
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:4, 2008

701

Sensitivity of Small Disturbance Angle Stability to

the System Parameters of Future Power Networks
Nima Farkhondeh Jahromi, George Papaefthymiou, and Lou van der Sluis

Abstract—The incorporation of renewable energy sources for the
sustainable electricity production is undertaking a more prominent
role in electric power systems. Thus, it will be an indispensable
incident that the characteristics of future power networks, their
prospective stability for instance, get influenced by the imposed fea-
tures of sustainable energy sources. One of the distinctive attributes of
the sustainable energy sources is exhibiting the stochastic behavior.
This paper investigates the impacts of this stochastic behavior on
the small disturbance rotor angle stability in the upcoming electric
power networks. Considering the various types of renewable energy
sources and the vast variety of system configurations, the sensitivity
analysis can be an efficient breakthrough towards generalizing the
effects of new energy sources on the concept of stability. In this paper,
the definition of small disturbance angle stability for future power
systems and the iterative-stochastic way of its analysis are presented.
Also, the effects of system parameters on this type of stability are
described by performing a sensitivity analysis for an electric power
test system.

Keywords—Power systems stability, Renewable energy sources,
Stochastic behavior, Small disturbance rotor angle stability.

I. INTRODUCTION

T
HE fast growing application of sustainable energy

sources and the liberalization of the electricity market,

impose major structural changes to the current power systems.

Also, in near future, electric power systems will operate

closer to their marginal limits which itself is an unavoidable

consequence of increasing the number of interconnections.

Considering these reasons, together with the major switching

actions due to the connection of renewable energy sources,

the stability of future power networks undertakes a more

highlighted role from an industrial perspective.

Modern power systems are both large scale and complex.

Because of deregulation, the configuration of interconnected

networks is always in a state of change. Therefore, a method

of stability analysis, which considers the vast variety of states,

is of interest. Such a method should be able to combine the

imposed stochastic behavior of the applied renewable energy

sources and the deterministic approach of stability analysis.

A possible methodology to analyze the small disturbance

stability in the prospective power systems is to make use of an

iterative-stochastic approach. By this approach, the uncertain
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nature of sustainable energy sources is stochastically modeled

and subsequently, for each sample of this model an itera-

tive linear analysis is performed. This approach analyzes all

possible combinations of loads and the sustainable electricity

generations. Eventually, this method is expected to reveal the

most vulnerable operating points of the system. Applying

such a method enables us to measure the sensitivity of small

disturbance stability with respect to the system parameters.

This publication develops a sensitivity analysis of the small

disturbance angle stability in an electric power test system

which is modified by the connection of several local renewable

power producers.

This paper is organized as follows: Section II describes

the conventional analysis method of small disturbance angle

stability. In section III, the iterative-stochastic method to

analyze the small signal stability is discussed. A numerical

example and conclusions are presented in section IV and

section V, respectively.

II. CONVENTIONAL ANALYSIS METHOD OF SMALL

DISTURBANCE ANGLE STABILITY

Small disturbance angle stability is the ability of an electric

power system to maintain synchronism when it is subjected

to small disturbances [1]. This section summarizes the con-

ventional analysis method of small disturbance angle stability

in electric power systems. Full details can be found in [2],

[3] and the references therein. This section also provides the

points at which some modifications are required for analyzing

the small signal stability in the power networks equipped with

the locally distributed renewable energy sources.

A. Forming the System Dynamics by Nonlinear Differential

Equations

Fig. 1 shows a power system with n + N nodes. The first

n are internal machine nodes and the remaining N are load

buses. E
′
k = E′

k
6 δk (k = 1 . . . n) is the internal machine

voltage phasor behind the transient reactance x′
dk including

the transformer reactance, if present. E′
k is the magnitude of

the internal machine voltage and δk is the internal machine

angle of the k-th machine. V k = Vk 6 θk (k = n+1, . . . n+N)
is the load bus voltage phasor with magnitude Vk and phase

angle θk.

When we assume that loads are represented by constant

impedances, the mechanical power input to generators is

constant and saliency of the rotors is neglected (x′
d = x′

q),

then the required equations to describe the system dynamics

can be formed in the following way:
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Fig. 1. A multi-machine power system

After a power flow calculation, the equivalent steady state

impedance load at each node is calculated and added to the

admittance matrix:

yLoad,k =
PLoad,k − jQLoad,k

V 2
k

, k = n + 1 . . . n + N (1)

The connection of a renewable energy source at the k-th node,

introduces the load admittance yLoad,k as a function of the

behavior of the aforesaid energy source. This function may

result in negative values when the generation exceeds the

consumption.

The internal machine voltages can be calculated during the

steady state operation:

E
′
k = V n+k + jx′

dk
PGk − jQGk

V
∗
n+k

, k = 1 . . . N (2)

Due to the input of the sustainable energy sources, the gen-

erated active and reactive powers can change based on the

imposed behavior of such sources of energy.

The Y bus matrix can be completed by adding the admit-

tances corresponding to the generator transient reactance. This

augmented matrix can be written as

Y bus =

(

Y A Y B

Y C Y D

)

(3)

The definition of Y bus matrix and Kirchhoff’s Current Law

(KCL) at each node [4] give:
(

IG

0

)

=

(

Y A Y B

Y C Y D

) (

EG

V L

)

(4)

EG represents the internal machine voltages and V L repre-

sents load bus voltages.

Relation (4) gives:

IG = Y AEG + Y BV L (5)

0 = Y CEG + Y DV L (6)

From equation (6):

V L = −Y
−1

D Y CEG (7)

Replacing (7) in (5) gives:

IG = (Y A − Y BY
−1

D Y C)EG = Y RNMEG (8)

The active power injected into the internal machine node k
is calculated by

PGk = Re{E′
kI

∗
Gk}

= E′2
k Gkk +

n
∑

l=1,l 6=k

E′
kE′

l(Bkl sin(δkl) +

+ Gkl cos(δkl)) (9)

Where δkl = δk − δl. Gkk is the short circuit conductance of

the k-th machine. Gkl is the conductance in Y RNM , k 6= l.
Bkl is the susceptance in Y RNM , k 6= l.

The mechanical motion of the k-th machine (k = 1 . . . n)
is given by

δ̇k = ωk (10)

ω̇k =
1

Mk

[Pmk − Dkωk − E′2
k Gkk

−
n

∑

l=1,l 6=k

E′
kE′

l(Bkl sin(δkl) + Gkl cos(δkl))] (11)

Where ωk is the rotor speed deviation of the k-th machine

with respect to the synchronous speed.

B. Linearization Around the Equilibrium Points

To find the equilibrium point of the power system depicted

in Fig. 1, performing a power flow calculation is the solution.

Consequently, the equilibrium vector of rotor angles ∆
ep is

found by applying equation (2). making use of the definition of

equilibrium point for a dynamic system [5], [6] and applying

equation (10), the equilibrium vector of rotor speed Ω
ep = 0,

is found.

Linearization of the system, equations (10) and (11), around

its equilibrium point, based on the first term of the Taylor’s

expansion [7], gives:
(

∆∆̇n×1

∆Ω̇n×1

)

=

(

0 1

−M
−1

K −M
−1

D

) (

∆∆n×1

∆Ωn×1

)

= Astate

(

∆∆n×1

∆Ωn×1

)

(12)

Where 0 is the n × n zero matrix. 1 is the n × n identity

matrix. M is an n×n matrix with entries Mii = Mi, Mij = 0
(Mi is the moment of inertia constant of the i-th generator).

D is an n × n matrix with entries Dii: Damping coefficient

concerning the i-th machine, Dij = 0. K is an n × n matrix

with the following entries:

Kij = E′
iE

′
j(Gij sin(δi − δj) − Bij cos(δi − δj)) (13)

Kii = −
n

∑

j=1,j 6=i

kij (14)

C. Eigenvalues of the State Matrix and Analysis of Stability

According to the Lyapunov’s first method, the small signal

stability of a nonlinear dynamic system is given by the roots of

the characteristic equation of the system of first approximation

[8]. If this method is applied to the system depicted in Fig. 1,



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:4, 2008

703

then the eigenvalues of the state matrix (Astate) can indicate

the small signal stability in the following forms:

• The original system is asymptotically stable [9] when

the eigenvalues have negative real parts [10].

• The original system is unstable if one eigenvalue has a

positive real part [10].

III. ITERATIVE-STOCHASTIC METHOD TO ANALYZE THE

SMALL SIGNAL STABILITY

Power systems operate under the restrictions derived from

the non-storability of electrical energy [11]. The electrical

energy produced and consumed throughout the system should

be equal at each moment. From another viewpoint, production

and consumption are not certain quantities. The uncertainty

of electricity production increases when the application of

renewable energy sources grows. Thus, the stability of power

networks is affected by the stochastic nature of sustainable

sources of energy. This section discusses the theory of an

iterative-stochastic algorithm to analyze the small disturbance

angle stability. Also, a qualitative discussion on this method

is presented within this section.

A. Theory and Modeling

The iterative-stochastic algorithm, models the uncertainty

of sustainable energy sources and the load behavior. Subse-

quently, for each sample of the load-generation set, a linear

analysis is performed and the relevant eigenvalues are exam-

ined.

In this paper, a normal distribution [12] is used for

modeling the loads. The consumed active power PL is sampled

based on a normal distribution with the mean value µ and

the standard deviation σ, i.e., PL ∼ N(µ, σ). Considering

the power factor of the load (cos ΦL), the consumed reactive

power is given by

QL = PL tanΦL (15)

In order to sample the stochastic power generation, this pa-

per follows the pattern of wind turbines. The power generated

by a wind turbine (provided that the upstream wind velocity,

u, is between the minimal and the maximal values) can be

expressed as [13], [14]

P =
1

2
Cpρu3A (16)

With

Cp =
1

2
(1 +

u0

u
)[1 − (

u0

u
)2] (17)

Where P denotes the output power, Cp the power coefficient,

u0 the downstream wind velocity at the exit of rotor blades,

ρ the air density and A the swept area of the rotor disc.

For modeling the wind speed, a Weibull distribution [15]

is used. The obtained wind speed samples are inserted into

equation (16) to have the samples of the generated active

power.

The dependency of samples on each other in the sampling

process influences the iterative-stochastic method. Although

the loads follow the normal distribution independently, they

still can be correlated due to different reasons such as geo-

graphic differences or being the various load types. A similar

reasoning is valid for generation sampling. For an instructive

discussion on models of stochastic dependence, the reader

is referred to [11] (Chapter 5). For the sake of simplicity,

in this paper, loads are independently sampled, but to be

more realistic, the sustainable generation, at different nodes,

is correlated using the Gaussian copula [16].

B. Qualitative Discussion

The iterative-stochastic algorithm for each couple of (X :
load, Y : generation), performs a linear analysis. If this

method is applied to the power system depicted in Fig. 1, then

for each couple, 2n eigenvalues should be evaluated. Since

any eigenvalue with positive real part has to be avoided, it is

possible to deal with max{Re{2n eigenvalues}}. Consid-

ering the fact that at least one eigenvalue will be zero [9],

it is expected that for a stable system, the iterative-stochastic

algorithm gives a number of zeros.

An important aspect of this method is that the power flow

calculation has to be done for each couple of samples. To

perform this power flow calculation, one node acts as a slack

node. Due to the stochastic generation, direction of power

flow may change and as a consequence, PQ nodes may

participate in the net production. This affects the conventional

PV nodes and/or the slack node. In other words, the reactive

power consumption, i.e., negative generation, occurs for a

synchronous generator (in underexcited mode) [17]. Also,

obtaining a negative active power for the slack node may be

the case (synchronous motor).

Sensitivity to the system parameters is another distinctive

feature of this iterative-stochastic method. Equation (12) shows

that the parameters which can affect the elements of the state

matrix (Astate), are important for the system stability. These

parameters, based on equations (12)-(14), are:

• The moment of inertia constant of each machine.

• The damping coefficient of each machine.

• The adjustable elements of matrix K, i.e., the internal

voltage of the machines (E
′
k = E′

k
6 δk), the conductance

(Gij) and the susceptance (Bij) in the reduced netwrok

matrix.

IV. NUMERICAL EXAMPLE

In this section, a nine-bus test system depicted in Fig. 2 is

used for demonstrating the iterative-stochastic algorithm. The

simulations are performed by using MATLAB and all quanti-

ties are in per unit, unless otherwise stated. The conventional

system data can be taken from [3] (pp. 38, 39).

The test system is modified by the installation of three local

wind turbines at buses 5, 6 and 8 respectively. In order to

investigate the effects of wind turbines and the time-continuous

behavior of the loads some aspects of system data are adjusted

in the following way.

• Demanded active power at bus 5: PL5 ∼ N(µ =
1.25, σ = 0.4). Load power factor at bus 5: cos ΦL5 =
0.9.
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Fig. 2. A nine-bus test system

• Demanded active power at bus 6: PL6 ∼ N(0.9, 0.4).
Load power factor at bus 6: cos ΦL6 = 0.9.

• Demanded active power at bus 8: PL8 ∼ N(1, 0.4). Load

power factor at bus 8: cos ΦL8 = 0.9.

It is worth noticing that normally distributed loads may

also include negative samples. To have a more accurate

analysis, all possible negative samples are converted to

zero.

• Damping coefficient of each generator is set to one.

• The stochastic generated active power at buses 5, 6 and 8

is modeled based on the equations (16) and (17). Power

factor of generation is set to cos ΦG = 0.9. Wind speed

follows the Weibull distribution with scaling parameter

A = 13 and shape parameter K = 2 [18]. Wind

speed samples, for different buses, are correlated by the

correlation matrix ρ =





1 0.8 0.6
0.8 1 0.7
0.6 0.7 1



. Also, wind

speed at nominal power: uN = 13m
s

, nominal power:

PN = 1.8, cut in wind speed: uci = 3m
s

and cut out

wind speed: uco = 25m
s

.
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Fig. 3. Variation of the maximum real part of eigenvalues vs. samples.

Fig. 3 shows the distribution of small disturbance angle sta-

bility indicators for the above explained test system. According

to Fig. 3, the system is at a high level of stability for the 400

analyzed samples.

It becomes now possible to check the sensitivity of the

system angle stability to some controllable parameters. Fig. 4

shows how the system stability is influenced by the nominal

power parameter (PN ) of the wind turbines when this is

increased from 1.8 to 3. Based on Fig. 4, it can be concluded

that the small disturbance angle stability of the system is

jeopardized by increasing the parameter PN for all wind

turbines. Another controllable parameter, to which the small
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Fig. 4. Variation of the maximum real part of eigenvalues vs. samples.

disturbance angle stability of the system is highly sensitive,

is the power factor of the stochastic generation (cos ΦG).

Decreasing this parameter from 0.9, in the original test system,

to 0.4 for all of the PQ nodes can significantly lower the level

of small disturbance angle stability. Fig. 5 shows that how the

density of eigenvalues with positive real parts intensifies when

the generation power factor decreases.
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Fig. 5. Variation of the maximum real part of eigenvalues vs. samples.

Perhaps the least sensitivity of the small disturbance angle

stability for such a test system is shown to the inertia con-

stant of the synchronous machines. In other words, for the

described system, connecting the synchronous machines with

much larger inertia constants does not influence the pattern of

eigenvalue distribution in a significant way. The same result

holds if much lower inertia constants are present. Since the

inertia constant is closely related to the weight, one could

say that replacing heavier or lighter synchronous machines,

does not significantly influence the small disturbance angle

stability of the stated test system. Fig. 6 illustrates this when

synchronous machines in the original system are replaced

with ten times heavier ones (the inertia constants of the

synchronous machines have been multiplied by a factor of 10).

The increasing of the inertia constant has been simultaneously

applied to all generators. In order to see the impact of only

one heavy synchronous machine, Fig. 7 is of help. It shows the

distribution of the maximum real part of the eigenvalues when

the inertia constant of generator number 2 has been multiplied

by 10.

This section discussed the sensitivity of a specific test

system in relation to some types of system parameters. For

example, within the investigation of sensitivity to the power

factor of the generation, the applied change included all wind

turbines. But, the iterative-stochastic approach, also, gives the

possibility of performing a sensitivity analysis for a single

individual parameter in the system. Although this method
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Fig. 7. Variation of the maximum real part of eigenvalues vs. samples.

can not consider the changes in the system configuration, it

allows to perform a sensitivity analysis for the parameters of

transmission lines. Thus, the impacts of resistive, reactive and

capacitive effects of the lines on the small signal stability can

also be investigated by this method.

V. CONCLUSION

It has been shown that an increased supply of renewable

energy sources, gives a negative effect on the small disturbance

angle stability of electric power systems. By introducing an

iterative-stochastic algorithm, the uncertain nature of sustain-

able energy sources was considered in the small signal stability

analysis. This method reconciled the stochastic behavior of

renewable energy sources and the deterministic method of

stability study.

Also, the trend of change in the indicators of small distur-

bance angle stability, i.e., the eigenvalues, was investigated.

Eventually, the sensitivity of small disturbance angle stability

to some system parameters was investigated for an electric

power test system equipped with a number of renewable

energy sources.
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