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Abstract—This study investigates the performance of radial basis 

function networks (RBFN) in forecasting the monthly CO2 emissions 
of an electric power utility. We also propose a method for input 
variable selection. This method is based on identifying the general 
relationships between groups of input candidates and the output. The 
effect that each input has on the forecasting error is examined by 
removing all inputs except the variable to be investigated from its 
group, calculating the networks parameter and performing the 
forecast. Finally, the new forecasting error is compared with the 
reference model. Eight input variables were identified as the most 
relevant, which is significantly less than our reference model with 30 
input variables. The simulation results demonstrate that the model 
with the 8 inputs selected using the method introduced in this study 
performs as accurate as the reference model, while also being the most 
parsimonious. 
 

Keywords—Correlation analysis, CO2 emissions forecasting, 
Electric power utility, Radial basis function networks.  

I. INTRODUCTION 
HE need to reduce green house gases emissions will 
impose a heavy burden on the world economy. Since the 

electric power industry is an important direct and indirect 
source of CO2 emissions, the countermeasures against global 
warming are expected to have a great impact on the electricity 
sector. For instance, in the fiscal year (FY) 2008 the estimated 
CO2 emissions in Japan resulting from the electricity use were 
about 395 million tons of CO2 which represents approximately 
30 % of the total CO2 Japanese emissions.  

Furthermore, nowadays the regulatory authorities need 
ahead information about the CO2 emissions from power 
generating companies, in order to elaborate an accurate 
allocation plan or establish a carbon taxes with small welfare 
losses. On the other hand, the electric power utilities should be 
aware of the CO2 emissions reduction costs for the next year as 
well as how many emissions permit they need to purchase 
through the emission trading scheme to accomplish their 
imposed targets. Therefore, producing optimal CO2 emissions 
forecasts are important in order to implement the necessary 
strategies to tackle global warming. 

In recent years, many approaches have been developed for 
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calculating the CO2 emissions forecast on a global and country 
level. In particular, Kaimuna et al. (2000) [1] applied AIM 
model for forecasting the CO2 emissions in Japan. The AIM 
model is a computable general equilibrium model which 
estimates the greenhouse gas emissions and assesses policy 
options to reduce them in the Asian-Pacific region.  Another 
computable general equilibrium model that has been widely 
used to analyze the emission of greenhouse gases is MIT EPPA 
model. Kasahara et al. (2007) [2] employed MIT EPPA model 
to project the economic growth and simulated the CO2 
emissions of Japan up to the year 2020. Yang and Schneider 
(1998) [3] applied a statistical decomposition model to analyze 
different carbon dioxide emissions scenarios in three regions: 
more developed countries, China and the remaining less 
developed countries. In Yang and Schneider approach, CO2 
emissions are decomposed into the product of four factors: 
population size, affluence (GDP per capita), energy intensity 
(energy use per unit GDP) and carbon intensity (CO2 emissions 
per unit energy).  Schmalensee et al. (1998) [4] and 
Holtz-Eakin and Selden (1995) [5] used the Environmental 
Kuznet curve to construct a CO2 emissions business as usual 
scenarios. These approaches are based on the relationship 
between emissions per capita and income. In spite of the fact 
that the CO2 emissions forecasts on a country level are 
calculated using a variety of models, there is scarce literature 
on the CO2 emissions prediction from the electric power 
companies. For instance, Islam et al. (1997) [6] applied a linear 
time series analysis to predict the CO2 emissions of an electric 
utility. In order to contribute with the CO2 emissions 
forecasting literature, we propose an artificial neural networks 
(ANNs) model, specifically radial basis function networks 
(RBFN), to forecast the CO2 emissions of an electric power 
utility. Based on the fact that neural networks are able to 
provide good solutions to the problem of modeling complex 
nonlinear relationships [7] – [9].  

In addition, the second goal of this paper is the important 
issue of input variable selection for RBFN-based electric 
utility’s CO2 emissions forecasting. The importance of this 
problem is evident because of ANNs learn the relationships 
between input and output variables on the basis of provided 
input-output data pairs. Therefore, if correlated or insignificant 
variables are selected as inputs, bigger training sets are 
required, then computational resources are wasted during 
training and sometimes inferior results are obtained. 
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II. MODEL FORMULATION 
ANN methods are good choice to predict the CO2 emissions 

of an electric utility, since these techniques do not require a 
priori postulation of model parameters to represent the complex 
relationship between the CO2 emissions and the factors that 
determine it. In fact, the model parameters are iteratively 
adjusted and optimized through network learning of historical 
patterns. And, the time series forecasting is performed 
completely by inference of future behavior from example of 
past behavior. 

A. Network Architecture 
A RBFN was used here to forecast the monthly CO2 

emissions of Tokyo Electric Power Company. The architecture 
of RBFN consists of three layers as follows, 

1)  The Input Layer 
The input layer is made up of source nodes whose number is 

equal to the dimension of the input vector xt. For n 
measurements from an output yt and d inputs, the input vector is 
thus represented by xt = [xt1,….,xtd], t = 1 to n. Besides, the data 
at the input layer were normalized to mean cero and standard 
deviation 1 to make the relevance measures comparable. Then, 
the input neurons feed the values to each of the neurons in the 
hidden layer. 

2) The Hidden Layer 
The hidden layer consists of a set of basis function units that 

carry out a nonlinear transformation from the input space to the 
hidden space. Usually, the nonlinear transformation is based on 
Gaussian function which characteristic feature is that its 
response decreases monotonically with the distance from a 
central point. The activation function for a radial basis neuron 
is, 
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Where ||…|| represents the Euclidean distance, ci, σi and Φ 

are the centers, the width of the basis function and the output of 
the hidden unit i, respectively [10].  

The center of the basis function for a node i at the hidden 
layer is a vector ci whose size is the same as the input vector xt. 
The position of the center is chosen according to the 
distribution of input variables in space. At locations where 
there are few inputs few nodes will be placed and conversely, a 
lot of nodes will be placed where there are many input data. 
Further, the optimal number of center is determined by the 
training process.  

In this study, a trial and error procedure for the width 
parameter (σi) selection was used by gradually varying the 
value of the width parameter. Moreover, we choose to work 
with the same σi for all hidden units. Next, the resulting value 
for the radial basis function is passed to the summation layer. 

3) The Output Layer 
The value from each neuron in the hidden layer is multiplied 

by a weight associated with the neuron (w1, w2, ...,wp) and 
passed to the summation which adds up the weighted values 
and presents this sum as the output of the network: 

                            ∑
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The computation of the optimal weight values between the 
neurons in the hidden layer and the summation layer is done by 
using least squares method. Since we applied a supervised 
learning, our training data set consist of pairs of inputs and 
target outputs. Thus, knowing both the network outputs and the 
target outputs, the error is minimized by automatically 
adjusting the weights. 

B. Performance Criteria 
The evaluation of forecasting capability of developed RBFN 

model is examined by using root mean square error (RMSE), 
mean absolute error (MAE) and mean absolute percentage error 
(MAPE). The RMSE is the square root of the average of square 
differences between the forecasted CO2 emissions tŷ  and the 

actual ones ty : 
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The MAE describes the average magnitude of the errors 
without considering their direction. It is computed and given 
as: 

                               ∑
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These two errors indicators show the errors in the same units 
and scale as the parameter itself. The MAE and RMSE can be 
used together to diagnose the variation in the errors. A large 
difference between the MAE and RMSE reveals a large 
variation in the error time series. Besides, the RMSE is larger or 
equal than MAE. 

In order to asses the prediction accuracy of RBFN model as a 
percentage, we applied MAPE which is calculated using the 
following definition: 
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III. INPUT VARIABLE SELECTION 
In a RBFN framework a key issue is the choice of a proper 

topology for a given problem. This requires determining the 
RBFN parameter as well as careful selection of the appropriate 
input variables. The RBFN parameters that affect the 
performance of the model are: the number of hidden units or 
centers, the position of the centers, the width of the radial basis 
function and the weights from the hidden layer to the final 
network layer. These network parameters were found out 
during the training process. As for the input selection, the 
applied procedure is depicted in Fig. 1 and explained below, 
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Fig. 1 Flowchart of the proposed method for input variable selection. 
kg = Variable to be investigated from group g 
Mg = Maximum number of variables in the group g 
 
 

1) Selection of input variables for the reference model 
A set of input variables that are significantly correlated with 

the output variable were selected from available data. In this 
study, 29 input variables and 1 seasonal parameter (month of 
the year) were employed to implement our RBFN reference 
model as it is shown in Fig. 2. 
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Fig. 2 Architecture of RBFN reference model. 
 
2) Grouping of input variables 

These 29 input variables were divided in 6 groups which 
describe the principal characteristics of these input candidates 
(see Table I). These groups of variables are considered in the 
literature to be the major determinants of CO2 emissions level.  

The historical data (FY 2005 - FY 2008) came from several 
sources. Specifically, the fuel use data and the electricity data 
were obtained from Federation of Electric Power Companies of 
Japan (FEPC). The population data came from the Ministry of 
Internal Affairs and Communication Statistic bureau. The 
energy trading data were based on the information of Japan 
Electric Power Exchange (JPEX). The economic indicator 
GDP came from Department of National Accounts, Economic 
and Social Research Institute (ESRI). The source of the fuel 
price data was the Energy Data and Modeling Center, The 
Institute of Energy Economics, Japan. For estimating CO2 
emissions from electricity generation, data on CO2 emission 
intensity and CO2 emissions level were based on several reports 
from Tokyo Electric Power Company and FEPC. 
3) Correlation analysis 

A correlation analysis between variables inside of each 
group was carried out (see Tables II, III, IV, V and VI), in order 
to facilitate the selection of the most representative variable 
from each group.  
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TABLE I 
CORRELATION BETWEEN CO2 EMISSIONS AND THE INPUT CANDIDATES 

Variable Symbol CO2 Emissions 
(Million ton) 

Group 1: Fuel use   

   Coal purchased (t) F1 0.251 
   Coal consumed (t) F2 0.389 
   Heavy oil purchased (kL) F3  0.469 
   Heavy oil consumed (kL) F4 0.456 
   Crude oil purchased (kL) F5 0.373 
   Crude oil consumed (kL) F6 0.285 
   LNG purchased (t) F7 0.482 
   LNG consumed (t) F8 0.513 
Group 2: Electricity data   
   Hydro generation (MWh) E1 -0.048 
   Thermal generation (MWh) E2 0.502 
   Nuclear generation (MWh) E3 -0.224 
   Electricity purchased (MWh) E4 0.594 
   Electricity supply (MWh) E5 0.574 
   Electricity demand (MWh) E6 0.535 
   Peak load (MW) E7 0.518 
Group 3: Population   

   Whole Japan (thousand persons) P1 -0.185 
   Saitama (thousand persons) P2 0.653 
   Chiba (thousand persons) P3 0.639 
   Ku-area (thousand persons) P4 0.650 
   Yokohama (thousand persons) P5 0.649 
   Kawasaki (thousand persons) P6 0.651 
Group 4: Electric power trading   

   Trading volume (kWh)  T1 0.580 
   24-hour mean value price (yen/kWh) T2 0.538 
   Day time price (yen/kWh) T3 0.587 
   System peak price (yen/kWh) T4 0.613 
Group 5: Fuel price   

   Coal price (US$/t) D1 0.675 
   Oil price (US$/barrel) D2 0.468 
   LNG price (US$/m3) D3 0.418 
Group 6: Economic indicator   

   Real GDP (billion of yen) I1 0.304 
 

TABLE II 
CORRELATION BETWEEN EACH INPUT CANDIDATES IN FUEL USE GROUP 

Group 1 F1 F2 F3 F4 F5 F6 F7 F8 

F1 1.00 0.64 0.32 0.31 0.27 0.31 0.19 0.45 
F2  1.00 0.49 0.52 0.34 0.33 0.53 0.65 
F3   1.00 0.96 0.84 0.78 0.70 0.83 
F4    1.00 0.81 0.76 0.67 0.84 
F5     1.00 0.72 0.54 0.71 
F6      1.00 0.46 0.65 
F7       1.00 0.77 
F8        1.00 

 
As we can see in Table III and Table IV, the electricity data 

group and population group were the only groups which some 
input variables are negative correlated. Besides, in the 

population group, all candidates are highly correlated except 
for whole Japan population input. There is not significant 
relationship between hydro generation and the following 
variables: electricity purchased, electricity supply and 
electricity demand. In the same way, the correlations between 
nuclear generation and electricity supply, electricity demand 
and peak load are very low. 

TABLE III 
CORRELATION BETWEEN EACH INPUT CANDIDATES IN THE ELECTRICITY 

GROUP 
Group 2 E1 E2 E3 E4 E5 E6 E7 

E1 1.00 -0.29 0.43 -0.05 0.02 0.02 0.21 
E2  1.00 -0.77 0.67 0.61 0.46 0.44 
E3   1.00 -0.41 -0.06 0.01 0.05 
E4    1.00 0.69 0.55 0.67 
E5     1.00 0.76 0.89 
E6      1.00 0.71 
E7       1.00 

 
TABLE IV 

CORRELATION BETWEEN EACH INPUT CANDIDATES IN THE POPULATION GROUP 
Group 3 P1 P2 P3 P4 P5 P6 

P1 1.000 -0.541 -0.539 -0.536 -0.534 -0.538 
P2  1.000 0.997 0.999 0.998 0.998 
P3   1.000 0.998 0.998 0.999 
P4    1.000 0.999 0.999 
P5     1.000 0.999 
P6      1.000 

 
TABLE V 

CORRELATION BETWEEN EACH INPUT CANDIDATES IN THE ELECTRIC POWER 
TRADING GROUP 

Group 4 T1 T2 T3 T4 

T1 1.000 0.445 0.388 0.328 
T2  1.000 0.960 0.882 
T3   1.000 0.963 
T4    1.000 

 
TABLE VI 

CORRELATION BETWEEN EACH INPUT CANDIDATES IN THE FUEL PRICE GROUP 
Group 5 D1 D2 D3 

D1 1.000 0.587 0.648 
D2  1.000 0.858 
D3   1.000 

 
4) Training and selection of optimum network for the 
reference model 
ANN training consists on determining the network parameters 
that allow achieving the desired target based on the available 
training data sets. The training and network selection procedure 
is as follows: First, the minimum width parameter (σmin) and 
maximum width parameter (σmax) are fixed. Then, the optimal 
width is obtained by an iterative process as it is shown in Fig. 1. 
For each width parameter, the RBFN trains with an increasing 
number of centers. And, the position of centers is determined 
by clustering algorithms. Next, the weights connecting the 
hidden layer with the output layer are determined by least mean 
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squared (LMS) algorithms. The training stops when the 
validation error measured over 5 epochs has increased more 
than fixed threshold since the last time it decreased or the 
maximum number of centers has been reached. After training 
stops, the model with the lowest validation set error is used to 
forecast the CO2 emissions for the testing data set and the 
testing error is calculated. The iteration continues until σmax is 
reached. Finally, the optimum network is selected based on the 
lowest testing error and the network parameter values are set. 
5) Variable testing 

The variable selection procedure is based on the effect that 
each input has on the forecasting error. The change in 
forecasting error is examined by removing all inputs except the 
variable to be investigated from its group, calculating the 
networks parameter and performing the forecasting. Finally, 
the new forecasting error is compared with the reference model. 
6) Improvement rate 

The improvement rate (IR) is applied in order to compare the 
prediction error between the RBFN model under evaluation 
and the reference model, 

                     
RM

NRM

RMSE
RMSERMSEIR −

=                          (6) 

where the subscripts RM and N of RMSE refer to the reference 
model and the model under study respectively. 
7) Selection of one representative input variable from each 
group 

After, the improvement rates were calculated for our 29 input 
candidates, one variable was selected from each group based on 
the bigger IR. Then, these results were compared with the 
correlation analysis. 

IV. SIMULATION RESULTS AND DISCUSSION 
This paper has two important goals: namely, the evaluation 

of performance of RBFN in the monthly CO2 emissions 
forecasting of an electric power utility and identification of best 
input variables for RBFN CO2 emissions prediction. Several 
interesting conclusions may be drawn from our simulation 
results. 

A. Reference Model  
The RBFN as shown in Fig. 2 is used as reference model to 

analyze the influence of 29 input variables on CO2 emissions 
forecasting. These input candidates were carefully selected 
among socioeconomic factors and energy factors that have 
been considered in the technical literature as major determinant 
of the CO2 emission levels. 
1) Sensitivity analysis of RBFN parameters 

Some observations can be made by analyzing Fig. 3: the 
RBFN parameters (number of centers and width) greatly affect 
the forecasting performance of the network. As the number of 
center increases, the training error decreases. Conversely, the 
validation error and the testing error showed an opposite 
behavior. In fact, networks with fewer centers are preferable, 
since these networks usually have better generalization 
capabilities, fewer over-fitting problems and they are more 

computational efficient. However, if the number of centers is 
not large enough to capture the underlying behavior of the data, 
it would result in network with too poor approximation 
accuracies. The simulation results showed that the optimal 
number of center is 7.  
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Fig. 3 The effect of RBFN parameters on the CO2 emissions 
forecasting performance of the reference model. 
Data set: (a) training   (b) validation  (c) testing 

 
In the case of the width parameter, also called as spread 

parameter, it is important to note that radial basis functions with 
small width parameter are more selective than functions with 
large width parameter. In addition, the width parameter should 
be large enough that the radial basis function for each neuron 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:8, 2010

1276

 

 

responds to overlapping regions of the input space, but not too 
large that all the neurons respond in essentially the same 
manner. 

In this research, σmin and σmax are determined a priori. 
Besides, the optimal width parameter is obtained by a trial and 
error procedure. Our analysis showed that for our reference 
model a width parameter less than 5 will increase the 
forecasting errors quickly, while any number bigger than 15 
does not seem to enhance the forecasting performance or cause 
it to worsen. The simulation results demonstrated that the 
optimal width parameter is 8. 
2) Forecasting Results 

The applied RBFN reference model was trained using the 
data from April 2005 to March 2008. And, the forecasting year 
is chosen as FY 2008 (April 2008 – March 2009). Fig. 4 
illustrates the CO2 emissions forecasting of Tokyo Electric 
Power Company. It can be seen from Fig. 4 that the model 
performs well for the training and prediction periods. Besides, 
the forecasting accuracy of the reference model is presented in 
Table VII in terms of RMSE, MAE and MAPE. 

C
O

2
Em

is
si

on
s (

m
ill

io
n 

t-C
O

2)
a

Test

0

2

4

6

8

10

12

14

16

A
pr

-0
5

Ju
l-0

5

O
ct

-0
5

Ja
n-

06

A
pr

-0
6

Ju
l-0

6

O
ct

-0
6

Ja
n-

07

A
pr

-0
7

Ju
l-0

7

O
ct

-0
7

Ja
n-

08

A
pr

-0
8

Ju
l-0

8

O
ct

-0
8

Ja
n-

09

Actual Forecast

C
O

2
Em

is
si

on
s (

m
ill

io
n 

t-C
O

2)
a

Test

0

2

4

6

8

10

12

14

16

A
pr

-0
5

Ju
l-0

5

O
ct

-0
5

Ja
n-

06

A
pr

-0
6

Ju
l-0

6

O
ct

-0
6

Ja
n-

07

A
pr

-0
7

Ju
l-0

7

O
ct

-0
7

Ja
n-

08

A
pr

-0
8

Ju
l-0

8

O
ct

-0
8

Ja
n-

09

Actual Forecast

 
Fig. 4 Results of the CO2 emissions forecasting using RBFN reference 
model. 
a These values don’t reflect the use of carbon credits 
 

TABLE VII 
OUTPUT ERRORS OF RBFN REFERENCE MODEL 

Data set RMSE MAE MAPE (%) 
Training 0.736 0.632 6.51 
Validation 0.742 0.636 5.50 
Testing 0.691 0.539 4.92 

 

B. Improvement Rate Results 
In this research, the performance of each input candidate is 

assessed by removing the other inputs from its group and 
calculating RMSE for this new network under evaluation. 
Finally, the IR is used to measure the relative improvement 
between the different competing models and our reference 
model. When IR is positive, it is mean that the model under 
evaluation is better than the reference model. The Table VIII 
presents the results of RMSE calculation for the testing of 29 
input candidates. The simulation results showed that the most 
important input variables are: coal price (fuel price group), coal 
purchased (fuel use group), trading volume (electric power 
trading group), thermal generation (electricity data) and 
Saitama population (population group). Since real GDP is the 
only input vector inside of the economic indicator group, it was 

not remove during the simulation process. In addition, it is 
observed from Fig. 5 that the population group and the 
electricity data group had the worst results for IR. This can be 
attributed to the fact that some inputs inside of these two groups 
present negative correlation between them (see Table III and 
Table IV). Therefore, one input variable may not represent the 
total characteristics of the group. In order to avoid this problem 
and investigate the forecasting performance of the negative 
correlated variables, the simulations were running once more 
for the electricity data group and population group and the 
results are shown in Table IX. The simulation results 
demonstrated that two variables (thermal generation and 
nuclear generation) inside of the electricity data group 
considerably improved the forecasting performance compared 
to the previous results. 

TABLE VIII 
SIMULATION RESULTS OF THE INPUT VARIABLE TESTING 

Variable within the group  
Input 

Variables 
in model 

Number 
of Center 

Width 
σ RMSE 

Fuel price group     

   Coal price 28 7 12 0.62 
   Oil price 28 7 11 0.63 
   LNG price 28 7 8 0.69 
Fuel use group     

   Coal purchased 23 10 6 0.68 
   Crude oil purchased 23 10 6 0.69 
   Heavy oil consumed 23 10 6 0.70 
   Coal consumed 23 10 9 0.71 
   Crude oil consumed 23 8 6 0.71 
   Heavy oil purchased 23 8 6 0.71 
   LNG consumed 23 8 6 0.73 
   LNG purchased 23 8 5 0.76 
Electric power trading group    

   Trading volume 27 6 5 0.80 
   Day time price  27 6 6 0.82 
   System peak price 27 6 6 0.82 
   24-hour mean value price 27 6 6 0.83 
Electricity data group     

   Thermal generation 24 15 6 0.82 
   Peak load 24 15 5 0.86 
   Electricity supply 24 16 5 0.89 
   Electricity purchased 24 15 5 0.92 
   Electricity demand 24 16 5 0.94 
   Hydro generation 24 20 5 0.96 
   Nuclear generation 24 20 5 0.99 
Population group     

   Saitama population  25 10 5 0.91 
   Japan population 25 14 15 0.92 
   Yokohama population 25 10 5 1.00 
   Ku-area of Tokyo 25 10 5 1.00 
   Chiba population 25 10 5 1.08 
   Kawasaki population 25 10 5 1.10 
Economic indicator group     

   Real GDP 30 7 8 0.69 
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Fig. 5 Improvement rate results of 29 input candidates. 
 

 
TABLE IX 

RBFN PERFORMANCE UNDER 2 INPUT VARIABLES INSIDE OF POPULATION 
GROUP AND ELECTRICITY DATA GROUP  

Variable within 
the group 

Input 
Variables 
in model 

Number 
of Center 

Width 
σ RMSE IR  

(%) 

Electricity data      

   E2 and E3 25 5 13 0.72 -4.3 
   E3 and E5 25 12 6 0.95 -37.7 
   E1and E2 25 20 5 0.96 -39.1 
   E3 and E4 25 5 9 1.05 -52.2 
   E1 and E4 25 6 10 1.06 -53.6 
Population      

   P1 and P2 26 14 12 0.80 -15.9 
   P1 and P5 26 14 10 0.84 -21.7 
   P1 and P3 26 14 7 0.87 -26.1 
   P1 and P4 26 14 11 0.88 -27.5 
   P1 and P6 26 14 10 0.90 -30.4 

C. Comparative Analysis 
Our input selection procedure identified 8 input variables as 

the most significant. Namely, coal price, coal purchased by the 
electric power company, trading volume of electricity, thermal 
generation, nuclear generation, GDP, Saitama population and 
the seasonal parameter (month of year). A new RBF network 
was implemented with the 8 selected input variables and the 
network parameters were re-calculated. The simulation results 
showed that the most favorable number of center and width of 
the new network were 5 and 15 respectively. Fig. 6 presents a 
comparison of the forecasting results between the reference 

model and the new model. Furthermore, the forecasting 
accuracy measure in terms of RMSE for the reference model 
and new model were 0.69 and 0.68 respectively. This implies 
that the new network with 8 input variables is capable of 
predicting the monthly CO2 emissions of the electric power 
company as accurate as the reference model with 30 input 
variables. 
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Fig. 6 Comparison of forecasting results between the reference model 
and the new model. 

V. CONCLUSION 
This paper introduced an approach for input variable 

selection for the CO2 emissions forecasting of an electric power 
company which is based on identifying the general 
relationships between groups of input candidates and the 
output. Eight input variables were identified as the most 
relevant, which is significantly less than our reference model 
with 30 input variables. 

The results obtained by the new RBFN model are 
comparable with the reference model results. This lead to the 
conclusion that by investigating the relationships between the 
variables, a parsimonious set of input variables can be 
identified without sacrificing accuracy of the forecasts. 
Besides, smaller number of input variables leads toward to a 
more compact neural network that needs less training data and 
is easier to train. 

Moreover, if correlated or insignificant variables are selected 
as inputs, then computational resources are wasted during ANN 
training, resulting in prolonged training times and sometimes 
inferior results. 

The number of inputs, the number of centers and width 
parameter affect the forecasting performance and hence need to 
be chosen carefully. 
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