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Abstract—The design of chaos-based secure communication 

via synchronized modified Chua’s systems is investigated in 
this paper. A continuous control law is proposed to ensure 
synchronization of the master and slave modified Chua’s 
systems by using the variable structure control technique. 
Particularly, the concept of extended systems is introduced 
such that a continuous control input is obtained to avoid 
chattering phenomenon. Then, it becomes possible to ensure 
that the message signal embedded in the transmitter can be 
recovered in the receiver. 
 

Keywords—Chaos, Secure communication, Synchronization, 
Variable structure control (VSC)   

I. INTRODUCTION 
chaotic system is a very complex, dynamic nonlinear 
system and its response possesses many intrinsic 

characteristics such as broadband noise-like waveform, 
prediction difficulty, sensitivity to initial condition variations, 
etc. [1, 2]. Although it appears to be stochastic, it occurs in a 
deterministic nonlinear system under deterministic conditions. 
Till now, many methods and techniques in synchronizing chaos 
have been proposed since the pioneering work of Pecora and 
Carroll in 1990 [1]. Moreover, the synchronization of chaotic 
circuits for the secure communication has received much 
attention in the literature [3-10]. 

The purpose of this paper lies in the development of a 
VSC-based chaotic communication system. As well known, 
synchronization of chaos is a key technology in generating an 
identical chaotic waveform in both transmitter and receiver for 
signal decoding in communication systems. Therefore, a new 
adaptive VSC-based control scheme to solve the 
synchronization problem of chaotic modified Chua’s systems is 
firstly proposed. Then the concept of extended systems 
developed in [11] is introduced such that a continuous adaptive 
VSC controller is obtained to avoid chattering phenomenon as 
frequently in the conventional sliding mode control systems. In 
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our design, a switching surface is first proposed, which makes 
it easy to guarantee the stability of the extended error dynamics 
in the sliding mode. And then, based on this switching surface, 
a continuous adaptive VSC is derived. Moreover, the proposed 
continuous VSC synchronization scheme is then applied to 
establish a chaotic secure communication system. 

The remainder of this paper is organized as follows. Section 
2 formulates the synchronization problem. In Section 3, the 
switching surface which ensures the stability of the extended 
error system in the sliding mode is derived. Then a continuous 
adaptive VSC controller is designed to achieve the hitting. In 
Section 4, an illustrative example is included. Finally, 
conclusions are presented in Section 5.  

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION 
In this section, the design of secure communication systems 

via synchronized chaotic circuits is studied. For simplicity, the 
modified Chua’s system is selected for our design. However, 
the method developed in this paper can be easily extended for 
the other class of chaotic systems. Before constructing the 
secure communication system, the first problem undertaken 
here is how to design a continuous VSC controller to solve the 
synchronization problem of systems. The master-slave chaotic 
systems are defined below, respectively [12]. 
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where p>0 and q>0 are system parameters, )(tu  is the control 
input proposed later to synchronize master and slave systems 
(1) and (2), )(tm  and )(tdn  are the bounded embedded 
message and external noise, respectively, which satisfy 

+∈≤ Rδtm m)( and +∈≤ Rδtd nn )( . It is assumed that the 

magnitude of nδ  is much smaller than that of mδ . Let us define 
the state errors between the master system Eq. (1) and slave 
system Eq. (2) as follows: 

msx xxe −= , msy yye −= , msz zze −= ,   (3) 
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then the dynamics of the error system is determined directly 
from Eq. (1) and Eq. (2) as follows: 
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For deriving the main results, the following assumption is 
made. 

 
Assumption 1: There exists an unknown and sufficiently large 
constant κ  satisfying  
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Now newly introducing the concept of extended systems and 

extending the error dynamics Eq. (4) as 
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The goal of this paper is that for any given modified Chua’s 
circuit systems as Eq. (1) and Eq. (2), an adaptive VSC 
controller is designed such that the asymptotical stability of the 
resulting extended error system Eq. (6) can be achieved in the 
sense that 0)(lim →

∞→
te

t
, where ],,,[)( Ezyx eeeete = . Then, 

the message signal embedded in the transmitter (master system) 
can be recovered in the receiver. 

III. SWITCHING SURFACE AND ADAPTIVE CONTINUOUS VSC 
DESIGN 

To complete the design of secure communication, it is 
necessary to propose a continuous VSC scheme to stabilize the 
extended error dynamics Eq. (6) and achieve synchronization. 
In the following, the design of continuous VSC scheme is 
separated into two major phases. First, an appropriate 
switching surface is selected such that the sliding motion on the 
sliding manifold is stable. Second, a continuous VSC law is 
established to guarantee the attraction of the sliding manifold. 
To assure the error dynamics Eq. (6) in the sliding manifold can 
be stable asymptotically, the designed switching surface )(ts  
corresponding to )(te  is given as follows:  

Ezzyyxx eekekekts +++=)( , (7) 

where Rs ∈  and Rkkk zyx ∈,,  are designed constants. 

According to the works in [13], when the system can operate in 

the sliding mode, i.e. 0)( =ts , the following equation is always 
satisfied 

0)( =+++= Ezzyyxx eekekekts . (8) 

and 
0)( =+++= Ezzyyxx eekekekts &&&&& . (9) 

From Eq. (8), it is obtained 
zzyyxxE ekekeke −−−= . (10) 

By (6) and (10), it yields 
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Obviously, the error dynamics Eq. (11) is exponentially 
stable if the constants zyx kkk ,, are suitable chosen such that the 

eigenvalues of matrix A in Eq. (11) are with negative real 
parts. Also the convergence rate of Eq. (11) can be determined 
by the eigenvalues of matrix A. Furthermore, by Eq. (10), Ee  
converges to zero when yx ee ,  and ze  converge to zero. 

After establishing an appropriate sliding surface, the next 
step is to establish a robust control law not only to guarantee the 
occurrence of the sliding mode but also ensure that the state 
trajectory can stay on the sliding mode 0=s  thereafter even 
undergoing the unknown message signal. To ensure the 
occurrence of the sliding motion, an adaptive VSC scheme is 
proposed as 

0)0()),(()(ˆ
])([)(

uutssigntκr

ekekeqkkektu Exzyyzyxy

=−

+++−−=&
, (12) 

where 1>r  and 0u  is the bounded initial value of )(tu . The 
adaptive law is 

0ˆ0ˆˆ κ)(κ,s(t)θ(t)κ ==&  (13) 

where 0>θ  and 
0κ̂  is the bounded initial value of (t)κ̂ .  

The adaptive SMC controller (12) can be also written in the 
integral form as 

0
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and    
0

0

ˆˆ κdts(t)θ(t)κ
t

+= ∫            (15) 

      
Next, the proposed adaptive VSC of Eq. (12) will be proved 

to be able to drive the extended error dynamics Eq. (6) onto 
the sliding mode 0)( =ts . 

 
Theorem 1: Consider the extended error dynamics Eq. (6), if 
the control input )(tu is suitably designed as Eq. (12) with 
adaptation law Eq. (13), then the trajectory of the error 
dynamics Eq. (6) converges to the switching surface 0)( =ts . 
 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:5, 2010

869

 

 

Proof: Consider the following Lyapunov function candidate 
0);()( 212

2
1 >+= − θδθstV , (16) 

where Rtδ ∈)(  denotes the adaptation error which will be 
defined later. Taking the derivative of )(tV with respect to 
time, one has 
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Now let )(ˆ)( tκκtδ −=  denote the adaptation error. Since κ  is 
constant, 0=κ&  and the following expression holds. 

)(ˆ)( tκtδ && −=  (18) 
Inserting Eq. (18) into the right hand of inequality (17), this 
yields 

)(ˆ)}(ˆ)1(])(ˆ{[)( 1 tκδθstκrtκ κtV
δ

&
48476

& −−−+−≤  (19) 
By placing (13) into (19), it yields 

0)()(ˆ)1()( ≤−≤−≤ tFstκrtV& , (20) 

where 0)(ˆ)1()( ≥−=  stkr tF . Integrating the above equation 
from zero to t, it yields 

.)()()()0(
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dλλFdλλFtV V 
t 

 

t 

 ∫∫ ≥+≥  (21) 

As t goes infinite, the above integral is always less than or 
equal to )0(V . Since )0(V  is positive and finite, dλλF

t 

 t ∫∞→ 0
)(lim  

exists and is finite. Thus according to Barbalat lemma [14], it 
yields  0)(ˆ)1(lim)(lim =−=

∞→∞→
stκr  tF

tt
 (22) 

Since both )1( −r  and )(ˆ tκ  are greater than zero, Eq. (22) 
implies 0=s . Hence the proof is achieved completely. 
 
Theorem 2: The error system Eq. (4) driven by the controller 

)t(u  expressed in Eq. (12) with adaptation law Eq. (13) is 
globally stable. 
Proof: Using the concept of extended systems, the error 
dynamics Eq. (4) can be extended as the extended error 
dynamics Eq. (6). When the extended error dynamics Eq. (6) 
is driven by the control input )(tu  given in Eq. (12) with 
adaptation law Eq. (13), as previously discussed in Theorem 1, 
the trajectory of the error dynamics system Eq. (6) surely 
converges to the sliding mode 0=s . Thus the equivalent error 
dynamics in the sliding mode is obtained as 
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Furthermore, since the design parameters yx kk ,  and zk  are 

specified to ensure 0)(max <Aλ , the stability of Eq. (23) is 

surely guaranteed, that is [ ] 0lim =
∞→

zyxt
eee . By the 

relation of 0)( =+++= Ezzyyxx eekekekts , )(teE  is also 

stable, that is  0)(lim =
∞→

teEt
. Consequently, the asymptotical 

stability of the closed-loop error system is also ensured. The 
theorem is therefore proved. 

When the error dynamics converges to zero as discussed in 
Theorem 2, the following result can be obtained from Eq. (4): 
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Then, from Eq. (24), it yields that 
0))()()((lim =+−

∞→
tdtmtu nt

 (25a) 

If the magnitude of nδ  is much smaller than that of mδ , then  
)()()()( tmtdtmtu n ≅−=  (25b) 

In other words, the message signal )(tm  can be recovered in 
the receiver from the continuous control input )(tu . 

IV. NUMERICAL SIMULATION 
In this section, simulation results are presented to 

demonstrate and verify the performance of the present design. 
The parameters p and q are chosen as 10=p and 7

100=q   in the 

simulation to ensure the existence of chaos for the master 
system (1). Assume )10sin(01.0)( ttdn =  and the initial states 
of the master system (1) are 65.0)0( =mx , 0)0( =my , 

0)0( =mz  and initial states of the slave system Eq. (2) are 
1)0( −=sx , 1)0( =sy , 2)0( −=sz . For simulation, a sin wave 

)2sin(2.0)( ttm =  is embedded into the dynamics of master 
system. And then, according to (11), 7143.3,8 == yx kk  and 

32.6=zk  are selected such that )4,3,2()( −−−=Aλ and the 
switching surface equation is obtained as 

Ezyx eeeets +++= 32.67143.38)(  (26) 

From Eq. (14) and Eq. (15), the continuous control input is 
determined as 
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where 11.1 >=r  to guarantee the existence of the sliding 
motion and 00 =u . The adaptive law is 

0
0

ˆ)()(ˆ κθκ += ∫ dttst
t  (28) 

where 1=θ  and 1ˆ0 =κ . 
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The simulation results are shown in Figures 1-3 under the 
proposed continuous adaptive SMC Eq. (27). Fig. 1 shows the 
time responses of corresponding )(ts  and adaptation parameter 

)(ˆ tκ . Fig. 2 shows, the error state responses of the controlled 
master-slave modified Chua’s system. From the simulation 
result, as expected, it shows that the trajectory of error 
dynamics do converge to 0)( =ts and the synchronization error 
also converges to zero. Finally, Fig. 3 depicts the simulations of 
chaotic secure communication for message signal given above. 
The solid line indicates the transmitted message signal )(tm  
and the dash line denotes the recovered message under the 
effect of external noise )(tdn . Obviously, these results prove 
that the master and slave systems synchronization can be 
achieved as well as the hidden message for secure 
communication can be recovered in the slave system. 

V. CONCLUSION 
In this paper, a secure communication system via 

synchronized modified Chua’s systems has been presented. A 
continuous adaptive sliding mode controller has been proposed 
to ensure the synchronization between the master and the 
controlled slave systems. Then the proposed scheme has been 
also successfully applied to establish the secure communication 
system. Numerical simulations have verified the effectiveness 
of the proposed method. 
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Fig. 1 (a) switching function )(ts ; (b) adaptation parameter )(ˆ tκ . 

 
Fig. 2 The time responses of synchronization error. 

 

 
Fig. 3 The original and recovered message signals. 


