
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3207

Abstract—In this paper a deterministic polynomial-time

algorithm is presented for the Clique problem. The case is considered
as the problem of omitting the minimum number of vertices from the
input graph so that none of the zeroes on the graph’s adjacency
matrix (except the main diagonal entries) would remain on the
adjacency matrix of the resulting subgraph. The existence of a
deterministic polynomial-time algorithm for the Clique problem, as
an NP-complete problem will prove the equality of P and NP
complexity classes.

Keywords—Clique problem, Deterministic Polynomial-time
Algorithm, Equality of P and NP Complexity Classes.

I. INTRODUCTION
EGARDING the solving time, problems are divided in 3
categories [1]:

 P or Tractable problems: Problems which are solvable by
polynomial–time algorithms.

 Intractable problems: Problems proven unsolvable by
polynomial–time algorithms.

 NP problems: Problems that No polynomial-time
algorithm has yet been discovered for them, nor has anyone
yet been able to prove that they are intractable; but the
positive solution to their corresponding decision problem
can be verified in polynomial time given the right
information [2].
To study the relation between the P and NP complexity

classes, the concept of “NP-completeness” is very useful. This
concept was first introduced by Stephen A. Cook [3].
According to [1] and [4], problem C is NP-complete if:
 C is NP.
 A α C1 for any A in NP.

Therefore:
 B α C for any B in NP-complete.

Considering the definition of NP-complete problems, a

Zohreh O. Akbari is a post graduate student at Payame Noor University,
Tehran, Iran (e-mail: z.o.akbari@ gmail.com). This study is an individual
pursuit of the author out of personal interest and not a part of the academic
requirement of the university.

1‘A’ can be reduced in polynomial time to ‘C’ [4] (there exists a procedure
that transforms any instance of A into an instance of C with the following
characteristics:
 The transformation takes polynomial time.
 The answers are the same. That is, the answer for any instance of A is "yes"

if and only if the answer for the corresponding instance of C is also "yes.")

deterministic polynomial-time solution to any of them would
also be a deterministic polynomial-time solution to every other
problem in NP. Thus it is sufficient to present a polynomial-
time algorithm for any NP-complete problem to prove that
P=NP, as mentioned in [4] and [5]. The NP-complete problem
considered in this paper is the Clique problem which is one of
Richard Karp's 21 problems as shown NP-complete in his
1972 paper “Reducibility among Combinatorial Problems”
[6].

II. THE CLIQUE PROBLEM
Any complete subgraph of an undirected graph is called a

clique. The size of a clique is the number of vertices it
contains. The Clique problem is the problem of finding a
clique of maximum size in an arbitrary undirected graph. This
problem is NP-complete according to [1], [4] and [6] since it
is NP and:

The Boolean Satisfiability Problem α The Clique Problem2
In this paper a deterministic polynomial-time algorithm is

presented for the Clique problem which would consequently
prove the equality of the P and NP complexity classes.

III. THE DETERMINISTIC POLYNOMIAL-TIME ALGORITHM FOR
THE CLIQUE PROBLEM

A. The Basic Idea
According to the definition of the adjacency matrix of a

graph [4], it is obvious that all the entries of a complete
graph’s adjacency matrix are 1 except for 0's on the main
diagonal. Thus the Clique problem can be considered as the
problem of omitting the minimum number of vertices from the
graph so that none of the zeroes on the graph’s adjacency
matrix (except the main diagonal entries) would remain on the
adjacency matrix of the resulting subgraph.

1) The Problem of Maximum Inaccessibility Submatrix of
Ones
Since the 0’s on the main diagonal of the adjacency matrix

are not considered to be deleted in the Clique problem, a

2According to Cook’s theorem presented in [3], the Boolean Satisfiability

problem is an NP-complete problem which means any problem in NP can be
reduced in polynomial time to this problem. Thus the reduction of the Boolean
Satisfiablity problem to the Clique problem in polynomial time will cause the
reduction of any NP problem to Clique problem in polynomial time as well.

A Deterministic Polynomial-time Algorithm for
the Clique Problem and the Equality of P and

NP Complexity Classes
Zohreh O. Akbari

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3208

relevant adjacency matrix can be defined while working on
cliques, that is a matrix same as usual adjacency matrices with
like definition except for the main diagonal entries which
should be all 1’s. Therefore a vertex is considered to be
connected to itself, and disconnection is a concept defined
within different vertices while having no edge in between.
This new matrix actually presents the disconnections between
vertices instead of connections and it shall be called the
inaccessibility matrix.

Definition 1: Suppose that G = (V, E) is an undirected
graph, assuming that the vertices are numbered 0,1,2,...,|V|-1
in some arbitrary manner, then the Inaccessibility matrix
representation of a graph G consists of a |V| × |V| matrix A =
[aij], in which aij = 1 if vertex i and vertex j are connected by
an edge or i = j, and otherwise aij = 0.

The size of an inaccessibility submatrix can be
consequently defined as the number of vertices it contains.
Thus the Clique problem is equivalent to the problem of
finding an inaccessibility submatrix of maximum size, with all
entries of 1’s for the input undirected graph.

2) The Problem of Minimum Nil Sweeper
Section III.A.1 described that finding a clique of maximum

size in an undirected graph is equivalent to the problem of
finding an inaccessibility submatrix of maximum size in it,
with all entries of 1’s. This is actually the action of detecting
the minimum set of vertices to be deleted from the graph so
that the inaccessibility matrix of the remaining subgraph does
not have any zeroes on its entries. This latter problem shall
hereafter be called as Minimum Nil Sweeper problem.

Each zero on the inaccessibility matrix is presenting two
disconnected vertices, and to omit such zero it is enough to
delete one of these vertices so that the inaccessibility matrix of
the remaining graph would not include that vertex and
therefore the corresponding zero. That is, the 0 at aij is omitted
if either i-th or j-th vertices is omitted from the graph.

Therefore the Minimum Nil Sweeper algorithm should
consider all the zeroes on the inaccessibility matrix of the
input graph and delete at least one of the vertices
corresponding to each zero. This will make sure that the
algorithm will remove all the zeroes, but since the algorithm
should present the minimum set of vertices to be deleted from
the graph, there should be an appropriate method of choosing
the vertex to be deleted for each zero to extract the minimum
set of vertices or in other words, the Minimum Nil Sweeper.

B. The Algorithm
To present the Minimum Nil Sweeper algorithm it is

necessary to define some concepts.
Definition 2: Assuming that the zeroes on the

inaccessibility matrix of an undirected graph are numbered
0,1,2,...,|N|-1 in some arbitrary manner, then for k≤N, Nil(k)
is the set of k first zeroes of the inaccessibility matrix
according to their arbitrary order.

Definition 3: Assuming that N is the number of the zeroes
on the inaccessibility matrix of an undirected graph, then for
k≤N the Minimum Nil Sweeper(k) or MNS(k) is the minimum

set of vertices to be deleted from the graph so that the
inaccessibility matrix of the remaining subgraph does not
include Nil(k).

Definition 4: Assuming N as the number of zeroes on the
inaccessibility matrix of an undirected graph, for k≤N having
Nil(k) and MNS(k-1), if the k-th zero is presented by (x, y) the
CNS 3(k, x) and CNS(k, y) are defined as follow:

Supposing that G=(V, E) is the input graph which its
vertices are numbered 0,1,2,...,|V|-1 in some arbitrary manner
and that the |V|×|V| matrix A=[aij] is the Inaccessibility
matrix representation of the graph, then a Set and a Flag can
be assigned to every Vi∈V (for 0 ≤ i ≤ |V|-1), defined as
follow:

)}({)(kNilV | aVVSet ijji ∈∈= (1)

⎩
⎨
⎧

−∈
−∉

=
)1(1
)1(0

)(
kMNS if V
kMNS if V

VFlag
i

i
i (2)

Regarding these values the CNS(k, x) and CNS(k, y) can be

computed as follow:

}) = }; Flag(V Set(v)-{x V) | MNS(k-{v
{x})MNS(kCNS(k,x)

ii 11
1

∈∀∈
−∪−= (3)

}) = }; Flag(V Set(v)-{y V) | MNS(k-{v
{y})MNS(kCNS(k,y)

ii 11
1

∈∀∈
−∪−= (4)

Remark: The relation between the number of vertices in

MNS(k-1) and the number of vertices in CNS(k, x) and CNS(k,
y) is as follow:

111 +−≤≤−)||MNS(k|CNS(k,x)|)||MNS(k (5)
111 +−≤≤−)||MNS(k|CNS(k,y)|)||MNS(k (6)

Proof of Remark: Suppose that the k-th zero is presented

by (x, y), then according to (3) the difference between
MNS(k-1) and CNS(k, x) arises from:
 Vertices that are in CNS(k, x) but are not in MNS(k-1): If

such vertices exist they are surely members of {x}
 Vertices that are in MNS(k-1) but are not in CNS(k, x): If

such vertices exist they are surely members of the set
presented in (3) as follow:

}) = }; Flag(V Set(v)-{x V) | MNS(k-{v ii 11 ∈∀∈=α (7)

The set {x} has one member which is the vertex x, thus it

can only add one vertex to CNS(k, x) which will not happen if
vertex x is already a member of MNS(k-1), therefore:

11 +−≤)||MNS(k|CNS(k,x)| (8)

The set ‘α’ presented by (7) might be empty or have just

3 Candidate Nil Sweeper

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3209

one member, since if it has more than one vertices as its
members for the purpose of contradiction, those vertices could
be removed from MNS(k-1) and be replaced by vertex x and
produce a set smaller than MNS(k-1), which is a
contradiction4. The size of ‘α’ is 1, only when x∉MNS(k-1),
since assuming that the size of the set can be 1 for x∈MNS(k-
1) then it means a vertex exists in MNS(k-1) that the Flag of
all the members of its Set is 1 which is a contradiction5,
therefore:

|CNS(k,x)|)||MNS(k ≤− 1 (9)

The combination of (8) and (9) results (5). Same method
can be used to show (6), thus the remark is proved.

Lemma: Assuming that Nil(N) is the set of all zeroes on the
inaccessibility matrix of an arbitrary undirected graph and
having the MNS(k-1) for k≤N, then MNS(k) can be computed
in polynomial time as follow:

⎩
⎨
⎧

>
≤

=
),(),(),(
),(),(),(

)(
ykCNSxk if CNSykCNS
ykCNSxk if CNSxkCNS

kMNS (10)

Proof of Lemma: To prove the lemma, it is needed to show

that:
 The output of the lemma is the MNS(k).
 The lemma takes polynomial time to compute MNS(k).

Assuming for the purpose of contradiction that V′ is the
output of the lemma and |MNS(k)|<|V′|, if the k-th zero is
presented by (x, y) and none of the x or y vertices were added
to MNS(k-1) in computing V′6 then V′=MNS(k-1)7 which
results to |MNS(k)|<|MNS(k-1)|. This means MNS(k) which
can delete Nil(k) and therefore Nil(k-1), contains less vertices
comparing to MNS(k-1) which is in contradiction with the
definition of MNS(k-1). Thus the output of lemma is MNS(k)
if none of the x or y vertices were added to MNS(k-1) in
computing V′. But this should also be proven if MNS(k-1)
does not contain any of the x or y vertices and as a result, one
of them is surely added to MNS(k-1) in computing V′. Since

4 According to definition 4 and the lemma, for k ≤ N there must not be any
vertex in MNS(k) that the Flag value of its Set members are all 1’s, since this
means that all its corresponding zeroes in Nil(k) can be deleted by some other
vertices in MNS(k) which are in its Set and have Flag values of 1’s, thus this
vertex do not delete any zeroes. Therefore if there exists more than one
vertices in ‘α’ it means that there are more than one vertices which the Flag
value of their Set members are all 1’s except for x, that is by adding x to
MNS(k-1) those vertices could be all deleted from the MNS(k-1) and a
smaller MNS(k-1) could be achieved which is a contradiction.

5 A set smaller than MNS(k-1) can be created by deleting this vertex from
MNS(k-1), since the zero entries corresponding to this vertex can be all
removed by some other vertices in MNS(k-1) which are in its Set and have
Flag values of 1’s.

6 This means MNS(k-1) contains one of these vertices at least.
7 Supposing that |CNS(k, x)| ≤ |CNS (k, y)| and thus V′= CNS(k, x), since x

was not added to MNS(k-1) in computing V′, x ∈ MNS(k-1). Considering (3),
the set ‘α’ is empty since assuming for the purpose of contradiction that it has
a member it means there exists a vertex in MNS(k-1) that all its corresponding
zeroes in Nil(k-1) can be deleted by some other vertices in MNS(k-1) which is
a contradiction. Thus CNS(k, x) = MNS(k-1). Same is for CNS(k, y)
supposing that |CNS(k, x)| > |CNS (k, y)|, which means V′ = MNS(k-1).

|MNS(k)|<|V′| (assumed for the purpose of contradiction),
V1⊂V′ and V2⊂V-V′ can be defined as follow:

0||| 21 ≥> V|V (11)
21 VVVMNS(k) ∪−′= (12)

Considering the lemma V′ is equal to one of the CNS(k, x)

or CNS(k, y) sets, thus according to the remark mentioned, it
is obtained that:

111 +−≤′≤−)||MNS(k|V|)||MNS(k (13)

Equation (13) results to one of the followings:

)||MNS(k|V| 1−=′ (14)
11 +−=′)||MNS(k|V| (15)

The combination of (12) and (14) result to:

||||1 21 VV)||MNS(k|MNS(k)| +−−= (16)

which lead to followings according to (11):

|V1| - |V2| > 0
⇒ -|V1| + |V2| < 0
⇒ |MNS(k-1)| - |V1| + |V2| < |MNS(k-1)|

)||MNS(k|MNS(k)| 1−<⇒ (17)

Equation (17) is a contradiction, since if |MNS(k)| <

|MNS(k-1)| then MNS(k) which can delete Nil(k) and
therefore Nil(k-1), contains less vertices comparing to
MNS(k-1) which is in contradiction with the definition of
MNS(k-1).

The combination of (12) and (15) result to:

||||11 21 VV)||MNS(k|MNS(k)| +−+−= (18)

which lead to followings according to (11):

|V1| - |V2| > 0
⇒ |V1| - |V2| ≥ 1
⇒ -|V1| + |V2| ≤ -1
⇒ |MNS(k-1)| + 1 - |V1| + |V2| ≤ |MNS(k-1)| + 1 - 1
⇒ |MNS(k-1)| + 1 - |V1| + |V2| ≤ |MNS(k-1)|

)||MNS(k|MNS(k)| 1−≤⇒ (19)

Equation (19) is also a contradiction, since if |MNS(k)| =

|MNS(k-1)| one of the x or y vertices are surely a member of
MNS(k-1) which is not possible, and if |MNS(k)| < |MNS(k-
1)| then MNS(k) which can delete Nil(k) and therefore Nil(k-
1), contains less vertices comparing to MNS(k-1) which is in
contradiction with the definition of MNS(k-1). Thus

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3210

according to the contradictions of (17) and (19) it is proven
that the output of the lemma is the MNS(k).

The next step is to show that the lemma takes polynomial
time to compute MNS(k). The inaccessibility matrix of a
graph is diagonal symmetric due to its definition. Thus to
remove all the zeroes on the inaccessibility matrix it is enough
to consider only the upper triangle of the inaccessibility
matrix, since while concentrating on a 0 at aij whether the i-th
or the j-th vertex is omitted, the corresponding row and
column of that vertex, are both omitted from the
inaccessibility matrix and as a result the entry at aji is also
omitted. Thus the number of zeroes considered in Minimum
Nil Sweeper algorithm is (|V|2-|V|)/2 at the most or O(|V|2).

Since to compute each vertices’ Set it is enough to read
every member of Nil(k-1) like (x, y) and add y to Set(x) and x
to Set(y), and to compute vertices’ Flag it is enough to read
MNS(k-1) and set the Flag of its members as 1; the
computation of all vertices’ Set and Flag will take polynomial
time:

)|(||)1(|)(2VOkNilSetsT =−= (20)
)(|)1(|)(VOkMNSFlagsT =−= (21)

According to (3) and (7), the time order needed to compute

CNS(k, x) is as follow:

)()),((αTxkCNST = (22)

To compute ‘α’ all the vertices of MNS(k-1) should be
considered at the most, and for each of them it is needed to
check the Flag of every member of its Set. Assume that the
largest Set is presented by Max_Set, therefore:

)|(||)(||).(|
|_|.|)1(|)),((

2VOVOVO
SetMaxkMNSxkCNST

=≤

−≤ (23)

Same is for CNS(k, y), therefore:

)O(|V|V|)O(|V|).O(|
t|)|.|Max_Se|MNS(k)T(CNS(k,y)

2

1
=≤

−≤ (24)

Thus the computation of MNS(k) from MNS(k-1) will take
polynomial time and the lemma is proven:

)O(|V|O(|V|))O(|V|T(MNS(k)) 223 =+×= (25)

Theorem: Assuming that Nil(N) is the set of all zeroes on

the inaccessibility matrix of an arbitrary undirected graph,
then the Minimum Nil Sweeper(N) of this graph can be
computed in polynomial time.

Proof of Theorem: To prove the theorem, it is need to
present a polynomial-time algorithm which can compute the
MNS(N). Suppose that N is the number of zeroes on the
inaccessibility matrix of an arbitrary undirected graph, then
according to the lemma, MNS(N) can be computed in

polynomial time having MNS(N-1) which can also be
computed in polynomial time having MNS(N-2) and so on,
thus MNS(1) can be computed in polynomial time having
MSN(0) which is ∅ according to its definition. Therefore
MNS(N) can be computed by N times repeating the method of
extracting MNS(k) from MNS(k-1) presented in the lemma
for any k ≤ N, and this is actually the Minimum Nil Sweeper
algorithm. The Minimum Nil Sweeper algorithm, presented
below, computes the MNS(N) in polynomial time which is
proven in section III.C and III.D.

The Minimum Nil Sweeper Algorithm: Suppose that G =
(V, E) is the input graph of the Clique problem with N zeroes
on its inaccessibility matrix, then:
 Initialize MNS(0) with ∅.
 For every Vi∈V (0 ≤ i ≤ |V|) assume that:

φ=)(iVSet (26)

0)(=iVFlag (27)

 For every zero of Nil(N) repeat the lemma method.
 After N iterations of lemma method, every vertex with Flag

value of 1 is a member of MNS(N).

C. The Proof of the Algorithm
To prove the Minimum Nil Sweeper algorithm, it is needed

to show that after N iterations of lemma method, MNS(N)
contains the minimum set of vertices to delete Nil(N) from the
inaccessibility matrix of the input undirected graph. This may
be proven by “Mathematical induction”:

Initial Step: MNS(0) is ∅ and it is obvious that ∅ is the
minimum set of vertices to delete Nil(0).

Inductive Assumption: After the (k-1)-th iteration of
lemma method, MNS(k-1) contains the minimum set of
vertices to delete Nil(k-1) from the inaccessibility matrix of the
input undirected graph.

Inductive Step: After the k-th iteration of lemma method,
MNS(k) contains the minimum set of vertices to delete Nil(k)
from the inaccessibility matrix of the input undirected graph.

The k-th iteration of lemma method considers MNS(k-1) as
input which contains the minimum set of vertices to delete
Nil(k-1) from the inaccessibility matrix of the input undirected
graph according to the inductive assumption. Considering the
proof of lemma, mentioned in section III.B having the
MNS(k-1) for k ≤ N, the MNS (k) can be computed using the
lemma method in polynomial time. Thus the inductive step is
verified and as the result the algorithm proven.

D. The Time Order of the Algorithm
Suppose that N is the number of zeroes on the

inaccessibility matrix of the input graph of the Clique problem
and T(N) indicates the time order for computing MNS(N).
Assuming ‘t’ as the time order for each iteration of lemma
method, T(N) is computed as follow:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3211

t = N
) + Nt(= T

)t) + (N-(= T
 …

t) + (N- = T
) + tT(N)= T(N-

0
11

22
1

 (28)

))= O(|V|) . O(|V|V|T(N) = O(| 422 (29)

Thus MNS(N) can be computed in polynomial time and the

Theorem is proven.

IV. THE FASTER ALGORITHM8 FOR THE CLIQUE PROBLEM
The Minimum Nil Sweeper algorithm presented in section

III.B computes the Set and Flag for all vertices each time it
uses the lemma method, which is not necessary since updating
is possible.

Supposing that the Set of each vertex is defined as an array
of size N, the Sets of all vertices is considered as an N×N
matrix which is valued after the (k-1)-th iteration as follow:

⎩
⎨
⎧

−∈
−∉

=
)1(),(1
)1(),(0

]][[
kNilVV if
kNilVV if

jiSet
ji

ji (30)

Thus, Set[i][j]=1 means Vi∈Set(Vj) and Vj∈Set(Vi).

Assuming that the k-th zero is presented as (x, y), Set array
can be updated after the k-th iteration by making the following
changes in O(1) time:

1]][[
1]][[

=
=

xySet
yxSet (31)

According to the remark mentioned in III.B, on each

iteration of lemma, Flag value of only two vertices might
change: the one that might have been added to MNS(k-1) and
the one that might have been removed from MNS(k-1). Thus
to update Flag values it is enough to change the Flag value of
these two vertices at the most which will take O(1) time.

The algorithm also computes the CNS(k, x) and CNS(k, y)
in O(|V|2) by checking all the Set’s member for every vertex
of MNS(k-1). But considering the size difference between
MNS(k-1) and MNS(k)9, they can also be computed faster. To
improve this time, ‘Zero_Counter’ can be defined as an array
of length |V| as follow:

|}0)(|1]][[{|][_ === jVFlagjiSetiCounterZero (32)

Thus Zero_Counter[i] contains the number of 1’s on the i-th

row of the Set matrix that point to a vertex with Flag value of
1. Using the definitions of Set matrix and Zero_Counter, the

8 The algorithm is described as a program written in a pseudocode that is
similar in many respects to C and Java programming languages.

9 According to the remark and lemma presented in III.B it is obvious that:
|MNS(k-1)|≤|MNS(k)|≤|MNS(k-1)|+1

set ‘α’ presented in (7), can be computed as a vertex with
following specifications:

1]][[=xvertexSet (33)
1][_ =vertexCounterZero (34)

The mentioned specifications can be checked in O(1) for

each vertex and since it is needed to check MNS(k-1) vertices
to compute each of the CNS(k, x) and the CNS(k, y) sets, it is
obvious that their computation time order is O(|V|).

The Zero_Counter array can be updated after each iteration
of lemma method in O(|V|) time, since according to the
remark mentioned in III.B, on each iteration of lemma, Flag
value of only two vertices might change. Thus to update
Zero_Counter, if a vertex has been added to MNS(k-1) in
computing MNS(k), then for all vertices of the graph, it is
necessary to decrease Zero_Counter value by one if the
recently added vertex belongs to their Set. Same if a vertex
has been removed from MNS(k-1) in computing MNS(k),
then for all vertices of the graph, it is necessary to increase
Zero_Counter by one if the recently removed vertex belongs
to their Set.

Therefore the time order for computation of MNS(k) from
MNS(k-1) with necessary updates can be decreased to:

O(|V|))O(O(|V|)t =×+×= 122 (35)

Thus a faster algorithm for the Clique problem could be

defined with following time order according to (28):

) = O(|V|) . O(|V|)V|T(N) = O(| 32 (36)

The Algorithm: Assumed that IM is the N×N
inaccessibility matrix of the input graph; and Set, Flag and
Zero_Counter are arrays with all entries of 0’s, the algorithm
can be described as follow:

MNS (int N, iMatrix IM)
{
int cns_i, cns_j, zero_i, zero_j, mns = 0;
int Set[N][N];
int Flag[N];
int Zero_Counter[N];
for (int i = 0; i < N; i ++)
 for (int j = i+1; j < N; j ++)
 if (IM[i][j] == 0)
 {
 Set[i][j] = 1;
 Set[j][i] = 1;
 Zero_Counter[i]++;
 Zero_Counter[j]++;
 cns_i = mns;
 cns_j = mns;
 zero_i = -1;
 zero_j = -1;
 if (Flag[i] == 0) cns_i ++;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3212

 if (Flag[j] == 0) cns_j ++;
 for (int k = 0; k < N; k ++)
 if (Flag[k] ==1)
 {
 if (Zero_Counter[k] == 1 && Set[k][i] = 1)
 {
 cns_i --;
 zero_i = k;
 break;
 }
 if (Zero_Counter[k] == 1 && Set[k][j] = 1)
 {
 cns_j --;
 zero_j = k;
 break;
 }
 }
 if (cns_i ≤ cns_j)
 {
 if (Flag[i] != 1)
 {
 mns = cns_i;
 Flag[i] = 1;
 if (zero_i != -1) Flag[zero_i] = 0;
 for (int k = 0; k < N; k ++)
 {
 if (Set[k][i] = 1) Zero_Counter[k]--;
 if (zero_i != -1)
 if (Set[k][zero_i] = 1) Zero_Counter[k]++;
 }
 }
 else
 Zero_Counter[j]--;
 }
 else
 {
 if (Flag[j] != 1)
 {
 mns = cns_j;
 Flag[j] = 1;
 if (zero_i != -1) Flag[zero_i] = 0;
 for (int k = 0; k < N; k ++)
 {
 if (Set[k][j] = 1) Zero_Counter[k]--;
 if (zero_j != -1)
 if (Set[k][zero_j] = 1) Zero_Counter[k]++;
 }
 }
 else
 Zero_Counter[i]--;
 }
 }
for (int i = 0; i < N; i ++)
 if (Flag[i] == 0)
 print i;
}

V. THE EQUALITY OF P AND NP
Sections III and IV, both present a polynomial-time

algorithm for the Clique problem. A deterministic polynomial-
time algorithm for the Clique problem, as an NP-complete
problem is also a deterministic polynomial-time algorithm to
every other NP-complete problem according to their
definition. Thus since the Minimum Nil Sweeper algorithm
presented in this paper solves the Clique problem in O(|V|3)
time it can be claimed that every NP-problem are solvable in
O(|V|3) time. Thus the complexity classes P and NP are equal.

VI. CONCLUSION
This paper has introduced a deterministic polynomial-time

algorithm for the problem of finding the maximum clique in
an arbitrary undirected graph, known as the Clique problem.
The case is considered as the problem of omitting the
minimum number of vertices from an undirected graph so that
none of the zeroes on the graph’s adjacency matrix (except the
zeroes on the main diagonal) would remain on the adjacency
matrix of the resulting subgraph. The Minimum Nil Sweeper
algortihm, presented in this paper, computes the maximum
clique in O(|V|3) time, thus it is a polynomial-time
algorithm.The existence of a deterministic polynomial-time
algorithm for the Clique problem as an NP-complete problem
will prove that the complexity classes P and NP are equal.

REFERENCES
[1] Richard E. Neapolitan and Kumarss Naimipour, “Foundations of

Algorithms using C++ Pseudocode”, 3rd ed., Jones and Bartlett
Publishers, 2003, ch. 9.

[2] Michael Sipser, “Introduction to the Theory of Computation”, 2nd ed.,
International Edition, Thomson Course Technology, p 270, definition
7.19 and theorem 7.20, 2006.

[3] Stephen A. Cook, “The complexity of theorem-proving procedures”,
Proceedings of Third Annual ACM Symposium on Theory of
Computing, pages 151–158, 1971.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein, “Introduction to Algorithms”, 2nd ed., MIT Press and
McGraw-Hill, 2001, ch. 22 and ch. 34.

[5] Stephen A. Cook, “The P versus NP problem”. Manuscript prepared for
the Clay Mathematics Institute for the Millennium Prize Problems, 2000.

[6] Richard M. Karp, “Reducibility among combinatorial problems”, In R.
E. Miller and J. W. Thatcher (editors): Complexity of Computer
Computations, pages 85–103, New York: Plenum Press, 1972.

Zohreh O. Akbari was born in Tehran, Iran, in 26
Feb 1983. She achieved her B.Sc degree in computer
software engineering at technical and engineering
department of Azad University, Tehran, Iran in 2006.
She is a Master student from 2006 in computer
software engineering at Payame Noor University,
Tehran, Iran. Right now she’s working on her thesis
on evaluating frameworks for agent-oriented
methodologies. Her research interests are software
engineering methodologies, algorithms time order and
expert systems.

