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Estimating regression parameters in linear
regression model with a censored response variable

Jesus Orbe and Vicente Núñez-Antón

Abstract—In this work we study the effect of several covariates
X on a censored response variable T with unknown probability
distribution. In this context, most of the studies in the literature can be
located in two possible general classes of regression models: models
that study the effect the covariates have on the hazard function; and
models that study the effect the covariates have on the censored
response variable. Proposals in this paper are in the second class of
models and, more specifically, on least squares based model approach.
Thus, using the bootstrap estimate of the bias, we try to improve the
estimation of the regression parameters by reducing their bias, for
small sample sizes. Simulation results presented in the paper show
that, for reasonable sample sizes and censoring levels, the bias is
always smaller for the new proposals.
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I. INTRODUCTION

IN survival, duration or reliability studies, it is of interest
to analyze the length of time spent until some particular

event happens (e.g., death or failure). This type of studies
is very common in fields such as Medicine, Engineering or
Economics. The analysis of duration data involves working
with data with some special characteristics:
(i) Censored observations because at the end of the study

the complete duration of some of the observations is
unknown.

(ii) Asymmetric distributions, usually presenting a positive
asymmetry, which implies that the assumption of a nor-
mal distribution is not appropriate. Thus, we have to
consider alternative more appropriate distributions such
as, for example, the Weibull, exponential or Gamma
distributions.

As a result, traditional methods applied in standard problems
in Statistics can not be used. In order to solve this issue and
taking into account the special characteristics of this type of
data, several specific methodologies, suitable for these data,
have been developed.

Let T be a random variable measuring the time until
some event happens, that is, the duration variable, and let X
represent the available covariates being considered to explain
T . There are two big classes of regression models that analyze
the dependence between X and T . The proportional hazards
(PH) models proposed by Cox [1] and the accelerated failure
time (AFT) models (see, e.g., Lawless [2]).

In the Cox model, we have that the hazard function is
modelled as
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λ(t, x) = λ0(t)h(x, β),

where h(x, β) is usually considered as exp(xβ) and λ0(t) is
known as the baseline hazard function. Thus, the effect of
the covariates in this model is multiplicative on the baseline
hazard. The advantage of using this model, and the main
reason for its extensive use, is the possibility to estimate
the parameters of interest without any assumption on the
distribution of the duration variable. That is, there are no
parametric restrictions on the functional form of the baseline
hazard function. However, the assumption of a proportional
hazard function for the different individuals is very restrictive,
and, in some cases, this proportionality is not verified by the
data. Therefore, for these cases, this model should not be used.
The estimation of this model can be carried out by using the
partial likelihood function proposed in Cox [3].

The other important class of models is the accelerated
failure time models. In these models, the hazard function is
modelled as

λ(t, x) = λ0(t · h(x, β))h(x, β).
Here, we have the multiplicative effect on the baseline

hazard and a direct effect on the duration accelerating or
decelerating the pass to another stage (e.g., failure or death).
In addition, if we take h(x, β) = exp(−xβ), we can rewrite
the model as a model that considers a direct relation between
the duration and the covariates. That is,

log(T ) = xβ + ε.

In general, the estimation of this model is carried out by
assuming a distribution for the duration and maximizing the
corresponding likelihood function, where the contribution of
a censored observation is given by the survival function, and
the one of an uncensored observation is given by the density
function. The problem is that, in most cases, this probability
distribution is unknown for the practitioners. In order to solve
this problem, several approaches have been proposed for the
estimation on the accelerated failure time model, where it is
not required to assume any probability distribution for the
response variable. Thus, rank-based methods for censored data
have been proposed by Tsiatis [4], Lai and Ying [5] or Jin
et al. [6], and least squares based methods for censored data
have been investigated, for example, by Miller [7], Buckley
and James [8] or Stute [9].

In this paper, we concentrate on least squares based methods
and, more specifically, on the methodology proposed in [9].
Stute presents a weighted least square estimator, where the
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weights take into account the effect of the censored data and
are computed by estimating the distribution function of the T
variable, based on the Kaplan-Meier weights of the observed
variable Y . This estimator is easy to implement, it does not
require any iteration scheme, it is consistent under minimal
distributional assumptions (see [9]), it allows for random co-
variates, and it can be easily generalized to the multiple linear
regression model case or other more complicated models, such
as, for example, partial linear models (see Orbe et al. [10]) or
nonlinear models (see Stute [11]). We focus our attention on
the aforementioned approach. Our main objective is to propose
an improvement to it by presenting a bias correction alternative
methodology for small sample sizes, where, as will be seen
later in the paper, the proposal not only reduces the bias, but
also reduces the mean square error for the estimators.

The rest of the paper is organized as follows. In Section
II, we present a flexible alternative methodology for the
classic AFT model and provide some general details about its
estimation procedure. In addition, we also present a proposal
to improve the estimators’ bias by proposing a bias-corrected
version of it, where the bias is estimated with the use of
bootstrap resampling techniques. Section III provides some
simulation results to study the behavior of the proposed
estimator, and Section IV presents some final conclusions and
recommendations.

II. METHODOLOGY

We use a method similar to the one proposed in [9], in
which a new estimator, assuming very general hypotheses, was
obtained using weighted least squares. In order to describe this
methodology, let us assume that T1, . . . , Tn are independent
observations from some unknown distribution function F and,
because of the censoring, not all of the T ’s are available. That
is, rather than observing Ti, we observe

Yi = min(Ti, Ci), δi =

{
1; if Ti ≤ Ci

0; if Ti > Ci
,

where C1, . . . , Cn are the values for the censoring variable C,
which is assumed to be independent of the duration variable T ,
and δi is the indicator for the censoring variable. In addition,
Xi represents the k-dimensional vector of covariates for the
i-th individual. The relation between the covariates and the
duration is then given by

Ti = Xiβ + εi (1)

The estimator of β can be obtained by minimizing
n∑

i=1

Win[Y(i) −Xiβ]
2,

where Y(i) is the i-th ordered value of the observed response
variable Y , and Win are the Kaplan-Meier weights. These
weights can be computed as

Win = F̂n(Y(i))−F̂n(Y(i−1)) =
δi

n− i+ 1

i−1∏
j=1

[
n− j

n− j + 1

]δj
,

(2)

where F̂n is a Kaplan-Meier estimator (Kaplan and Meier [12])
of the distribution function F . In this way, the estimator for
β is given by

β̂ = (XTWX)−1XTWY, (3)

where Y = (Y(1), . . . , Y(n))
T , W is a diagonal matrix with

the Kaplan-Meier weights on its main diagonal and X =
[XT

1 , X
T
2 , . . . , X

T
n ]

T is the design matrix. Stute [9] studied
the consistency of this estimator, and Stute [13] its asymptotic
normal distribution. Model (1) can be considered within the
class of accelerated failure time models. However, it allows
for the estimation without assuming any distribution for the
duration and, in addition, it does not require the assumption
of proportional hazard functions.

In this paper, our main concern is to reduce the bias of
the aforementioned estimator for the regression coefficients.
As can be seen in (3), this estimator is computed by using
Kaplan-Meier integrals because the elements of the XTWX
and XTWY matrices are indeed Kaplan-Meier integrals of
different functions. The bias of the Kaplan-Meier integrals has
been previously studied (see, e.g., Gill [14], Mauro [15] or
Stute [16]). Here, we wish to estimate the bias for the estimator
of the regression coefficient β̂ and, then, compute the bias-
corrected estimator

β̂c = β̂ − ̂BIAS
The estimation of the bias is based on bootstrap resampling

techniques. In order to do this, we have proposed a new
methodology to generate the bootstrap resamples for the
case of random censorship and a heterogeneous model. The
itemized procedure to obtain the bootstrap replications can be
described as follows:

• Estimate model (1) following the proposal described in
this section and obtain the residuals of the previously
estimated model. That is,

ε̂i = y(i) − xiβ̂; for i = 1, . . . , n

• Using these residuals, obtain the bootstrap resample for
the errors: ε∗1, . . . , ε

∗
n

• Generate the bootstrap sample for the variable of interest,
by doing model-based bootstrap. That is,

t∗i = xiβ̂ + ε∗i ; for i = 1, . . . , n,

• Generate a vector of Bernoulli variables δ∗, where

P (δ∗i = 1|t∗i , xi) = 1−G(t∗−i ), for i = 1, . . . , n,

and obtain the bootstrap indicator for the censoring vari-
able. G denotes the distribution function for the censoring
variable and, since it is unknown, we use its Kaplan-
Meier estimator, Ĝn.

• Generate the censoring variable. That is, if T ∗ = t∗ and
δ∗ = 1, C∗ is taken from Ĝn restricted to [t∗,∞) interval,
whereas, if T ∗ = t∗ and δ∗ = 0, C∗ is taken from Ĝn

restricted to [0, t∗) interval.
• Estimate model (1), for the bootstrap sample, by using

the same original estimation procedure. That is:
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TABLE I
ESTIMATED BIASES (BIAS) AND VARIANCES (VAR) FOR THE ESTIMATED

COEFFICIENTS WITHOUT BIAS CORRECTION (β̂), VERSUS THE

BIAS-CORRECTED PROPOSAL ESTIMATOR (β̂c) FOR DIFFERENT VALUES OF
σ = {1, 0.75, 0.5} AND 50% CENSORING LEVEL.

β0 β0 β1 β1 β2 β2

σ BIAS VAR BIAS VAR BIAS VAR
1 β̂ 0.5303 0.317 -0.2387 0.027 -0.2354 0.032

β̂c -0.1819 0.328 -0.0613 0.037 -0.0552 0.042
0.75 β̂ 0.3756 0.198 -0.1629 0.017 -0.1521 0.022

β̂c -0.1325 0.192 -0.0308 0.021 -0.0203 0.025
0.5 β̂ 0.1830 0.100 -0.0811 0.009 -0.0663 0.012

β̂c -0.0681 0.089 -0.0097 0.010 -0.0009 0.011

TABLE II
ESTIMATED BIASES (BIAS) AND VARIANCES (VAR) FOR THE ESTIMATED

COEFFICIENTS WITHOUT BIAS CORRECTION (β̂), VERSUS THE

BIAS-CORRECTED PROPOSAL ESTIMATOR (β̂c) FOR DIFFERENT VALUES OF
σ = {1, 0.75, 0.5} AND 30% CENSORING LEVEL.

β0 β0 β1 β1 β2 β2

σ BIAS VAR BIAS VAR BIAS VAR
1 β̂ 0.3766 0.222 -0.1267 0.017 -0.1422 0.017

β̂c -0.0927 0.241 -0.0246 0.022 -0.0272 0.022
0.75 β̂ 0.2455 0.127 -0.0773 0.010 -0.0916 0.010

β̂c -0.0657 0.135 -0.0117 0.012 -0.0122 0.012
0.5 β̂ 0.1135 0.058 -0.0348 0.004 -0.0421 0.004

β̂c -0.0347 0.059 -0.0037 0.005 -0.0025 0.005

min
β

n∑
i=1

W ∗
in[y

∗
(i) − xiβ]

2

• Go back to the second step and repeat the process M
times (i.e., M bootstrap samples are obtained).

At the end of this procedure, we obtain M bootstrap
replications for the aforementioned β̂ estimated parameter.
That is, β̂∗1, . . . , β̂∗M and, therefore, we can derive the bias
bootstrap estimate as

̂BIAS(β̂) = ∑M
m=1 β̂

∗m

M
− β̂

Finally, we obtain the bootstrap bias-corrected estimator by
using

β̂c = β̂ − ̂BIAS(β̂) = 2β̂ −
∑M

m=1 β̂
∗m

M

III. SIMULATION STUDY

Our main objective is to study the behavior of the proposed
bias-corrected estimator for the regression coefficients. In
order to do so, we have generated the values of the variable
of interest T with the model

lnT = β0 + β1X1 + β2X2 + ε, (4)

where X1 and X2 are uniform (0, 5) random, variables,
β0 = β1 = β2 = 1, and the ε’s are assumed to be normally
distributed with mean 0 and standard deviation taking different
values σ = {1, 0.75, 0.5}. To be able to consider three

TABLE III
ESTIMATED BIASES (BIAS) AND VARIANCES (VAR) FOR THE ESTIMATED

COEFFICIENTS WITHOUT BIAS CORRECTION (β̂), VERSUS THE

BIAS-CORRECTED PROPOSAL ESTIMATOR (β̂c) FOR DIFFERENT VALUES OF
σ = {1, 0.75, 0.5} AND 15% CENSORING LEVEL.

β0 β0 β1 β1 β2 β2

σ BIAS VAR BIAS VAR BIAS VAR
1 β̂ 0.1849 0.197 -0.0545 0.016 -0.0636 0.014

β̂c -0.0292 0.208 -0.0096 0.017 -0.0107 0.016
0.75 β̂ 0.1009 0.110 -0.0281 0.009 -0.0344 0.008

β̂c -0.0169 0.113 -0.0034 0.009 -0.0047 0.009
0.5 β̂ 0.0430 0.049 -0.0123 0.004 -0.0139 0.003

β̂c -0.0117 0.051 -0.0008 0.004 -0.0003 0.004

censoring levels (i.e., 15%, 30% and 50%), we use different
uniform distributions. The results have been obtained for a
sample of size n = 40 and they are based on 1000 simulated
data sets. In each data set, we have used M = 199 bootstrap
replicates. Efron and Tibshirani [17] indicate that 200 boot-
strap replications are enough for estimating the standard error
and bias. The estimated biases (BIAS) and variances (VAR) for
the estimated coefficients without bias correction (β̂), versus
the bias-corrected proposal estimator (β̂c), for different values
of σ = {1, 0.75, 0.5} are presented, for different censoring
levels, in Tables 1 to 3.

From Tables 1 to 3, we can see that the proposed bias-
corrected estimator shows a smaller bias than the one without
bias correction in all considered situations. In addition, if we
compute the univariate mean squared error corresponding to
each estimated βj , we can see that mean squared errors are
smaller for the bias-corrected proposal in all considered cases.
Therefore, if we analyze the global estimation performance,
using as an indicator the multivariate or total mean square
error, the same results is obtained. As can be seen the
advantage of using the proposed bias-corrected estimator is
more evident when the censoring level increases and/or the
value of σ is larger. In addition, for the estimators considered
in the simulations, the bias and variance for each coefficient
decrease when the value for the parameter σ decreases, which
also decreases the univariate and multivariate mean squared
errors. Finally and as expected, the effect of the censoring
percentage, tends to increase the variance and the bias of the
estimations.

IV. CONCLUSIONS AND FINAL RECOMMENDATIONS

In this paper, we propose a bias improvement for estimating
the regression parameters in a linear regression model where
the response variable is censored. This proposed improvement
consist on reducing the estimators’ bias when there is censor-
ing. The main motivation to used the proposed methodology in
Stute [9] for censored regression models, lies on the fact that
he proposes the use of a flexible model, without assuming any
probability distribution, and without assuming proportional
hazard functions, which, sometimes, could be a very restrictive
assumption. Simulation results presented in the paper show
that the proposed new estimator reduces the bias and the mean
squared error of the estimation and the advantage of using
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it is greater for cases with large censoring levels, where, as
expected, the problem with the bias is more evident.
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