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Numerical Analysis of Electrical Interaction 
between two Axisymmetric Spheroids 

Kuan-Liang Liu, Eric Lee, Jung-Jyh Lee, and Jyh-Ping Hsu 

Abstract—The electrical interaction between two axisymmetric 
spheroidal particles in an electrolyte solution is examined numerically.  
A Galerkin finite element method combined with a Newton-Raphson 
iteration scheme is proposed to evaluate the spatial variation in the 
electrical potential, and the result obtained used to estimate the 
interaction energy between two particles.  We show that if the surface 
charge density is fixed, the potential gradient is larger at a point, which 
has a larger curvature, and if surface potential is fixed, surface charge 
density is proportional to the curvature.  Also, if the total interaction 
energy against closest surface-to-surface curve exhibits a primary 
maximum, the maximum follows the order (oblate-oblate)
(sphere-sphere) (oblate-prolate) (prolate-prolate), and if the curve 
has a secondary minimum, the absolute value of the minimum follows 
the same order.

Keywords—interaction energy, interaction force,  
Poisson-Boltzmann equation, spheroid. 

I. INTRODUCTION

HE classic DLVO theory [1] assumes that the interaction 
between two charged lyophobic colloidal particles in an 

electrolyte solution comprises the van der Waals attractive force 
and the electrostatic repulsive force.  The former is due to the 
permanent dipole or London dispersion interaction, and the 
latter arises from the overlapping of the electrical double layers 
near the particles.  To evaluate the electrical interaction between 
two charged entities, the spatial variation of the electrical 
potential needs to be known at a prior.  According to the 
Gouy-Chapman’s electrical double layer model, at equilibrium 
it is described by the well-known Poisson-Boltzmann equation 
[1].  Unfortunately, solving this equation is almost impossible, 
even for a single charged surface.  Often, it is assumed that the 
electrical potential is low so that the Poisson-Boltzmann 
equation can be approximated by a linearized expression, which 
is more readily solvable for simple geometry and idealized 
surface conditions.  Several approximate methods were 
proposed to solve a linearized Poisson-Boltzmann equation, and 
to estimate the interaction force and the interaction energy 
between two charged entities [2]-[10].   
     In general, a Poisson-Boltzmann equation needs to be solved 
numerically.  Among the possible approaches, the finite 
difference method has the advantage that it can be coded and 
implemented easily in common computing facilities such as a 

personal computer.  However, it can become nontrivial if the 
physical domain involves nonplanar boundary.  In the case of 
two spheres, for instance, bispherical coordinates are necessary, 
and the physical domain needs to be transformed first to a 
rectangular computational domain [11]-[13].  For a complicated 
physical domain, a more sophisticated numerical method such 
as finite element method is desirable.  Chan and Chan [14], for 
example, used this approach to solve the problem of two 
identical spheres remained at constant surface potential.  James 
and Williams [15] estimated the distribution of electrical 
potential for the case of a cylindrical particle and a plane, both 
are remained at constant surface potential.  The former is either 
parallel or perpendicular to the latter.  The mesh sizes were 
adjusted manually.  You and Harvey [16] used a 
three-dimensional finite element method to solve the 
Poisson-Boltzmann equation for the case a single 
bio-macromolecule under the condition of low electrical 
potential, and the result obtained was compared with that 
obtained through a finite difference method.  Chou Chang and 
Spostio [17] proposed a self-adaptive finite element method to 
calculate the electrical potential near a disk-shape particle, 
taking the anion exclusion volume into account.  The same 
approach was adopted by Bowen and Sharif [18] to evaluate the 
electrostatic interaction between a charged sphere and a charged 
pore; the electrical force and free energy were also calculated.  
Compared with a finite difference method, a finite element 
method has the merit that it allows using irregular elements, 
thereby capable of describing, more precisely, a curved or 
irregular boundary.  On the other hand, since the computation 
usually involves manipulation of large-scale matrices, a finite 
element method is often complicated and time consuming.   
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     Compared with simple geometries such as infinite plate, long 
cylinder, and sphere, spheroid is more general in that it is 
capable of simulating various shapes by adjusting its parameters.  
This is highly desirable for practical considerations since 
colloidal particles are found to have various shapes.  Reported 
results for spheroidal surfaces are mainly for limited special 
cases, for example, thin double layer [19], [20] or low electrical 
potential [21]-[23].  In the present study, the electrical 
interaction between two axisymmetric spheroids in an 
electrolyte solution is discussed.  A finite element method 
coupled with a Newton-Raphson iteration scheme is adopted to 
solve the Poisson-Boltzmann equation for the system under 
consideration, and the result obtained is used to evaluate the 
interaction energy between two particles.  Both the electrical 
and the van der Waals interaction energies are estimated.   
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Fig.1. Schematic representation of the system under consideration.  h 
is the scaledclosest surface-to-surface distance between two particles, 

a and b are the semi-major and semi-minor axis of a particle, 
respectively.  (a): sphere-sphere,(b) prolate-prolate, (c) oblate-oblate, 

(d) oblate (1)-prolate (2). 

II. THEORY

We consider two axisymmetric spheroidal particles in an 
electrolyte solution.  By referring to Fig.1, let h be the 
dimensionless closest surface-to-surface distance between them, 
scaled by =(a+b)/2, a and b being respectively the semi-major 
and semi-minor axes of a particle.  The special case with a=b 
leads to two spheres.  For 1:1 electrolytes, the spatial variation 
of electrical potential at equilibrium, , is described by [1]  

kT
esinhen2

r0

b2                                                (1)

where  denotes the Laplace operator, 2
0  and r  are 

respectively the permittivity of a vacuum and the relative 
permittivity,  is the bulk electrolyte concentration, k and T 
are respectively the Boltzmann constant and the absolute 
temperature, and e is the elementary charge.  If both the surfaces 
of the particles are maintained at constant charge density, then 
the boundary conditions associated with (1) are  

bn

*
1s*r0 q

n
 on S1                                                  (2a)

*
2s*r0 q

n
 on S2                                               (2b)

where S1 and S2 denote the surfaces of particles 1 and 2 

respectively,  and  are respectively the surface charge 
densities of particles 1 and 2, and n* is the outward normal of a 
surface.  Here we assume that the relative permittivity of the 
solid phase is much smaller than that of the liquid phase, as is 
usually satisfied for an aqueous dispersion.  Similarly, if both S

*
1sq *

2sq

1
and S2 are maintained at constant potential, then the boundary 
conditions associated with (1) become  

1s  on S1                                                                  (3a)

2s  on S2                                                                  (3b)

where 1s  and 2s  are the surface potentials of particles 1 and 
2 respectively.
     The cylindrical coordinates  are adopted in the 
subsequent analysis, and the particles are placed such that they 
are symmetric about Z* axis.  For a simpler treatment, equation 
(1) is rewritten in the following scaled form:  

)Z,,r( **

sinh
r

r
rr

1
z

2
2

2
                            (4)

where , , and .  The scaled 
coordinates

/zz * /rr * /kT=e 
)Z,,r(  are illustrated in Fig.1.  The characteristic 

length  is the average of the semi-major and semi-minor axes 
of a particle, and the reciprocal Debye length  is defined by  
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The corresponding scaled boundary conditions become 

1sq
n

 on S1                                                        (6a)

(6a)

2sq
n

 on S2                                                       (6b)

(6b)

for constant surface charge density, or

 at S1s 1                                                              (7a) (7a)

 at Ss1 2                                                           (7b) (7b)

for constant surface potential, where ,

n=n*/ , , , and 

.

e/kTqq r0
*
1s1s

e/kTqq r0
*
2s2s e/kT1s1s

e/kT2s2s
     The total interaction energy between two particles, VT, is 
the sum of the electrical energy, VR, and the van der Waals 
energy, VVDW, that is

                                                    (8) (8)RVDWT VVV

The dimensionless electrical repulsive force between two 

particles, f, scaled by , can be calculated by 
[3]  

2
r0 )e/kT(

dEEnE

n
E

ekT
hf

r

r

r

])(
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2

[
)/(
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0

2
0

2
0                  (9)

(9)

where  is the osmotic pressure, n  is the outward normal 

vector, E  is the electric field vector with strength E, and 
represents a plane between the particles which is 
perpendicular to Z axis.  Note that  needs not to be located 
at the center plane between two particles.  The osmotic 
pressure can be evaluated by 

]1)[cosh(
e

kT 2
2

r0                         (10)

For the present axisymmetric problem, substituting this 
expression into (9) leads to

0

22
2 rdr

zr
1cosh2hf    (11)

The electrical interaction energy between two particles can be 
evaluated by [24]  

h

2

r0R hdhf
e

kTV                                (12)

The van der Waals interaction energy between two particles can 
be evaluated by [1]  

1 2V V
1262

132
VDW dVdV

r
1AV                                 (13)

where V1 and V2 denote respectively the volumes of particles 1 
and 2, and A132 is the Hamaker constant.  For the present 
axisymmetric case, it can be shown that equation (13) becomes  

2

2

1

1

a

a

a

a 212222

222222
22

4132VDW dLdL
dd

d
d4
1AV

(14)

where

2121 LLaahd                            (14a)

2
111 a/L1b                                        (14b)

2
222 a/L1b                                       (14c)
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Fig.2. Examples for the finite element meshes used in the numerical 
scheme.(a): prolate-prolate, (b): oblate-prolate. 

III. NUMERICAL METHOD

The Galerkin finite element method coupled with a 
Newton-Raphson iteration scheme is used to solve (4), the result 
obtained is substituted into (11) to evaluate f(h), and equation 
(12) is then used to calculate VR.  The solution to the linearized 
version of (4) is used as the initial guess for the 
Newton-Raphson iteration scheme.  The frontal method 
proposed by Iron [25] and Hood [26] is adopted to improve the 
computational efficiency.  A 9-node quadrilateral isoparametric 
element is adopted in the finite element method.  Typical meshes 
used are illustrated in Figs. 2(a) and 2(b).  Both the conditions of 
constant surface potential and constant surface charge density 
are considered.  The estimation of the van der Waals interaction 
energy is based on a 96 96 Gauss quadrature.  A Digital 
DEC3000 model 700AXP work station is used to perform all the 
necessary calculations.  The convergence of the solution is 
checked with mesh refinement.  With fewer or more grid points, 
the deviations of the solutions are less than 1%.  We thus 
conclude that the solution obtained with the current mesh is the 
convergent solution to the original governing differential 
equations.
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Fig.3. Contours of electrical potential distribution for the case of 
prolate-prolate, (a),and oblate-prolate, (b), at constant surface charge 

density.  Parameters used:qs1=qs2=1, =1.0, and h=2.0. 
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Fig.4. Variation of surface charge density for the case of prolate-prolate, 
(a),and oblate-prolate, (b), at constant surface potential.  Parameter 

used: = =1, =1.0, and h=2.0.1S 2S

IV. RESULS AND DISCCUSION

     We consider the four cases shown in Fig.1 in the numerical 
calculations: sphere-sphere, prolate-prolate, oblate-oblate, and 
oblate (1)-prolate (2).  The interaction between two spheres is a 
special case of the present study which can be recovered from 
the spheroids by letting ai=bi.  For illustration, we assume that 
the lengths of the major and minor axes of a particle are 150 nm 
and 50 nm, respectively, and the radius of a spherical particle is 
100 nm.  Two typical spatial variations of the electrical potential 

for prolate-prolate and oblate-prolate are illustrated respectively 
in Fig.3, and the corresponding variations in the surface charge 
density are shown in Fig.4.  As can be seen from Fig.3, if the 
surface charge density is fixed, the potential gradient is larger at 
a point, which has a larger curvature.  Figure 4 reveals that if 
surface potential is fixed, surface charge density is proportional 
to the curvature.
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Fig.5. Variation of total interaction energy, VT, between two prolates at 
constantsurface charge density as a function of the scaled closest 

surface-to-surfacedistance, h, at various  for the case qs1=qs2=1 and 
A132=10-19 J. 
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at constantsurface charge density as a function of the scaled closest 
surface-to-surfacedistance, h, at various  for the case qs1=qs2=1

and A132=10-19 J. 
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     Figures 5 through 8 present the variations of total interaction 
energy between two particles, VT, as a function of the scaled 
closest surface-to-surface distance between them, h, at various 

 for the case of constant surface charge density.  These 
figures suggest that, all the four cases examined VT exhibit a 
primary maximum, and the maximal VT follows the order 
(oblate-oblate) (sphere-sphere) (oblate-prolate)
(prolate-prolate).  The values of h at which the maximum occur, 
however, are different for each case.
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Fig.7. Variation of total interaction energy, VT, between on oblate 
and a prolate atconstant surface charge density as a function of the 
scaled closest surface-to-surface distance, h, at various  for the 

case qs1=qs2=1 and A132=10-19 J. 

     The variations of total interaction energy between two 
particles, VT, as a function of the scaled closest 
surface-to-surface distance between them, h, at various  for 
the case of constant surface potential are shown in Figs.9 
through 12.  The general trends of the VT against h curves are 
similar to those for the case of constant surface charge density 
shown in Figs.5 through 8 except that if  is sufficiently large, 
a negative second minimum is observed in each case.  The 
absolute value of the minimum follows the same order as that of 
the primary maximum.   
     The numerical scheme proposed in the present study can be 
modified without too much difficulty to the case of two arbitrary 
axisymmetric entities.  For the case of za:zb electrolyte, za and zb

being the valences of cations and anions respectively, equation 
(4) becomes  

ba

2
2

2

zz
aexpbexp

r
r

rr
1

z
    (15)   

(15)
with

kT
nznze

r0

02
b

02
a

2
                                                 (16)

where 0n  and 0n  denote respectively the bulk number 
concentrations of cations and anions.  The numerical procedure 
remains the same as that employed in the case of 1:1 electrolyte.   
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Fig.8. Variation of total interaction energy, VT, between two 
spheres at constantsurface charge density as a function of the scaled 
closest surface-to-surfacedistance, h, at various  for the case 

qs1=qs2=1 and A132=10-19 J. 
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The computing time of the present finite element method 
increases with .  This is because that, for fixed particle size, if 
the concentration of electrolyte is high, the double layer near a 
particle becomes thin.  In this case the finite element meshes 
need to be allocated in a small interval in space, or, equivalently, 
the number of meshes needs to be increased for a fixed interval 
to achieve a desired degree of accuracy.  Since the number of 
meshes is limited by the available computing facility, the 
alternative is to increase the number of iterations, and the 
computing time increases accordingly.  The present numerical 
scheme becomes inefficient if  exceeds about 20.  Note that, 
however, if  is sufficiently large, the particles can be treated as 
planar ones, and the problem under consideration can be 
simplified significantly.   
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= =1 and As1 s2 132=10-19 J. 

V. CONCLUSION

     In summary, the electrical interaction between two 
axisymmetric spheroids is examined numerically.  Compared 
with simple geometry such as spheres, spheroids are capable of 
simulating a wide class of particles, and can be used to include 
the effect of the variation of curvature over particle surface.  The 
former is highly desirable in practice since colloidal particles 
may assume various shapes, and the latter is significant when 
the relative orientation between two particles needs to be taken 
into account.  Here, we examine the possibility of solving the 
problem involving two spheroids through a finite element 
method.  The efficiency of the algorithm proposed here may be 
improved with additional numerical skills.  Nevertheless, it  

provides a way of investigating the electrical interaction 
between two axisymmetric particles in an electrolyte solution.
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