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Abstract—This paper presents a new version of the SVM 

mixture algorithm initially proposed by Kwok for classification and 
regression problems. For both cases, a slight modification of the 
mixture model leads to a standard SVM training problem, to the 
existence of an exact solution and allows the direct use of well 
known decomposition and working set selection algorithms. Only the 
regression case is considered in this paper but classification has been 
addressed in a very similar way. This method has been successfully 
applied to engine pollutants emission modeling. 
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I. INTRODUCTION 
IXTURE of Experts (MoE) was introduced in [3] and 
[5] to deal with functional approximation and 

interpolation problems, with the aim not only to improve the 
global accuracy by combining results of expert functions but 
also to overcome the curse of dimensionality.  

Support Vector Machines (SVM), which are well known 
for their generalization abilities, that result from the structural 
risk minimisation principle [9][10], have been introduced by 
Kwok [6] into the mixture domain. He showed that the 
solution is obtained by solving a Quadratic Programming (QP) 
problem very similar to that of SVM, for both classification 
and regression applications.  

 A deeper look into Kwok’s SVM mixture method and the 
classical SVM QP problem shows some slight differences 
between them. These differences show inexistence of a 
solution to the SVM mixture problem. This results from the 
use of the Least Squares method to compute a certain vector 
bias term.  

Even if an approximate solution could be considered as 
satisfactory, inexistence of an exact solution prevents the 
correct use of training algorithms in the large dataset case, 
such as, for example, decomposition algorithms. This results 
from the impossibility to verify Karush Kuhn Tucker (KKT) 
conditions.  

In order to translate the ill-posed problem into a well-posed 
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one, we introduce in this paper a slight modification of the 
mixture model. Moreover we show that: 

- the modified QP problem is exactly the same as classical 
regression SVM problem 

- so an exact solution exists (KKT conditions can be 
fulfilled) 

- any large dataset training algorithm directly applies, 
including, for example, Joachim’s working set selection 
algorithm for decomposition methods. 

This paper is organized as follows. In the next section we 
remind the optimization problem associated to SVM 
regression. In Section 3 we briefly present the SVM mixture 
method proposed by Kwok. Modifications to the mixture 
model, that ensure the existence of an exact solution to the 
optimization problem, are provided in section 4. Experiments 
on simulated data and on a real world application are 
presented in section 5. The last section gives some concluding 
remarks.  

II. SVM REGRESSION (SVR) 
For Support Vector Regression, using the ε-insensitive cost 

function, the dual problem can be written as follows: 
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For each input vector , 1...i i N=X , two Lagrange parameters 

are introduced: iα  and *
iα . They must verify * 0,i i iα α = ∀ . ε  is 

the error amplitude that the user tolerates. 
A major difficulty in solving this quadratic problem appears 

to be the prohibitive amount of memory required to store the 
matrix K when the number N of observations is large. Among 
others, decomposition methods [1][4][7] have been proposed 
to overcome this difficulty by iteratively solving smaller QP 
sub-problems. 
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III. SVM MIXTURE 
In this section, we investigate the SVM mixture model 

proposed by Kwok [6], which is given by: 
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where P is the number of experts, )(Xkπ is the output of 
expert k and is assumed to be previously determined, 

)(' Xkπ is the activation level function that has to be 
determined.  

To be compatible with the SVM formalism, )(' Xkπ  can be 
written kkk βπ +>=< )(,)(' XφωX , so the weighted output 
is given [6] by: 
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where kω , kβ  are parameters to be determined during the 
training process. In the SVM mixture context [6], the criterion 
to be optimized is the sum of an error term 1( )N

i iiC ∗
= +∑ ξ ξ  and 

a penalty term 2
1

1
2

P
k k=∑ ω . In the following, we remind the 

SVM mixture algorithm for regression problems. 
As developed in [6], training of SVM mixture for 

regression problems leads to the following dual problem: 
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where ),( jiH XX = ),()()(
1
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DPR2 is a quadratic problem similar to DPR1.  
We have now to determine the βk, that no longer appear in 

DPR2 but are variables in E1, by exploiting KKT conditions. 
KKT conditions indicate that for SV verifying (*)0 iα C< < , 

( )f( )i iy ε− = ±X , the ±  sign depending on  0iα = or * 0iα = . 
Introducing E1 into this equation generally leads to a non 
invertible linear system from which the βk can be obtained as a 
least squares solution [6]. This solution cannot be exact so 
KKT conditions cannot be verified. 

Another drawback induced by the impossibility to verify 
KKT conditions is that decomposition methods cannot be 
used. Furthermore, most of efficient working set selection 
algorithms do not apply. For example Joachims’ algorithm [4] 
does not apply because of the constraints expression in the 
SVM mixture QP problem that differs from the usual SVM 
QP problem. Other algorithms based on heuristics that 

randomly select observations violating KKT conditions are 
also disturbed by the approximate value of the bias. This is the 
case of Osuna’s algorithm [8]. 

 

IV. SVM MIXTURE WITH SCALAR BIAS 
The core of the SVM mixture method is the way it 

combines experts. We can modify this combination rule as 
follows: 
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where )(Xkπ is an expert that is a regression function here, 

)(' Xkπ  is the activation level function, now modified to 
become unbiased, and b is a global scalar bias. The 
combination rule translates to:  
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Introducing ),( jiH XX =
1
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∑ X X X X , and after 

some analytical manipulations, the dual optimization problem 
becomes: 
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Now, DPR3 has exactly the same expression as DPR1. As 
usual, we can now determine the scalar bias b by exploiting 
observations corresponding to Cαi << (*)0  that must verify 
( )f( )i iy ε− = ±X  (KKT conditions), as usual. Existence of an 
exact solution to the primal optimization problem is now 
shown and any large dataset training algorithm can be directly 
used. 
 

V. EXPERIMENTS 

A. Input Space Partitioning  
Because of the particularities of the real world application 

considered here (see §C), but without loss of generality, we 
are now concerned with mixtures where each model is trained 
only on a subset of the initial data. In addition, input space 
partition is performed in order to reduce the dimension of the 
input space E. The input vector X is partitioned into primary 
input variables x and secondary input variables θ: 
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dml RRRE =×⊂∈= ),( θxX . The training set 
( ), , 1...i iI i n= =x θ  is divided into P subsets Ik, each 

corresponding to a fixed m
k R∈θ , ( ){ }, ;k i i i kI = =x θ θ θ . 

Input vector partitioning appears to be natural in many 
practical applications and industrial engineering problems. 
Consider, for example, a dynamical system where the 
input/output model depends on the time varying set point θ  
and on the control parameters x (see §C). 

 
In this case, the SVM mixture model is given by: 
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, where θ  represents the current set 

point vector, P denotes the number of local experts, )(xkπ is 
the output (assumed to be known) of the kth  expert (i.e. 
corresponding to kθθ= ) and )(' θkπ is the activation level 
function. This is a particular case of the previous SVM 
mixture problem, where )()( xX kk ππ =  and 

)(')(' θX kk ππ = . Application of the SVM mixture method 
on this particular situation leads to the same problem as DPR3 
with only a slight modification in the kernel function. The QP 
problem becomes: 
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This optimization problem DPR4 translates to DPR3 where 

),( jiH XX = ),()()(
1

ji
P
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jkik K θθxx∑
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ππ , that remains a 

kernel [2]. We now apply this method to a simulated data 
regression problem. 
 

B.  Experiment on Simulated Data 

The proposed SVM mixture method consists in determining 
the global regression function as a combination of the 
different experts )(xkπ  weighted by the activation level 
function )(' θkπ . The function to be reconstructed is depicted 
in figure 1. This function has been sampled on a 
bidimensional grid (Fig. 2). A global SVM regression was 
performed with optimized parameters; results are presented in 
Fig. 3. The training set, represented in Fig. 2, has been 
partitioned into subsets w.r.t. the variable θ  (Fig. 4), where an 
expert function has been estimated by SVM for each subset 
(Fig. 5). Fig. 6 shows the results of our SVM mixture method. 
The determination coefficient 2R between the mixture output 
and the initial function equals 0.995 for our SVM mixture 
algorithm, to be compared with 0.808 for the global SVM 
regression depicted in Fig. 3. 

 
Fig. 1 Initial function 

 

 
Fig. 2 Training Set 

 

 
Fig. 3 Global SVM 
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Fig. 4 Partitioned Training Set 

 

 

Fig. 5 Estimated Experts 

.  

Fig. 6 SVM mixture 

 
C.  Engine Exhaust Pollutants Emission Modeling 

In order to comply with the future EURO 5 emission 
standards, car manufacturers have to optimize the engine 
control parameters cartographies. While the driver selects 
torque and speed (that are considered as the time varying set 
point), engine control parameters (main and pilot injection 
quantities, injection timings, boost and rail pressures, …) have 

to be tuned in order to minimize a cost function of the emitted 
pollutants (e.g. NOx, CO, HC, particles…). The first step of 
this optimization process is to build up efficient models for 
estimating each considered pollutant quantity as a function of 
the control parameters for every location in the (torque, rpm) 
space. Because of the cost of experiments, modeling is 
generally achieved on a very few points in the (torque, rpm) 
space. Furthermore, the input output relationship is highly 
nonlinear. The P local models experimentally obtained 
correspond to our local experts. Interpolation to every other 
point of the (torque, rpm) space is a very challenging task. 

We proposed to perform the mixture of the different local 
models using our algorithm. Here, the vector θ denotes torque 
and rpm and the vector x denotes the vector of engine control 
parameters. The results obtained have shown that the SVM 
mixture algorithm outperforms classical interpolation methods 
usually used within the context of engine control. Fig. 7 
depicts the sampling of the (torque, rpm) space where were 
trained the local models. 

 
Fig. 7 (torque, rpm) Space sampling 

  

Performances of our algorithm were evaluated by a leaving 
one out approach. Every setpoint in the (torque, rpm) space 
and all the corresponding control parameters were iteratively 
eliminated from the training data. The mixture model was 
optimized on the remaining observations and eliminated data 
were used as a test set. Figure 8 represents the mixture output 
as a function of the actual output for the pollutant NOx, when 
the setpoint #2 of the (torque, rpm) space was eliminated and 
used as a test set. As can be seen, both training and test data 
are very close to the first bisector, which indicates a very good 
prediction.  

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

732

 

 

 
Fig. 8 Estimated NOx as a function of NOx 

 
Global performance has been judged satisfactory by PSA 

Peugeot-Citroën. 
 

VI. CONCLUSION 
In this paper, we have presented an adaptation of the SVM 

mixture algorithm initially proposed by Kwok. Both for the 
regression and classification cases, the modification of the 
mixture model allows to translate the SVM mixture problem 
to a standard SVM training problem with only a slight 
modification of the kernel. The main results are: 
- classical SVM training algorithms directly apply 
- large data sets training algorithms can be used 
- for decomposition training methods, the efficient 

Joachim’s working set selection algorithm applies without 
any modification. 

The proposed method has been tested on a simulated data 
regression example. The results obtained have shown that the 
SVM mixture outperforms a global SVM approach. This 
method has been successfully applied on a large scale real 
world application: engine exhausts pollutants emission 
modeling.  
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