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Abstract—In this paper, the trajectory tracking problem for car-

like mobile robots have been studied. The system comprises of a 
leader and a follower robot. The purpose is to control the follower so 
that the leader’s trajectory is tracked with arbitrary desired clearance 
to avoid inter-robot collision while navigating in a terrain with 
obstacles. A set of artificial potential field functions is proposed 
using the Direct Method of Lyapunov for the avoidance of obstacles 
and attraction to their designated targets. Simulation results prove the 
efficiency of our control technique. 
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I. INTRODUCTION 

ONTROL problems for nonholonomic systems have been 
a topic of interest in recent years.  The challenges that 

arise in the development of powerful methods for motion 
control of autonomous vehicles are due to the nonholonomic 
constraints, to which many wheeled robots are subjected. The 
rapid progress in this field has been the interplay of systems, 
theories and problems [1]. 

The problems of motion control of mechanical systems with 
nonholonomic constraints addressed in literature can be 
roughly classified into three groups [2]: 

 
• point stabilization, where the goal is to stabilize the 

vehicle at a desired robot posture, 
• trajectory tracking, where the vehicle is required to 

track  a time-parameterized reference, and 
• path following, where the vehicle is required to 

converge to and follow a desired path, without 
temporal specifications. 

 
Point stabilization is very different from problems of 

trajectory tracking and path following. The subsequent 
challenge to control systems designers here is when the 
vehicle has nonholonomic constraints, since according to 
Brockett [3], asymptotic stabilization of the equilibrium point 
cannot be achieved using continuous constant state-feedback 
control laws, although it is controllable in a nonlinear sense. 

Path following problems are more flexible than trajectory 
tracking and is primarily concerned with the design of control 
laws that drive an object to reach and follow a geometric path 
[4]. Trajectory tracking is more natural for mobile robots 
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where the robot reaches the desired position at a specific time. 
The reference trajectory is obtained by using a reference robot 
[5]. 

Many control algorithms have been proposed in the 
trajectory tracking framework, such as PID [6], Lyapunov-
based controllers [7-9], adaptive controllers [10], model-based 
predictive controllers [11], fuzzy controllers [12-15], etc. 
Particular focus is on methods that allow multiple robots to 
track a reference trajectory without collisions with obstacles or 
other robots. Recent applications have been evident in fields 
of exploration, surveillance and even military applications 
[16]. 

An extension to our previous work in [17], where we 
considered the formation control of multiple autonomous 
robots, this paper presents a set of control laws using a leader-
following approach, to ensure a collision-free tracking control 
strategy for a group of two mobile robots.  A robot is assigned 
the responsibility of a leader, while the follower robot 
positionsitself relative to the leader so that the trajectory of the 
leader robot is tracked with arbitrary desired clearance by the 
follower robot. The scheme uses Cartesian coordinate’s 
representation to avoid any singular points as encountered 
when using polar coordinates. 

Based on artificial potential fields, the Direct Method of 
Lyapunov is then used to derive continuous acceleration-based 
controllers which render our system stable. The control 
algorithm used merges together the control problems of 
trajectory tracking and obstacle collision avoidance as a single 
motion control algorithm. 

This paper is organized as follows: in Section II the robot 
model is defined and the proposed scheme to control the 
mobile robots is discussed; in Sections III and IV the artificial 
potential field functions are defined; in Section V the dynamic 
constraints are defined; in Section VI the acceleration-based 
control laws are derived; in Section VII we illustrate the 
effectiveness of the proposed controllers via simulations. 
Conclusions and descriptions of future work are given in 
Section VIII. 

II.   VEHICLE MODEL 

In this section, we derive a new kinematic model for the 
leader-following based formation control of two car-like 
mobile robots. 
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Fig. 1 Kinematic model of the car-like mobile robot 

 

With reference to Fig. 1, ( ) 2,i ix y ∈ , for 1,2i = , represents 
the Cartesian coordinates and gives the reference point of each 
mobile robot, and iθ gives the orientation of the ith car with 
respect to the 1z axis, while iφ gives the ith robot’s steering 
angle with respect to its longitudinal axis. For simplicity, the 
dimensions of the two mobile robots are kept the same. 
Therefore, L  is the distance between the center of the rear and 
front axles of the ith car and w is the length of each axle. 

Next, to ensure that each robot safely steers past an 
obstacle, we adopt the nomenclature of [18] and construct 
circular regions that protect the robot. With reference to Fig. 1, 
given the clearance parameters, 1 0ε > and 2 0ε > , we enclose 
the vehicle by a protective circular region centered at ( ),i ix y

with radius ( ) ( )2 2
1 2

v v

2 2
:

4i

L w
r r

ε ε+ + +
= = . 

 
We next assign a Cartesian coordinate system, X-Y,fixed on 

the leader’s body, as shown in Fig. 2. When the leader rotates, 
we have a rotation of the X-Y axes. Thus, given the leader’s 
position and its orientation, as long as ( )12 ,r α is fixed, the 
follower’s position will be unique. This gives then the polar 
coordinates representation of the follower’s relative position 
with respect to the leader. However, such representations 
using polar coordinates lead to certain singularities in the 
controller.  

To eliminate such singular points, we consider the position 
of the follower by considering the relative distances of the 
follower from the leader along the X and Y directions.  
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Fig. 2 The proposed scheme utilizing a rotation of axeswith the axes 

fixed at the leader 
 
Thus, we have: 

( ) ( )
( ) ( )

1 2 1 1 2 1

1 2 1 1 2 1

cos sin ,

sin cos ,
X

Y

A x x y y

B x x y y

θ θ

θ θ

= − − − −

= − − −
 

where XA and YB are the followers relative position with 
respect to the X-Y coordinate system. If XA and YB are known 
and fixed, the follower’s position will be unique. Thus, for the 
follower robot to track the leader’s trajectory with an arbitrary 
desired clearance, one needs to know distances a and b, the 
desired relative positions along the X-Y directions, such that 
the control problem would be to achieve XA a→ and YB b→ , 

that is, 12 12
dr r→ , where 2 2

12
dr a b= + . The kinematic model 

of the system, adopted from [17] is: 

 

2

2

1

2

cos sin  , 
sin cos  ,

,
,
,

L
i i i i i

L
i i i i i

i i

i i

i i

x v
y v

v

θ ω θ
θ ω θ

θ ω
σ

ω σ

= − ⎫
⎪

= + ⎪
⎪= ⎬
⎪= ⎪
⎪= ⎭

 (1) 

where iv and iω  are, respectively, the instantaneous 
translational and rotational velocities, while 1iσ and 2iσ  are the 
instantaneous translational and rotational accelerations of the 
ith vehicle. Without loss of generality, we assume i iφ θ= .  The 
state of the ith mobile robot is then described by  

( ): , , , ,i i i i i ix y vθ ω=x , where 1i =  represents the leader and 
2i =  the follower.  

III. ATTRACTIVE POTENTIAL FIELD FUNCTIONS 
This section formulates collision free trajectories of the 

robot system under kinodynamic constraints in a fixed and 
bounded workspace. It is assumed that the car-like robots have 
apriori knowledge of the whole workspace. We want to 
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design the acceleration controllers, 1iσ and 2iσ , so that the pair 
moves safely towards the leader’s target while maintaining a 
desired formation. 

A.  Attraction to Target 
A target is assigned to the leader. While the leader moves 

towards its defined target, the follower robot tracks its 
trajectory. For the leader, we define a target:  

 ( ) ( ) ( ){ }2 22 2
1 2 1 1 1 2 1 , :T z z x t y t rt= ∈ − + − ≤ , 

with center ( )1 2,t t  and radius 1rt . For the leader to be attracted 
to its designated target, we consider thefollowing attractive 
potential function  

 ( ) ( ) ( )2 2 2 21
1 1 1 1 2 1 12 . V x t y t vx ω⎡ ⎤= − + − + +⎣ ⎦  (2) 

To ensure that the follower robot tracks the leader’s 
trajectory with an arbitrary desired clearance, we utilize the 
following potential function: 

 ( ) ( ) ( )2 2 2 21
2 2 22 .   X YV A a B b vx ω⎡ ⎤= − + − + +⎣ ⎦  (3) 

B. Auxiliary Function 
To guarantee the convergence of the mobile robots to their 

designated goals, we design auxiliary functions defined as: 

 ( ) ( ) ( ) ( )2 2 21
1 1 1 1 2 1 32 , G x t y t tθ⎡ ⎤= − + − + −⎣ ⎦x  (4) 

and 

 ( ) ( ) ( ) ( )2 2 21
2 2 42 , X YG A a B b tx θ⎡ ⎤= − + − + −⎣ ⎦  (5) 

where 3t  and 4t represent the desired final orientations of the 
leader and follower, respectively. These potential functions are 
then multiplied to the repulsive potential functions to be 
designed in the following sections. 

IV. REPULSIVE POTENTIAL FIELD FUNCTIONS 
We desire the mobile robots to avoid all stationary obstacles 

intersecting their paths. For this, we construct the obstacle 
avoidance functions that merely measure the Euclidean 
distances between each robot and the obstacles in the 
workspace. To obtain the desired avoidance, these potential 
functions appear in the denominator of the repulsive potential 
field functions. This creates a repulsive field around the 
obstacles.  

Let us fix q solid obstacles within the workspace and 
assume that the lth obstacle is circular with center ( )1 2,l lo o
and radius lro . For the ith robot with a circular avoidance 
region of radius vr  to avoid the lth obstacle, we adopt 

( ) ( ) ( ) ( )2 2 2
1 2 v

1 ,
2il i l i l lFO x o y o ro rx ⎡ ⎤= − + − − +⎣ ⎦           

(6) 

for 1,  2i = and 1,2,...,l q= . 

V.  DYNAMIC CONSTRAINTS 
Practically, the steering and bending angles of the ith 

mobile robot are limited due to mechanical singularities while 
the translational speed is restricted due to safety reasons. 
Subsequently, we have; ( ) i maxv vi  ≤ , where maxv is the 
maximal speed of the ith robot; ( ) / 2i maxii  φ φ π≤ < , where 

maxφ is the maximal steering angle. Considering these 
constraints as artificial obstacles, we have the following 
potential field functions: 

 ( ) ( )( )1
1 max max2 ,i i iU v v v v= ⎡ − + ⎤⎣ ⎦x  (7) 

 ( ) max max1
2 2

min min

,    i i i
v vU ω ω
ρ ρ

⎡ ⎤⎛ ⎞⎛ ⎞
= − +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

x  (8) 

for 1,  2i = . These potential functions guarantee the adherence 
to the above restrictions placed upon the translational velocity

iv ,  and the steering angle iφ .  

VI. CONTROL LAWS 
Combining all the potential functions ( )2 8− , and 

introducing constants, denoted as the control parameters, 
0ilα >  and 0isβ > , for 1, 2i = , 1, 2, ,l q= … , q ∈ `  and 

1, 2s = , we define a candidate  Lyapunov function as: 

 ( ) ( ) ( ) ( ) ( )
2 2

1 1 1

q
il is

i i
i l sil is

L V G
FO U

α β
= = =

⎧ ⎫⎡ ⎤⎪ ⎪= + +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑ ∑x x x
x x

  
 (9) 

Clearly, ( )L x is locally positive and continuous on the 

domain ( ) ( ) ( ){ }5 2 : 0,  0il isD L FO Ux x x×= ∈ > > . We define 

( )1 2 3: , , ,0,0e t t tx = as an equilibrium point of system (1). Thus, 

we have ( ) 0eL x = .  

 
Fig. 3 A three-dimensional view of the attractive potential 

 
The attractive potential, as shown in Fig. 3 and the 

corresponding contour plot in Fig. 4, are generated for target 
attraction. For better visualization, the target of the leader is 
located at ( ) ( )1 2, 20,20t t = . 
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Fig. 4 The corresponding contour plot of the attractive potential 

 
To extract the control laws, we differentiate the various 

components of ( )L x separately and carry out the necessary 
substitutions from (1). The nonlinear control laws for system 
(1) will be designed using Lyapunov's Direct Method. The 
process begins with the following theorem: 
 
Theorem: Consider a pair of car-like mobile robots whose 
motion is governed by the ODE's described in system (1).The 
principal goal is to establish and facilitate maneuvers of the 
robots within a constrained environment and reach the target 
configuration while ensuring that the follower robot tracks the 
trajectory of the lead robot. The subtasks include; restrictions 
placed on the workspace, convergence to predefined targets, 
and consideration of kinodynamic constraints. Utilizing the 
attractive and repulsive potential field functions, the following 
continuous time-invariant acceleration control laws can be 
generated, that intrinsically guarantees stability,in the sense 
of Lyapunov, of system (1) as well: 

 [ ]
1

1
1 1 1 2cos sin ,

ii i i i i i ig v f fσ δ θ θ= − + +   (10) 

and 

 ( )
2

1
2 2 2 1 32 cos sin ,

i

L
i i i i i i i ig f f fσ δ ω θ θ= − + + +⎡ ⎤⎣ ⎦  (11) 

 
for 1,  2i = . 
 
Proof: The time derivative of our Lyapunov function ( )L x

along a particular trajectory of system (1) is: 

( ) ( ) ( )2 2
1 21

1
0

n

i i i i
i

L vx δ δ ω
=

= − + ≤∑ for all ( )D L∈x , and ( ) ( )1 0eL =x , 

where the functions ikf  to ijg , for , 1,  2i j = and 1,..,3k =  are 
defined as (upon suppressing x ): 

( ) ( )
2

1 1 1
11 1 1 1 1 12

1 1 11 1 1

1 ,
q q

l s l
l

l s ll s l

f x t G x o
FO U FO
α β α

= = =

⎡ ⎤
= + + − − −⎢ ⎥

⎣ ⎦
∑ ∑ ∑  

( ) ( )
2

1 1 1
12 1 2 1 1 22

1 1 11 1 1

1 ,
q q

l s l
l

l s ll s l

f y t G y o
FO U FO
α β α
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⎣ ⎦
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1 1
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1 11 1

,
q
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l sl s

f t
FO U
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11
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U
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12 1 2
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U
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q
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∑ ∑
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∑ ∑
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( )
2

2 2
23 2 4

1 12 2

,
q

l s

l sl s
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FO U
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= =

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
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21
21 2 2

21

1 ,g G
U
β

= + 22
22 2 2

22

1 .g G
U
β

= +  

 
A careful scrutiny of the properties of our scalar function 

reveals that ex is an equilibrium point of system (1) in the 

sense of Lyapunov and ( )L x is a legitimate Lyapunov 
function guaranteeing stability. This is in no contradiction 
with Brockett’s result [3], as we have not proven asymptotic 
stability. 

VII. SIMULATIONS 
To illustrate the effectiveness of the proposed controllers, 

we present two car-like mobile robots in Fig. 5. The follower 
robot is assigned a unique position relative to the leader robot. 
As such, while the leader moves towards its intended target, 
the follower tracks the leader’s trajectory. Upon encountering 
an obstacle, the formation of the articulated robots does not 
change, but the robots are able to move around the obstacle.  

In Scenario 1, given a desired clearance distance between 
the leader and follower robots, we purposely placed the 
follower robot away from the desired position. This was done 
to view the effectiveness of the proposed scheme. It is evident 
that while the follower robot is positioned away from the 
leader, the scheme guarantees convergence to the 
desiredcoordinates, to enable the follower robot to track the 
trajectory of the leader. Scenario 2 had the follower placed at 
the desired relative position and had smooth convergence. 

Fig. 6 shows convergence of the relative positions, ( ),X YA B  

of the follower robot to the desired relative positions, ( ),a b  in 
Scenario 1. 
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(a) Scenario 1 

 

 
(b) Scenario 2 

 
Fig. 5 Follower robot tracking the leader robot’s trajectory 

 

 
Fig. 6 Relative distances of the follower robot to the leader 

 
Fig. 8 shows the translational and rotations velocities of the 

leader and follower. The corresponding initial and final states 
and other details for the simulation are listed in Table I 
(assuming that appropriate units have been taken into 
account). 

 

Fig. 7 Velocities ,i iv ω       Fig. 8 Accelerations 11 12,σ σ  
 

TABLE I 
NUMERICAL VALUES OF INITIAL STATES, CONSTRAINTS AND  

PARAMETERS FOR SCENARIOS 1 AND 2 
 Initial Conditions 

Rectangular positions ( ) ( )1 1, 7,20x y =  

Angular Positions and 
velocities 

1 0.5v = , 0iω = , 0iθ =  for 1,2i =  

 Constraints and Parameters 
Final Orientations 

3 4 0t t= =  
Leader Target ( ) ( )1 2, 57,20t t = , 1 0.5rt =  

Dimensions of Robots 1.6L = , 1.2w =  

Desired clearance ( ) ( ), 3,0a b =  

R
el

at
iv

e 
Po

si
tio

ns
 

Scenario 1 
( ) ( )

( ) ( )

2 2

2 2

, 2,25 ;

, 4,20

x y

x y

=

=

 

Scenario 2 

Fixed 
Obstacles
( )1 2,l lo o  

Scenario 1 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 12 21 22

31 32 41 42

1 2 3 4

, 15,24 , , 25,16 ;

, 35,24 , , 45,16 ;
2

o o o o

o o o o
ro ro ro ro

 

 
 

= =

= =

= = = =
 

Scenario 2 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 12 21 22

31 32 41 42

1 2 3 4

, 15,16 , , 25,24 ;

, 35,16 , , 45,24 ;
2

o o o o

o o o o
ro ro ro ro

 

 
 

= =

= =

= = = =

Max. translational speed 
max 5v =  

Min. turning radius 
min 0.14ρ =  

Clearance parameters 
1 20.1, 0.05 ε ε= =  
Control and Convergence Parameters 

Obstacle avoidance 0.1ilα =  for 1,2i =  and 1l = to 4 
Dynamics constraints 0.001isβ =  for 1,2i = and 1, 2s =  
Convergence 

1 500iδ = , 2 50iδ = for 1,2i =  

 

VIII.   CONCLUSION 
This paper presents a set of artificial field functions derived 

using Lyapunov’s Direct Method, for the control problem of 
trajectory tracking of mobile robots, using a leader-following 
strategy. By using Cartesian coordinates to uniquely assign a 
position to a follower, we can achieve a desired convergence 
with bounded distance error and heading angle. The derived 
controllers produced feasible trajectories and ensured a nice 
convergence of the system to its equilibrium state while 
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satisfying the necessary kinematic and dynamic constraints. 
We note here that convergence is only guaranteed from a 
number of initial states of the system. 

Future research will address more general applications with 
more than two mobile robots, and tractor trailer systems. 
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