
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:5, 2011

510

Abstract—Application-Specific Instruction (ASI) set Processors

(ASIP) have become an important design choice for embedded
systems due to runtime flexibility, which cannot be provided by
custom ASIC solutions. One major bottleneck in maximizing ASIP
performance is the limitation on the data bandwidth between the
General Purpose Register File (GPRF) and ASIs. This paper presents
the Implicit Registers (IRs) to provide the desirable data bandwidth.
An ASI Input/Output model is proposed to formulate the overheads of
the additional data transfer between the GPRF and IRs, therefore,
an IRs allocation algorithm is used to achieve the better performance
by minimizing the number of extra data transfer instructions. The
experiment results show an up to 3.33x speedup compared to the
results without using IRs.

Keywords—Application-Specific Instruction-set Processors, data
bandwidth, configurable processor, implicit register.

I. INTRODUCTION
SIPs provide a compromise between custom designs and
general purpose processors. A base processor with a basic

instruction set is augmented with application-specific
functional unit (AFU) that implements application-specific
instruction-set (ASI) extensions for complex processing tasks
as either single-cycle (combinatorial) or multi-cycle
(sequential) operations. The control-flow within the application
is directed by the base processor, whereas computation
intensive regions are implemented as custom logic. A dedicated
link between custom logic and the base processor provides an
efficient communication interface. Reusing a pre-verified,
pre-optimized base processor reduces the design complexity,
and the time to market.

Among the best known examples of extensible ASIPs are
CoWare [1], Tensilica Xtensa [2] and Altera Nios/Nios II [3],
and some levels of customizability have also been added on
traditional well-established architectures such as MIPS
CorExtend [4] or PowerPC APUs [5]. The research community
has expended a considerable amount of effort in the ASIP area
for almost a decade. The issues involved in the ASIP design
were surveyed in [6]. The ASIP architecture and the compiler
co-exploration problem are addressed in [7].

Application specific instruction set processor problem is
defined as a process to automatically generate ASIs from an
application in order to meet certain design objectives. An

Ginhsuan Li1, Chiuyun Hung, Desheng Chen, and Yiwen Wang is with the
Information Engineering and Computer Science Department of Feng Chia
University, Taichung, R.O.C., (e-mail: pipitra1759@gmail.com1, p9431850,
dschen and ywang@fcu.edu.tw).

existing work in ASIP generally consists of three steps. 1)
template generation, 2) ASIs selection and 3) application
replacement. Template generation can be loosely described as a
process of identifying a subgraph from the application
data-flow graph (DFG) to form a single ASI in order to
maximize some metrics (typically performance). This step
generates a set of templates, which will be evaluated for ASIs
implementation. ASIs selection evaluates the templates in
terms of their performance, area, or power and selects a subset
of them that meets the design constraints.

In this work, we apply formal optimization techniques to
generate ASIs from C code. We target architectures where the
data bandwidth between the base processor and the custom
logic is constrained by the available GPRF ports in Fig. 1.

Our method is applicable to architectures where the data
bandwidth is limited by dedicated data transfer channels.
Given the available data bandwidth, our approach identifies the
most profitable ASIs based on a heuristic algorithm. The data
transfer overhead when generating and evaluating ASIs is
explicitly considered. We demonstrate our automatically
customized processor within the silicon area using FPGA
synthesis results.

The contribution of the current paper is that we provide an
ASI input/output model which considers the I/O abstraction
with the base processor GPRF bandwidth constraints and extra
data transfer costs. Another contribution of this paper is that the
model and a heuristic algorithm are successfully integrated into
the ASIP design flow to automatically generate ASIs from C
codes.

Fig. 1 The Datapath of the application-specific instruction processor

(data bandwidth is limited by the GPRF I/O ports)

II. RELATED WORK
Existing approaches attempt to discover the candidate

application specific instructions by exploiting the observation

Ginhsuan Li, Chiuyun Hung, Desheng Chen, and Yiwen Wang

Application-Specific Instruction Sets Processor
with Implicit Registers to Improve Register

Bandwidth

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:5, 2011

511

that recurring subgraphs frequently exist in the dataflow graphs
(DFG) of applications, and then to select an appropriate subset
of the candidate instructions to maximize performance under
certain architectural constraints (e.g., the number of input and
output operands, area constraints, etc.). By implementing these
frequently occurring subgraphs in hardware as instructions,
performance improves, code size decreases, and energy
consumption is reduced. In template generation, most
approaches use the number of I/O ports of the register file to
constrain the set of subgraphs that can be enumerated [8]–[14].
In candidate selection, the problem of individual templates
appeared in multiple candidates make selection more difficult.
Selecting candidates with a given area constraint is similar to
the 0/1 knapsack problem [15]. It is widely known that the 0/1
knapsack problem is NP-complete. Strategies are needed to
avoid intractability in this step for design automation.

Most prior techniques for ASI generation use the number of
I/O ports of the register file to constrain the set of subgraphs
that can be enumerated; this yielded effective pruning criteria
that reduced the size of the search space for ASI identification.
Although the existing techniques are efficient in identifying the
promising candidate instructions, [16] points out that most of
the speedup (about 60%) comes from the cluster with more than
two input operands. This exceeds the number of read ports
available on the register file of a typical embedded RISC
processor core. Strictly following the two-input single-output
constraint, generally leads to small clusters with limited
speedup.

Generation of larger clusters with extra inputs is allowed in
[17] by using the custom-defined state registers to store the
additional operands. Unfortunately, at least one extra cycle is
needed for each additional input to be loaded into a
custom-defined state register. The communication overhead
incurred because of these data transfers between the core
processor, and the custom logic can significantly offset the gain
from forming a large cluster. A multi-ported register file can
increase the data bandwidth. However, additional read and
write ports result in power consumption and cycle time. The
Tensilica Xtensa uses state registers to explicitly move
additional input and output operands between the base
processor and custom units. Clever binding of base processor
registers to state registers at compile time reduces the number
of data transfers. In addition, state register approach solves the
problem of encoding many operands within a fixed length
instruction word. Cong et al. [18] have presented a
hash-mapped low-cost architectural extension and associated
internal register binding compilation techniques to efficiently
reduce the communication overhead due to data transfers
between the core processor and the AFU. However, extra hash
table increases AFU area overhead. Pozzi et al. [19] reduce the
data transfer overhead by overlapping execution cycles with
data transfer cycles for pipelined multi-cycle ASIs.

We integrate the data bandwidth information directly into
the optimization process, and we explicitly account for the cost
of the data transfers between base register file and custom
implicit registers as part of the optimization. Since our

formulation can take advantage of the increased data bandwidth,
the approach of Pozzi et al. [19] can be combined with ours to
further improve the performance of multi-cycle ASIs.

III. THE OVERALL DESIGN FLOW
The Altera NiosII is selected as a base processor to

implement the target ASIP but not limited to this specific
architecture. The input of the proposed design flow is
application specific programs in C code. The gcc tool chain is
used to obtain the profiling information for each basic block in
the application programs which is corresponded to the
occurrence of each primitive base processor assembly
instruction. Therefore, the control/data flow graphs (CDFGs)
of the entire application program are generated for the analysis
of the data dependencies among the primitive instructions.

The subgraphs of the CDFGs are enumerated as ASI
templates and then the structural equivalent templates within
isomorphism classes will be grouped as ASI candidates. For
each ASI candidate, the corresponding behavioral hardware
descriptions are implemented in Verilog as well as be
synthesized via Altera Quartus II and SOPC builder to estimate
the hardware area cost.

The most profitable candidates will be selected according to
the proposed heuristic algorithm to balance the time-area
design constraints. The selected ASI candidates will be used to
conduct the graph covering on the CDFGs based on a proposed
heuristic algorithm. The matching code segments on the
CDFGs will be replaced with new opcodes representing the
ASIs.

Once the most profitable candidates are selected, we replace
the matching code segments with an opcode representing the
new instruction. Finally, the ASIP and the corresponding
application codes with ASIs are verified on the Altera DE2-70
board to demonstrate the correctness and performance of the
proposed approach. Fig. 2 depicts our design flow.

Fig. 2 The proposed design flow

IV. PROPOSED APPROACH

A. Problem Formulation
A basic block is represented using a directed acyclic graph

G(V, E) where nodes V represent operations, edges E represent
register dependencies between operations. A template T is an
induced subgraph of G. A template is convex if there exists no
path in G from a node u ∈ T to another node v ∈ T which

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:5, 2011

512

involves a node w∉ T. The convexity constraint is imposed on
the templates to ensure that no cyclic dependencies are
introduced in G, and a feasible schedule can be generated.

We estimate the software cost of a template, SW(T), as the
sum of the software latencies of the instructions contained in T.
We estimate the cost of moving T to a custom datapath as the
sum of estimated hardware execution latency, HW(T).

B. Template and Candidate Generation
Our template generation algorithm iteratively exploits valid

subgraphs in order to generate a set of templates. A valid
subgraph which must satisfied two constraints. First, there are
no load, store, jump or branch instructions include in a
subgraph. Second, for a given application basic block, the.
Template generation algorithm is applied on all basic blocks,
and a set of application-specific instructions templates are
generated.

After template generation is done, we calculate the
isomorphic classes; the set of generated templates is partitioned
into Ck different isomorphic classes.

C. Calculation of input and output data transfers
We assume Nin read ports, and Nout write ports supported by

the base register file. If the number of inputs for a template is
larger than Nin, we assume additional data transfers from the
base register file to custom implicit registers. If the number of
outputs for a template is larger than Nout, we assume additional
data transfers from custom implicit registers to the base register
file.

We introduce an integer variable I(T) to indicate the number
of inputs for a template T. An input operand e ∈ E in the basic
block is an input of the template T if it has at least one
immediate successor in T. We calculate the number of
additional data transfers from base register file to the custom
logic as I_Penalty(T):

1
inN

I(T)
= T)I_Penalty(−

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
 (1)

We introduce an integer variable O(T) to indicate the number
of outputs for a template T. A node v ∈ V generates an output
operand of T if it is in T, and it has at least one immediate
successor not in T, then the output operand is an output for T.
We calculate the number of additional data transfers from the
custom logic to the base register file as O_Penalty(T):

1
outN

O(T)
 = T)O_Penalty(−⎥

⎥

⎤
⎢
⎢

⎡
 (2)

The cycle saved CS(T) of the template T is defined as the
value which estimates the reduction in the schedule length of
the application by replacing the template with an ASI,
multiplied by the occurrences Occ(T) of the template.
Formally:

CS(T) = Occ(T) * (SW(T) – HW(T) – I_Penalty(T) – (3)

O_Penalty)

Take Fig. 3 for example. Assume the software latency of
each node is 1 cycle, and the critical path latency is 1 cycle.
Under an I/O constraint of 2/1, additional data transfer moving
operand c and d into implicit register before template T is
executed costs one cycle. Additional data transfer moving
operand f back to base register file after template T is finished
costs one cycle. Thus, the cycle saved by template T is 0
(3-1-1-1) cycle.

Fig. 3 An example shows the I_Penalty and O_Penalty

D. ASI Selection
A priority value PValue for each candidate is calculated and

we select the candidate which has the highest priority value as
an ASI. After an ASI is selected, PValue of all candidates are
recalculated. Multiple ASIs are selected by repeating the above
steps. The priority value for each candidate Ck is calculated as
(4).

∑
∈ kCT

k CS(T) =)PValue(C (4)

E. Input and Output Operands Post Improvement
The primitive and application-specific instructions inside

one basic block are ordered according to the instruction
scheduling as shown in Fig. 4 (a). Fig. 4(b) shows a DFG
example annotated with a sequence number for each instruction.
Fig. 4 (c) shows a possible way to implement the ASIs.
Suppose the register file has only two read ports, and all ASIs
have more than two input operands, then one move ext_Rin
instruction in cycle 2 will be required for instruction I2 and one
move ext_Rin in cycle 5 will be required for instruction I4 and
one move ext_Rin instruction in cycle 9 will be required for
instruction I6. Similarly, one more move ext_Rout instruction in
cycle 7 will be required for instruction I4.

 (a) (b) (c)

Fig. 4(a) Assembly code. (b) The DFG of (a). (c) The
implementation of ASIs

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:5, 2011

513

As mentioned earlier, if the operand number of an ASI
exceeds the available read port count, extra data transfer (or
ext_Rin) instructions are needed to copy operands from the base
register file to the implicit register in the custom logic. In our
proposed approach, if an operand is already in the implicit
register, one move instruction can be saved.

The usage interval (ui) between primitive and ASI
instructions is derived to record the implicit register usage. If
variable r is assigned within the same basic block of the subject
use, then the usage interval [p,c], where the sequence number
of the assignment instruction is p and the sequence number of
the use instruction is c as shown in Fig. 5.

 (a) (b)

Fig. 5 (a) the DFG of assembly code (b) The usage interval

We propose a heuristic implicit register allocation algorithm.

All ASIs will be sorted according to the decreasing sequence
number. For the example in Fig. 5(a), the largest sequence
number of ASI is I6, if the I(I6) exceeds the number of base
register file port, then we will check if any input operand I(I6) is
the output operand from previous ASI. Thus, the ui[4,6] will
occupy an implicit register (Ireg). The number of input
operands of I6 becomes three, still larger than Nin. Next, the
ui[3,6] will occupy an Ireg, however Ireg0 is occupied by other
usage interval. The Ireg1 will be allocated for ui[3,6].

Subsequently, the ui[1,4] of instruction I4 will be checked if
it is overlapped with ui[4,6] of Ireg0. Since ui[1,4] and ui[4,6]
are not overlapped, the Ireg0 will be allocated to ui[1,4]. Then,
all input operands of instruction I2 are ready. The final result of
the implicit register allocation is shown in Fig. 6.

Fig. 6 Implicit register allocation result

After implicit register allocation, the number of additional

data transfer can be reduced by reusing the operands between
ASIs. Fig. 7(c) shows the input and output operands post
improvement after implicit register allocation.

 (a) (b) (c)
Fig. 7 (a) The post improvement assembly code. (b) The DFG of (a).

(c) Implementation of ASIs

V. EXPERIMENTAL RESULTS
We evaluate our technique using Altera Nios II DE2-70 to

estimate cycle counts, and hardware synthesis for exact timing
and area information. The base register file supports two read
ports and a single write port. We generate implicit registers for
each application-specific instructions and move instructions
that provide single cycle latency transfers between base register
file and custom logic.

We apply our algorithms on five benchmarks: MM, Qsort,
Dijkstra, SHA and AES form Mibench[20] and MP3[21].
Relaxation of input/output constraints results in coarser gain
application-specific instructions (i.e., larger dataflow
subgraphs). Such ASIs often offer higher speedup at the
expense of higher area. In Fig. 8, we study the improvement in
speedup using additional data transfers post improvement after
implicit register allocation. Up to 3.33x speedup is reachable
given 2 read and single write ports.

0
0.5

1
1.5

2
2.5

3
3.5

MM Qsort Dij Sha MP3 AES

With Iregs normalized to
Without Iregs

Fig. 8 Speedup improves with implicit registers comparison

Table I summarizes the hardware area for each generated
ASIP. Table I shows that up to 20 % area overhead of the
customized designs can obtain 3.33x speedup.

TABLE I

HARDWARE AREA

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:5, 2011

514

VI. CONCLUSION
Our approach is based on a heuristic algorithm that integrates

the data bandwidth information into the ASI identification
process. For an embedded processor with GPRF only two read
ports and one write port, our methodology can minimize the
potential additional data transfer instructions to achieve the
performance up to 3.33x speedup with only 20% area
overhead. The Altera Nios II is used as a base processor on the
DE2-70 board to demonstrate the correctness and feasibility of
the proposed approach. We are now investigating a wide range
of applications involving speed, area and power consumption
trade-offs.

REFERENCES
[1] CoWare LISATek Tools. http://www.coware.com/.
[2] Tensilica. http://www.tensilica.com/.
[3] Altera Corp. http://www.altera.com/.
[4] MIPS CorExtend. http://www.mips.com/.
[5] IBM PowerPC. http://www.ibm.com/
[6] M. Jain et al., "ASIP Design Methodologies: Survey and Issues,"

Proceedings of the 14 International Conference on VLSI Design, 2001, pp.
3-7, Jan. 2001.

[7] D. Fischer, J. Teich, M.Thies, and R.Weper, “Efficient
architecture/compiler co-exploration for asips,” in Proc. Int. Conf.
Compilers, Arch., Synth. Embedded Syst., 2002, pp.27–34.

[8] N. Clark, H. Zhong, and S. Mahlke, “Processor acceleration through
automated instruction set customization,” in Proc. 36th Annu. Int. Symp.
Microarchitecture, Dec. 2003, pp. 129–140.

[9] P. Yu and T. Mitra, “Scalable custom instructions identification for
instruction set extensible processors,” in Proc. Int. Conf. Compilers
Architectures Synthesis Embedded Syst., Sep. 2004, pp. 69–78.

[10] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific
instruction-set extensions under microarchitectural constraints,” in Proc.
40th Des. Autom. Conf., Jun. 2003, pp. 256–261.

[11] L. Pozzi, K. Atasu, and P. Ienne, “Exact and approximate algorithms for
the extension of embedded processor instruction sets,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 25, no. 4, pp. 1209–1229,
Jul. 2006.

[12] P. Yu and T. Mitra, “Disjoint pattern enumeration for custom instruction
identification,” in Proc. 17th Int. Conf. Field-Programmable Logic Appl.,
Aug. 2007, pp. 273–278.

[13] P. Bonzini and L. Pozzi, “Polynomial-time subgraph enumeration for
automated instruction set extension,” in Proc. Des. Autom. Test Eur. Conf.
Exhibition, Apr. 2007, pp. 1331–1336.

[14] X. Chen, D. L. Maskell, and Y. Sun, “Fast identification of custom
instructions for extensible processors,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 26, no. 2, pp. 359–368, Feb. 2007.

[15] N.T. Clark, H. Zhong, S.A. Mahlke, “Automated custom instruction
generation for domain-specific processor acceleration,” IEEE Transactions
on Computers, Vol. 54, Issue. 10, p1258-1270, Oct. 2005.

[16] P. Ienne, L. Pozzi, and M. Vuletic, “On the limits of processor
specialization by mapping dataflow sections on ad-hoc functional units,”
Comput. Sci. Dept., Swiss Federal Inst. Technol. Lausanne, Lausanne,
Switzerland, Tech. Rep. 01/376, 2001.

[17] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “Synthesis of custom
processors based on extensible platforms,” in Proc. Int. Conf. Comput.-
Aided Des., 2002, pp. 256–261.

[18] J. Cong, G. Han, Z. Zhang, “Architecture and Compiler Optimizations for
Data Bandwidth Improvement in Configurable Processors,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Vol.
14, no. 9, pp. 986 – 997, 2006.

[19] Pozzi L. Pozzi and P. Ienne. Exploiting pipelining to relax register file
port constraints of instruction-set extensions. In CASES 2005, San
Francisco, CA, Sept. 2005.

[20] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R.
B. Brown, "MiBench: A free, commercially representative embedded
benchmark suite," Proc. IEEE 4th Ann. Workshop Workload
Characterization (WWC 01), Dec. 2001, pp. 3-14.

[21] MPEG Audio Decoder. http://www.underbit.com/products/mad/.

