
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3272

Abstract—New software protection product called “Obfuscation

Studio” is presented in the paper. Several obfuscating modules that
are already implemented are described. Some theoretical data is
presented, that shows the potency and effectiveness of described
obfuscation methods. “Obfuscation Studio” is being implemented for
protecting programs written for .NET platform, but the described
methods can also be interesting for other applications.

Keywords—Coupling, obfuscation, predicates, renaming.

I. INTRODUCTION
NE of latest software innovations is the platforms that
use compilation of source code to the assemblies in some

intermediate languages, not in native code. The examples of
such platforms are Java (uses Java byte-code) and .NET (uses
Microsoft Intermediate Language). Such approach allows to
get a lot of advantages: allows JIT (Just-In-Time) compilation
of assemblies to the native code that suites particular hardware
environment, improves extendibility and others. At the other
hand, it is very easy to decompile such assemblies and analyze
used algorithms. This weakness is used by reverse engineers:
they can use non-licensed algorithms, or remove watermarks
and fingerprints from the programs.

The method that is used to prevent attacks described above
is obfuscation [1]. At the moment there is no strict definition
of the term obfuscation, the weak definition is the following:
obfuscation is a process that converts program to the
functionally equivalent one but that is harder to attack by
reverse engineering methods [2].

Some software companies develop obfuscators, but most of
them implement only primitive methods that are not based on
the theoretical results or even are not practically analyzed on
real or sample applications [3].

The work-in-progress obfuscator “Obfuscation Studio” is
presented in this paper. It implements several methods of
obfuscation that were discussed in literature [2, 3, 4].
Moreover, the paper presents the results of practical
investigation of described methods. These results show its
effectiveness and advantages.

Manuscript received October 14, 2005.
Siarhei Petryk and Vyacheslav Yarmolik are with the Belorussian State

University of Informatics and Radioelectronics, Minsk, Belarus (e-mails:
siarhei_petryk@tut.by, yarmolik@bsuir.unibel.by).

Vyacheslav Yarmolik is with Bialystok University of Technology, Poland
(e-mail: yarmolik@ii.pb.bialystok.pl).

II. OBFUSCATION STUDIO ARCHITECTURE
The “Obfuscation Studio” architecture is presented on Fig.

1.

Fig. 1 Obfuscation Studio Architecture

The main module is called “Obfuscation”. It implements

functionality of performing transformations. The libraries with
such transformation are dynamically linked to the main
module through the interface “Methods usage
interface/Ordering module”. This module analyses
transformation libraries and creates an order of
transformations.

Input data are files with source code of the program. Output
data is a program after transformations.

Three obfuscation modules are currently implemented:
1. Entities renaming (lexical method);
2. Building predicates in the code;
3. Increase modules coupling.
All these transformations are described in details below.

III. LEXICAL METHOD OF OBFUSCATION
As it is mentioned above lexical method means entities

renaming [5]. Here it is as an example the sample procedure
that will be shown obfuscated later:

Listing 1. Source code before obfuscating
private Hashtable getFrequency(string fileName)
{

int readByte;
FileStream fs = new FileStream

(fileName,FileMode.Open,FileAccess.Read,FileShar
e.None);

Siarhei Petryk, and Vyacheslav Yarmolik

Obfuscation Studio Executive

O

…

Input
program

Obfuscation Output
program

Method 1 Method 2 Method N

Methods usage interface/
Ordering module

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3273

Hashtable frequency = new Hashtable();
while ((readByte=fs.ReadByte())!=-1)
{
 if (frequency[readByte]!=null)

frequency[readByte]=(int)(frequency[readByte]) + 1;
 else

frequency.Add(readByte,1);
}
fs.Close();

return frequency;
}

A simple cryptographic procedure is presented in Listing 1.

It analyzes input file and returns the hash-table that contains
all the symbols from input file and their frequencies.

After transformation with “Obfuscation Studio” the
procedure was converted to the following:

Listing 1. Source code after obfuscating
private Hashtable ll1lll11(string ll1lll1l)
{

int ll1lllll;
FileStream ll1ll1ll = new FileStream

(ll1lll1l,FileMode.Open,FileAccess.Read,FileShare.N
one);

Hashtable ll1ll1l1 = new Hashtable();
while ((ll1lllll=ll1ll1ll. ReadByte())!=-1)
{
 if (ll1ll1l1[ll1lllll]!=null)

ll1ll1l1[ll1lllll]=(int)(ll1ll1l1[ll1lllll]) + 1;
 else

ll1ll1l1.Add(ll1lllll,1);
}
ll1ll1ll.Close();
return ll1ll1l1;

}

It is evidently that the code became more complex for

reverse engineers, but computer does not see the difference
that means that the program will operate with the same speed.

One of the action items that can be performed for lexical
method of obfuscation is the estimation of obscuring potency
of the investigated method. We suggest defining the following
dependencies to get the value of obfuscation potency:

Characteristics A: dependence between the number of
different entities names in a program and the number of
different words in a program;

Characteristics B: dependence between the overall number
of entities names and overall number of words;

Characteristics C: dependence between the overall length
of all entities names and the length of the entire program.

The investigation of mentioned was performed for the
programs written on such languages as C, C++, C# and Java.
Below we present only investigation result for one of the
languages (C#) because the results for other languages are
very close to the listed below [3].

0

50

100

150

200

250

0 200 400 600

Fig. 2 Characteristics A for C#

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000

Fig. 3 Characteristics B for C#

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5000 10000 15000 20000 25000

Fig. 4 Characteristics C for C#

We can get the ratio of the values that characterize the

entities and the entire program; this shows the part of a
program that is taken by the entities names. The percentage
equivalent of that ration is 15-55%, this part of program can
be changed and obscured by the lexical obfuscation method.
By the way, this part of code can be used for building
watermarks in the source file and possibly for some other
purposes [3].

The disadvantage that should be mentioned while
discussing lexical method is the simplicity of performing
reverse actions. Those actions will not bring back sensible
names, but will make it easier to understand the logic of a
program.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3274

IV. OBFUSCATION WITH PREDICATES
The only lexical method of obfuscation will not give any

guaranties of programs protection. Therefore a lot of other
approaches were presented that change the flow-graph of a
program. One of the approaches that is implemented for
“Obfuscation Studio” is the module that builds predicates into
source code [6, 7]. The following examples will help to
understand the idea:

Listing 3. Source code before obfuscating
public Class1 ()
{
 d = a + b ;
 e = d + c ;
 f = a + c ;
 g = e + f ;
}

Listing 4. Source code after obfuscating
public Class1 ()
{
 if (TrueFlag) if (TrueFlag) d = a + b ;
 if (!FalseFlag)
 {
 if (TrueFlag) if (!FalseFlag) e = d + c ;
 }
 else
 {
 if (TrueFlag) if (!FalseFlag) e = d + c ;
 }

if (TrueFlag) if (TrueFlag)
 if (TrueFlag) f = a + c ;
 if (!FalseFlag)
 {
 if (!FalseFlag) g = e + f ;
 }
 else
 {
 g = e + f ;
 }
}

The obfuscating module algorithm is the following:

1) Procedures bodies are being divided into elementary parts
(operations);

2) Obfuscator chooses the random set of such operations and
transforms it with one of the following rules:
1. Op if (PrT) Op;
2. Op if (Pr?) Op; else Op;
3. Op if (PrT) Op; else Op’;
4. Op if (not PrF) Op;
 where Op – a set of operations,

Op’ – a set of operations that which can replace the original
set,

PrT – predicate that is always true,
PrF – predicate that is always false,
Pr? – predicate that can be either true or false.

3) Initial code is being replaced with transformed one.
To determine the effectiveness of using presented method

of obfuscation we suggest the following metrics:
1. predicates diffusion of a program;
2. average predicates nesting level;
3. complexity of selecting expressions;

4. symmetry of predicates distribution.

The variable parameter for presented method of obfuscation

is the number of passes on the same part of code. Below there
are diagrams that show the dependencies between some
mentioned metrics, the length of the program, the execution
time and the number of passes.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

1 3 5 7 9 11 13 15 17 19 21 23 25

Fig. 5 Dependence between the predicates diffusion and the

number of passes

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25

Fig. 6 Dependence between the average predicates nesting level

and the number of passes

0

20000

40000

60000

80000

100000

120000

1 3 5 7 9 11 13 15 17 19 21 23 25

Fig. 7 Dependence between the length of the program and the

number of passes (in bytes)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3275

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25

Fig. 8 Dependence between the execution time (in milliseconds)
and the number of passes (10 measurements were performed)

As it is shown on the Fig. 7 the program length grows

exponentially that is undesirable. That’s why it is needed to
resolve the problem of optimal obfuscating parameters (will
be discussed later).

V. INCREASE MODULS COUPLING
The latest implemented obfuscation library brings to

"Obfuscation Studio" the ability of using the method of
obfuscating by increase program modules coupling [8].

The main idea is the following: module is more complex if
it interacts with more other modules [9]. The obfuscating
algorithm idea looks like the following: the obfuscator goes
through all the modules, gets the random number of operators
from each module and builds it in the other modules. Natural
restrictions for this algorithm are connected with the rules of
object-oriented programming.

The metric that measures the coupling is called CBO
(Coupling Between Objects) that determines the number of
classes with which interacts current module [10].

For testing purposes we used medium application that
consists of 17 classes, that performs some operations with
financial data. The dynamic of CBO changing and program
length growing is shown on the Fig.9 - Fig. 10.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CBO for initial classes CBO after obfuscating

Fig. 9 CBO growing

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Initial classes length Obfuscated classes length

Fig. 10 Length growing

The investigation of sample application showed that the
average value of CBO metrics for all the classes has grown
form 3.18 to 7.53, the ratio is 2.37. The ration for growing
program length is 1.10 that is less then ratio of CBO growing.
This means that the program complexity grows faster then its
length.

VI. OPTIMAL OBFUSCATION QUALITY
It is well known that the obfuscation methods that

transform the programs flow-graph cause the programs length
and execution time growing that is desirable in most cases [8].
That why we built special algorithms in "Obfuscation Studio"
that find the optimal obfuscation parameters. It uses one of the
resolving optimization problems methods - multiplicative
convolution. General formula for this method is the following:

∏
↓∈

×

∏
↑∈

××

=

Jj jjjk
Jj jjjk

E αδ

αδ

/
 (1)

where kj – the value of j criteria (metric),
 δj – factor that makes all values normalized,
αj – importance factor of j criteria (from 0 to 1 as defined by

the expert),
J↑ – criteria that are to be maximized,
J↓ – criteria that are to be minimized.
Maximization is required for the metrics values and the

minimization is required for program length and execution
time.

REFERENCES
[1] Reverse Engineering Wizard. Microsoft .NET Framework SDK Tool

Developer's Documentation. Microsoft Corporation, 2001.
[2] Christian Collberg, Clark Thomborson, Douglas Low. A Taxanomy of

Obfuscating Transformations. Technical Report 148, Department of
Computer Science, University of Auckland. – 1997.

[3] S. Petryk, V. Yarmolik, Investigation of lexical method of obfuscation .
Informatics. Vol. 3, 2004, pp. 58-66.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.Vadhan
and K.Yang. On the (Im)possibility of Obfuscating Programs.
Electronic Colloquium on Computational Complexity (ECCC). – Vol.
8(057) – 2001.

[5] Prashant Shah. Code Obfuscation For Prevention of Malicious Reverse
Engineering Attacks. ECE 578, Computer and Network Security. –
1998.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3276

[6] S. Petryk, Obfuscating by building predicates in. Proc. 10th Russian
conference in Ryazan. 2005. pp. 82-84.

[7] Douglas Low. Java Control Flow Obfuscation. University of Auckland.
– 1998.

[8] Sergei Petrik, Vyacheslav Yarmolik. Obfuscation by influence the
modules coupling. Automatic Control and Computer Sciences, to be
published.

[9] Arun Lakhotia, “Rule-based Approach to Computing Module
Cohesion”. Proceedings 15th International Conference on Software
Engineering, Baltimore. – 1993.

[10] Shyam R. Chidamber, Chris F. Kemerer, A Metrics Suite for Object
Oriented Design. IEEE Transactions on software engineering. – vol. 20.
– 1994.

