V| as follow: 

 
|}0)(|1]][[{|][_ === jVFlagjiSetiCounterZero  (32) 

 
Thus Zero_Counter[i] contains the number of 1’s on the i-th 

row of the Set matrix that point to a vertex with Flag value of 
1. Using the definitions of Set matrix and Zero_Counter, the 
 

8 The algorithm is described as a program written in a pseudocode that is 
similar in many respects to C and Java programming languages. 

9 According to the remark and lemma presented in III.B it is obvious that: 
|MNS(k-1)|≤|MNS(k)|≤|MNS(k-1)|+1 

set ‘α’ presented in (7), can be computed as a vertex with 
following specifications: 
 

1]][[ =xvertexSet  (33) 
1][_ =vertexCounterZero  (34) 

 
The mentioned specifications can be checked in O(1) for 

each vertex and since it is needed to check MNS(k-1) vertices 
to compute each of the CNS(k, x) and the CNS(k, y) sets, it is 
obvious that their computation time order is O(|V|).  

The Zero_Counter array can be updated after each iteration 
of lemma method in O(|V|) time, since according to the 
remark mentioned in III.B, on each iteration of lemma, Flag 
value of only two vertices might change. Thus to update 
Zero_Counter, if a vertex has been added to MNS(k-1) in 
computing MNS(k), then for all vertices of the graph, it is 
necessary to decrease Zero_Counter value by one if the 
recently added vertex belongs to their Set. Same if a vertex 
has been removed from MNS(k-1) in computing MNS(k), 
then for all vertices of the graph, it is necessary to increase 
Zero_Counter by one if the recently removed vertex belongs 
to their Set.  

Therefore the time order for computation of MNS(k) from 
MNS(k-1) with necessary updates can be decreased to: 
 

O(|V|))O(O(|V|)t =×+×= 122  (35) 
 
Thus a faster algorithm for the Clique problem could be 

defined with following time order according to (28): 
 

) = O(|V|) . O(|V|)V|T(N) = O(| 32  (36) 
        

The Algorithm: Assumed that IM is the N×N 
inaccessibility matrix of the input graph; and Set, Flag and 
Zero_Counter are arrays with all entries of 0’s, the algorithm 
can be described as follow: 

 
MNS (int N, iMatrix IM) 
{ 
int cns_i, cns_j, zero_i, zero_j, mns = 0; 
int Set[N][N]; 
int Flag[N]; 
int Zero_Counter[N]; 
for (int i = 0; i < N; i ++) 
   for (int j = i+1; j < N; j ++) 
      if (IM[i][j] == 0) 
      { 
         Set[i][j] = 1; 
         Set[j][i] = 1; 
         Zero_Counter[i]++; 
         Zero_Counter[j]++; 
         cns_i = mns; 
         cns_j = mns; 
         zero_i = -1; 
         zero_j = -1; 
         if (Flag[i] == 0) cns_i ++; 
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         if (Flag[j] == 0) cns_j ++; 
         for (int k = 0; k < N; k ++) 
            if (Flag[k] ==1) 
            {  
               if (Zero_Counter[k] == 1 && Set[k][i] = 1) 
               { 
                  cns_i --; 
                  zero_i = k; 
                  break; 
               }  
               if (Zero_Counter[k] == 1 && Set[k][j] = 1) 
               { 
                  cns_j --; 
                  zero_j = k; 
                  break; 
               }  
            } 
         if (cns_i ≤ cns_j) 
         { 
            if (Flag[i] != 1) 
            { 
               mns = cns_i; 
               Flag[i] = 1; 
               if (zero_i != -1) Flag[zero_i] = 0; 
               for (int k = 0; k < N; k ++) 
               { 
                  if (Set[k][i] = 1) Zero_Counter[k]--; 
                  if (zero_i != -1) 
                     if (Set[k][zero_i] = 1) Zero_Counter[k]++; 
               } 
            } 
            else 
               Zero_Counter[j]--; 
         } 
         else 
         { 
            if (Flag[j] != 1) 
            { 
               mns = cns_j; 
               Flag[j] = 1; 
               if (zero_i != -1) Flag[zero_i] = 0; 
               for (int k = 0; k < N; k ++) 
               { 
                  if (Set[k][j] = 1) Zero_Counter[k]--; 
                  if (zero_j != -1)  
                     if (Set[k][zero_j] = 1) Zero_Counter[k]++; 
               } 
            } 
            else 
               Zero_Counter[i]--; 
         } 
      } 
for (int i = 0; i < N; i ++) 
   if (Flag[i] == 0) 
      print i; 
} 

V. THE EQUALITY OF P AND NP 
Sections III and IV, both present a polynomial-time 

algorithm for the Clique problem. A deterministic polynomial-
time algorithm for the Clique problem, as an NP-complete 
problem is also a deterministic polynomial-time algorithm to 
every other NP-complete problem according to their 
definition. Thus since the Minimum Nil Sweeper algorithm 
presented in this paper solves the Clique problem in O(|V|3) 
time it can be claimed that every NP-problem are solvable in 
O(|V|3) time. Thus the complexity classes P and NP are equal. 

VI. CONCLUSION 
This paper has introduced a deterministic polynomial-time 

algorithm for the problem of finding the maximum clique in 
an arbitrary undirected graph, known as the Clique problem. 
The case is considered as the problem of omitting the 
minimum number of vertices from an undirected graph so that 
none of the zeroes on the graph’s adjacency matrix (except the 
zeroes on the main diagonal) would remain on the adjacency 
matrix of the resulting subgraph. The Minimum Nil Sweeper 
algortihm, presented in this paper, computes the maximum 
clique in O(|V|3) time, thus it is a polynomial-time 
algorithm.The existence of a deterministic polynomial-time 
algorithm for the Clique problem as an NP-complete problem 
will prove that the complexity classes P and NP are equal. 
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