
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1421

1

ASC – A Stream Cipher with Built–In MAC
Functionality

Kai-Thorsten Wirt

Abstract— In this paper we present the design of a new encryption
scheme. The scheme we propose is a very flexible encryption and
authentication primitive. We build this scheme on two relatively new
design principles: t-functions and fast pseudo hadamard transforms.
We recapitulate the theory behind these principles and analyze their
security properties and efficiency. In more detail we propose a stream
cipher which outputs a message authentication tag along with the
encrypted data stream with only little overhead. Moreover we propose
security-speed tradeoffs. Our scheme is faster than other comparable
t-function based designs while offering the same security level.

Keywords— Cryptography, Combined Primitives, Stream Cipher,
MAC, T-Function, FPHT

I. INTRODUCTION

Combined primitives which perform encryption and au-

thentication at the same time are a very interesting design

because of the high performance they offer. This is due to

the fact, that the data has to be only parsed once and not

twice for encryption and authentication. There are different

construction principles like dedicated combined primitives

(e.g. Phelix [25], VMPC [26], etc.) which are designed to

calculate an authentication tag while performing encryption, or

authenticated encryption modes (e.g. CCM [24], GCM [19],

etc.) which employ a block cipher in such a way, that the

encrypted data can as well be authenticated. Another possible

design are streaming macs like Mundja [10]. Streaming macs

use input from a stream cipher which is used to encrypt the

data, to reduce the costs for the mac computation. This input

can be part of the key stream, or of the internal state of the

key stream generator. One possibility to construct streaming

macs is to modify hash functions such that they process the

message along with the secret input from the stream cipher.

In this paper we present a combined primitive, which is

based on a stream cipher together with the streaming mac idea.

We call this primitive ASC. Our goal is to combine different

cryptographic primitives which are based on theoretical con-

siderations into a practical stream cipher with authentication

ability. Our motivation is to present a practical implementation

of theoretic constructions in order to show, that these abstract

primitives can be used in practice.

The underlying stream cipher of our combined primitive is

based on t-functions. T-functions are a relatively new design

principle proposed by Klimov and Shamir [14], [15], [16], [13]

and Anashin [1], [2]. Moreover there are various new stream

cipher designs based on t-functions [3], [18], [11]. The major

advantages of t-functions in stream cipher designs are their

efficiency, their desireable properties like large cycle lengths

and their security against algebraic attacks.

1Kai Wirt is with Technische Universität Darmstadt, Germany

State−Update

Keystream

Streaming Mac

Authentication Tag

A
dd

. I
np

ut

Streamcipher

Plaintext Ciphertext

Fig. 1. Streaming Mac

The streaming mac of our design is based on the FPHT hash

[7]. This hash function uses fast pseudo-hadamard transforms

as diffusion layer along with the AES S-Box for confusion.

ASC in the basic version offers a comparable speed than

other t-function based designs. However we also present

a speed-optimized version which runs faster. Our primitive

proposes a new way, how stream ciphers and hash functions

can be combined to offer authenticated encryption in one

primitive.

ASC has an internal state of 256 bits which is made up of 8

32-bit words. The cycle length of ASC is therefore 2256. ASC

outputs one 32-bit word each clock and the MAC size is 128

bits.

In the following we first present the streaming mac design.

In Section III we present the FPHT and our mac generation

algorithm. Section IV describes the idea behind multi-word t-

functions and our stream cipher approach. The concrete design

of ASC is the topic of Section V. A security analysis is given

in Section VI and the conclusion is presented in Section VII.

II. STREAMING MAC

Streaming macs make use of an authentication tag gen-

eration algorithm and a stream cipher. The stream cipher is

used to encrypt the data and to generate an additional input

which is fed into the tag generation algorithm. This algorithm

is basically a mac function, which takes the additional input

along with the message and generates the authentication tag.

The idea behind streaming macs is, that the data from the

stream cipher can be used to reduce the costs for the mac

computation. The basic principle of the streaming mac design

is shown in Figure 1.

The underlying stream cipher of our design is based on a t-

function proposal presented in [15]. This stream cipher outputs

one part of the internal state for encryption and another part

for the input into the mac function. Additionally we modify



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1422

2

the primitive in order to enhance inter state mixing and we

add a key scheduling procedure to initialize the internal state.

For the mac function of our design we modify the FPHT

hash function [7]. We reduce the number of rounds and the

authentication tag length in order to be able to speed up the

tag calculation. In order to strengthen this variant we modify

the compression function such that it uses the additional input

from the stream cipher. In principle we hold on to the design

of FPHT hash in order to adopt the security claims for our

mac function.

III. THE FPHT MAC

Our authentication tag is calculated using a variant of

the hash function presented in [7]. We first give a short

introduction on the Fast Pseudo Hadamard Transform.

Definition 1 (Fast Pseudo Hadamard Transform): We use

the FPHT as linear layer in our design. This transform can

recursively be described by

H0 = 1

Hn =
[

2 ·Hn−1 Hn−1

Hn−1 Hn−1

]
for n ≥ 1

The quality of the diffusion effect of a linear layer is meassured

using the Branch number [6]. In principle the Branch number

indicates how the modification of one bit in one round affects

the state of the next round. The higher the Branch number,

the more security can be achieved using the linear layer.

The Branch number for an n-bit state is bounded by n + 1.

This value is reached using Maximum-Distance Separable
(MDS)-Codes. Although the FPHT does not offer the Branch

number of MDS codes it has some nice implementation

benefits. Because of the recursive structure the FPHT is faster

than MDS calculation. While MDS codes have complexity

O(n2) the FPHT can be computed in O(n log n). Since the

FPHT requires only one multiplication in the recursion it is

possible to precompute multiplication tables. For instance the

H2 can be implemented efficiently by using tables for the

multiplication with x and x2 and some logical operations. And

the H4 can be calculated by applying the H2 twice. In addition

to the efficient implementation, the diffusion effect of the fast

pseudo hadamard transform is good, albeit not optimal. The

exact branch number for the H4 is 8 and for the H5 is 12 [7].

Since the FPHT has several efficient means of implementation

the design is very flexible and allows for fast implementations

on various platforms.

A. Modifications to FPHT Hash

The FPHT hash computes message digests of 256 bits. We

reduce the size of the internal state to 128 bits. Thus we can

reduce the number of rounds from 6 to 4. This results in a

faster tag calculation however it weakens the mac function.

Thus we have to improve the security of the single rounds. To

achieve this, we replace the known AES S-Boxes by unknown

random S-Boxes. Since random S-Boxes don’t have optimized

properties like the AES S-Box they have to be bigger in order

to prevent differential or linear attacks. We have chosen 32
bit S-Boxes because this is still the word size of common

processors. Thus operations on 32-bit words can be carried

out efficiently. Since the S-Boxes are generated by the used

stream cipher we suppose that the used stream cipher can

efficiently compute the needed 32 bit words without much

overhead compared to the encryption. Security considerations

regarding 32 bit random S-Boxes are presented in Section VI

on page 5. As a short note, the probability for differentials

or linear approximations decreases very fast with the number

of bits in the S-Box. Therefore it is very unlikely that good

approximations which can be exploited exist for 32 bit S-

Boxes.

Since we have to adopt the linear layer to the new state size

of 128 bits as well, we can replace the H5 by the H4 transform.

This shortens the calculation of the FPHT by one recursion

level thus speeding up the mac computation additionaly.

The last modification to FPHT hash is the message expan-

sion i.e. the key schedule of the hash function. Since we now

have only 4 rounds, the key schedule can be shortened as

well. We point out, that since the key schedule of FPHT hash

is designed to dwarf attacks already in the first round and

the first round keys are already calculated in a secure way

the shortened key schedule is also strong against linear and

differential attacks.

B. The Algorithm

1) Preparation: FPHT streaming mac takes inputs in

blocks of 512-bits and produces macs of 128-bits. The input

message is padded by a single one bit followed by enough

zeros to make the length congruent 448 modulo 512. The

length of the original message is appended in 64-bit represen-

tation. Every block of the message is then compressed using

the function described below. All values are loaded and stored

in little endian byte order.

2) Compression Function: In the following we describe our

compression function. It takes a message block T0...15 and an

internal state S0...3 which are both arrays of 32-bit words. The

state is initialized with Si = 286331153 · i. Moreover it takes

the additional input from the partner stream cipher A which is

a 32-bit word. This input has to be updated for every message

block.

In Algorithm 1 the H4 is calculated over the field

GF (2)[x]/(x8 + x4 + x3 + x2 + 1). All operations are on

32 bit words, i.e. multiplication and addition are performed

modulo 232. The notation ≪ 11 indicates a left cyclic shift

by eleven bits.

The message expansion in lines 7 and 8 is essentially the

same as the one of FPHT hash. The only difference is the

number of iterations since we now only have a state size of

128 bits. In the compression function in lines 10 through 15

we have reduced the number of rounds to 4. Moreover we

have replaced the AES S-Box by the multiplication with the

additional input from the stream cipher.

C. Implementation Issues

1) FPHT: As pointed out in [7] the fast pseudo-hadamard

transform can be implemented very efficiently. In hardware

it is sufficient to implement the H1 directly, which requires



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1423

3

Algorithm 1: FPHT Streaming Mac Compression Func-

tion

for x = 0 to 3 do1

Lx ← Sx;2

end3

for x = 0 to 15 do4

Wx ← Tx;5

end6

for x = 16 to 31 do7

Wx ← (Wx−16⊕Wx−14⊕Wx−8⊕Wx−3⊕x) ≪ 11;8

end9

for x = 0 to 3 do10

for y = 0 to 3 do11

Ly ← (Ly ⊕W16+4x+y) ·A;12

end13

L← H4(L);14

end15

for x = 0 to 3 do16

Sx ← Sx + Lx;17

end18

only a simple multiplication by p(x) = x. Higher-dimensional

transforms can then be implemented using only additional xor-

gates.

In our implementation we have chosen to implement mul-

tiplication tables for the multiplication with p(x) = x and

p(x) = x2. Using these tables we can realize the H2 trans-

form using 48 xor-transformations. The required H4 is then

basically twice the H2 and can therefore be implemented using

96 xor operations and 56 table lookups.

A full table driven implementation would require the pre-

computation of 16 tables. This method would need 16 table

lookups and 16 xor operations to calculate the H4. Our

approach is a tradeoff between storage and efficiency. We want

to stress, that the fast pseudo hadamard transform scales better

than equal dimensional MDS-codes. Moreover for the FPHT

there are more optimizations available than for MDS codes.

2) S-Box: The S-Box of the FPHT streaming mac is the

multiplication with the additional input from the stream cipher.

Since the same value is used for a complete block the stream

cipher and the FPHT streaming mac can be implemented in

parallel. While the mac is calculated for one block the stream

cipher can encrypt that block at the same time. Moreover

various 32-bit multiplications can be carried out in parallel

on many modern processors. Therefore it is often possible

to calculate 2 or even all 4 S-Box applications in line 12 in

Algorithm 1 in one operation.

IV. MULTI-WORD T-FUNCTIONS

In the design of stream ciphers there are mainly two

approaches. The first one is to build simple and good to

analyze stream ciphers like for example ones using linear
feedback shift registers. While certain properties like cycle

length and statistics can be easily shown to meet some design

criteria this simplicity may also lead to possible attacks. The

other extreme are stream ciphers which are too complex to

analyze. The designer hopes, that the cipher is strong enough

while the attacker has the problem that the cipher offers no

obvious attacking points.

A few years ago, Klimov and Shamir [14], [15], [16],

[13] and Anashin [1], [2] proposed a compromise between

simplicity and complexity which they called t-functions. T-

functions are mappings where the i-th bit of the output depends

only on bits 0 through i of the input. Klimov, Shamir and

Anashin gave criteria for which t-functions are single- cycle

permutations. That is the repeated application of an n-bit t-

function runs through all possible values 0 . . . 2n. Klimov and

Shamir proposed one example of a single cycle t-function

which uses only three instructions. This mapping f(x) =
x + (x2 ∨ 5) serves as basic mapping in our design.

One drawback with t-functions is, that they are only efficient

when the word size is the word size of the underlying

processor since only in this case the function can be evaluated

using simple machine instructions. One possible solution is to

use t-functions only as part in a stream cipher construction

and not as (main)keystream generator itself (e.g. [3]).

Another solution are multi-word t-functions as proposed by

Klimov and Shamir. They showed how one can use k n-

bit functions to construct functions with 2k·n cycle length.

Using this technique it is possible to use simple instructions

to calculate each of the k functions separately or even in

parallel. In [16] Klimov and Shamir propose several possible

constructions. In this paper we present a design based on one

of these ideas. Our design uses 8 32-bit t-functions which sums

up to an internal state size of 256 bits.

The basic idea behind the multi-word construction we use

is that of a counter where the single t-functions can be seen

as digits. The basic version developed in [16] is

fi(x0, . . . , xk) = xi ⊕ (αi(x0, . . . , xk−1) ∧ x0 ∧ · · · ∧ xi−1)

where each αi is an odd parameter, that is

Definition 2 (Odd Parameter):
2n−1,...,2n−1⊕

(x0,...,xk−1)=(0,...,0)

[αi(x0, . . . xk−1)]n = 1 (1)

and [αi]0 = 1. The notation [x]i denotes the i-th bit of x. The

equation f is the formalization of the concept of a counter.

Each register xi is updated using αi if the previous registers

xi−1 . . . x0 all have the same value. This means register x0

is updated every clock, register x1 is updated every second

clock, register x2 is updated every 4-th clock and so on.

For αi we use the function

H(x) = (x + (x2 ∨ 5))⊕ x

which is an odd parameter. This function is a single cycle

t-function which can be realized with a minimal number of

operations.Using H our first approach for a multi-word t-

function becomes

fi(x0, . . . , xk) = xi⊕ (H(x0 ∧ · · · ∧ xk−1)∧ x0 ∧ · · · ∧ xi−1)

using the counter technique mentioned above. The drawback

with this simple approach is that the inter-word mixing is



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1424

4

not good. More formally in this mapping each bit of xk−1

is changed with probability 2−(k+1) instead of 1
2 according to

[16].

This problem can be solved using an additional parameter.

It is possible to add an even parameter with zero in the least

significant bit without modifying the cycle length.

Definition 3 (Even Parameter): A parameter r is called

even, if

B[r, n] := 2−n
2n−1−1∑

i=0

(r(i + 2n−1)− r(i))(mod2)

is always zero1.

In our case we use the parameter given by

gi(x0 . . . xk) =

⎧⎨
⎩

2 · xi−1 · xi−2 i > 1
2 · xk · x0 i = 1

2 · xk−1 · xk i = 0

This parameter is used to speed up the inter-register mixing.

Since it uses each two adjacent registers which make up the

internal state, a modification in one bit of the state evolves

through all registers after at most k rounds. Thus states where

the modifications to the state induced by the t-function are

only small are left very fast. Using this parameter the complete

multiword t-function used in our design is given by

Definition 4 (Round Function of ASC):

fi(x0, . . . , xk) = xi ⊕ (H(x0 ∧ · · · ∧ xk−1) ∧ x0 ∧ · · · ∧ xi−1)
⊕gi(x0 . . . xk)

V. DESIGN

In our design we have chosen to use 32-bit words, since this

is still a widely used word size on common microprocessors.

Moreover processors having larger word sizes are normally

able to carry out several 32-bit operations in parallel thus

speeding up an implementation of ASC.

We use 8 32-bit words numbered from i = 0 to i = k = 7.

Each clock cycle the state is updated according to equation

2 in Section IV. The cipher text is calculated by xoring the

plain text with the register i = 7 of ASC.

After each encryption of a multiple of 512 bits the state is

updated once more. After this update the content of register

i = 6 i.e. the second last register is fed into the FPHT

streaming mac (see Section III on page 2) as additional input

and the mac state is updated for the last 512 bit block. Note,

that the mac is computed over the plain text, not the produced

cipher text.

After the encryption of the last plain text words the plain

text is padded according to Section III-B.1 on page 2. However

the padded bits are not encrypted since this is not necessary

for stream ciphers of course. As with the normal encryption

the state is updated once more before feeding i = 6 into the

macfunction and calculating the mac for the last block.

1In the multivariate case every parameter which does not use all the
variables is even. [16]

A. Key Schedule

We want to keep the Key Schedule of ASC rather simple.

However it is not possible to use the state update function itself

because of the nature of t-functions. Doing so higher order bits

would only have little influence on the starting state. For the

Key Schedule we add the parameter

hi(x0 . . . xk) =
1
2
· xi

i.e. the current register is shifted to the right by one bit.

Therefore higher order bits propagate to the right due to the

parameter h, while lower order bits propagate to the left,

due to the remaining t-function. Note, that the complete Key

Scheduling Function is not a t-function anymore, therefore we

can not make any statements on the cycle structure of the Key

Schedule. However we believe, that given the large state it is

very unlikely that too much entropy is lost during key setup.

To produce the starting state, the Key Bits are loaded into the

registers starting with register 0 in little endian order in 32-

bit blocks. If the key is shorter than 256 bits the remaining

registers are initialized with 0, however we do not recommend

keys shorter than 128 bits. After that initial step the modified

update function

Definition 5 (Key Scheduling):

f ′
i(x0, . . . , xk) = xi ⊕ (H(x0 ∧ · · · ∧ xk−1) ∧ x0 ∧ · · · ∧ xi−1)

⊕gi(x0 . . . xk)⊕ hi(x0 . . . xk)
is executed 256 times to calculate the starting state. Of course

no output is produced during the Key Schedule.

B. Security-Speed Trade-Off

We have been very conservative in the number of bits which

are produced by ASC per cycle. However it is possible to speed

the key stream generation up by reducing the security level.

ASC can output more than just one register. It is possible for

example to output registers 5,6 and 7 and use register 4 as

input to the macfunction. This way ASC would produce 96

bits output per clock cycle. Clearly this reduces the number

of unknown bits to 160. We stress that not more than 128 bits

i.e. four registers should be output per clock cycle in order to

avoid exhaustive search attacks.

C. Performance

Our unoptimized implementation of ASC encrypts at 72

clock cycles per Byte. We have compared the performance to

other t-function based designs. Mir-1 [18] which is a similar

design runs at about 39 clocks per byte. However the data has

to additionally be authenticated using some mac algorithm.

TSC-3 [11] runs at about 50 clocks per byte, again without

authentication. Thus if the mac computation is slower than 33

clocks per byte, the unoptimized version of ASC is faster than

these two t-function based designs.

If we use the security-speed tradeoff mentioned above and

output 96 bits per clock cycle, ASC encrypts at about 24

clocks per byte. This is even faster than the above mentioned

ciphers which don’t have an authentication ability. Compared

to Phelix, another combined primitive, this is slightly slower.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1425

5

TABLE I

PERFORMANCE COMPARISON

Algorithm Clock Cycles per Byte2 Authentication

ASC standard 72 yes
TSC-3 50 no
MIR-1 39 no
ASC 96 bits output 24 yes
Phelix 14 yes

Phelix [25] encrypts at 14 clock cycles per byte with an opti-

mized C implementation. However we feel, that an optimized

C implementation of ASC gains some more speed.

This performance comparison is summarized in Table I. We

want to point out that the complete t-function based ASC

cipher is even faster than MIR-1, where the t-function is only

used to enhance the security of a linear feedback shift register

based design.

VI. SECURITY ANALYSIS

A. The Streaming Mac

In order to be able to perform a security analysis of the

FPHT mac we have to make the assumption that the used

stream cipher is secure. It is obvious, that the security of the

mac depends strongly on the randomness of the stream cipher

input since this is used to generate the S-Boxes. Therefore

we stress, that FPHT mac should only be used with stream

ciphers, which offer or exceed the required security level. The

security of the stream cipher used together with FPHT mac in

ASC is analyzed in Section VI-B.

1) Key Schedule: The key schedule of our FPHT streaming

mac is essentially the same as the one of the FPHT hash

function. Therefore the security claims in [7] also hold for our

design. The only difference is that the key schedule is shorter.

However the FPHT hash key schedule was designed to use all

of the input already in the first round. Moreover the input key

itself is not used in the round function. All the round keys are

generated by the linear mixing in the key schedule. Therefore

we believe that the key schedule of the FPHT streaming mac

is secure against related key attacks.

Additionally the key schedule is designed to make it harder

to find differential trails. Since the initial input state is fixed

the attacker could create a differential trail of probability one

through rounds where the input key itself is used. As pointed

out above, the round keys are a function of the input. Therefore

the probability one differential is harder to ensure. This is

already true for the first round keys and therefore it is also

true for the shortened key schedule.

The argument, that simple slide attacks are prevented by

using a linear mixing with the key word number holds for the

shortened key schedule as well.

2) The Compression Function: If we assume the stream

cipher to be secure, this means, that the S-Boxes used in

FPHT mac are chosen at random from the set of all possible

2Performance of ASC was measured on a Mobile Intel Celeron CPU
2.00 GHz, Gentoo Linux 2.6.17 Kernel, GCC 4.1.1. Performance values of
the other candidates was taken from the Ecrypt stream cipher project [8]
publications

multiplicative S-Boxes for each input block. It is well known,

that small random S-Boxes are not resistant against differential

cryptanalysis [4] [5]. However the probability for the existence

of high differential characteristics or linear expressions for

output bits is decreasing very fast with the size of the S-

Box [21]. For example no output bit of a 32-bit S-Box can

be described as a linear function of the input bits with high

probability [9]. Moreover random S-Boxes offer resistance

against linear cryptanalysis after a certain number of rounds

[12]. Together with the H4 which has branch number 8 the

number of active S-Boxes must be at least 16 over four

rounds. Therefore we assume, that our compression function

is resistant against differential or linear cryptanalysis.
Additionally random S-Boxes have one advantage over well

chosen ones. They may not be as resistant to known attacks

as selected S-Boxes, but are more likely to be resistant to

unknown attacks. Also since the S-Boxes are changed based on

the encryption key they are different for every message block.

Therefore conventional attacks only work for one block and

are not applicable to multi-block messages in a straightforward

manner. Instead new techniques involving the S-Box schedules

have to be developed. We feel, that it is difficult to even apply

standard differential or linear cryptanalysis to the compression

function of FPHT streaming mac as far as more than one

message block is analyzed within an attack. In the scope of

ASC this effect is even greater, because the stream cipher

is updated more than once before another input for the mac

function is produced. Therefore it is hard to express the S-Box

for the next message block using the S-Box for previous ones.

B. The Stream Cipher
1) Key Schedule: We decided to use a modified update

function in the key setup a number of times. Thus we believe

that the Key Scheduling does not introduce weaknesses in

the design of the streamcipher. Moreover we believe that

because of the non-linear update function it becomes difficult

to calculate keys having certain properties. Additionaly since

we do not use a t-function per se during the Key Schedule

every bit of the key has the same effect on the starting state.
2) Attacks on T-Functions: There have been a number of

attacks on t-function based designs for example [17] or [20].

These attacks make use of the fact, that if high order bits of

one register are known it becomes possible to calculate the low

order bits faster than exhaustive search if a t-function is used

in the update. In our case we output only a very conservative

number of bits from the state (i.e. 32 of 256). Additionally

since we output a complete register and not parts of one the

task for the cryptanalyst is different from the above mentioned

scenario. Therefore we believe that the so far presented attacks

do not apply to ASC.
3) State-Update Function: The state update function of

ASC is based on one of the multi-word t-functions presented

in [16]. Therefore the registers run through all possible states

before repeating. Thus the cycle length of ASC is 2256.

However we modified the used parameter to speed up inter-

register mixing as described above. This does not shorten the

cycle length though. Therefore attacks exploiting short cycle

lengths or impossible states are not applicable to ASC.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1426

6

The state update function of ASC is highly nonlinear

therefore we believe that simple algebraic attacks don’t work.

This is also fortified by the fact, that t-functions are developed

as a replacement to linear feedback shift registers which are

susceptible to algebraic attacks. The nonlinear nature of t-

functions generates equations of higher degree with every state

update thus the weaknesses of LFSRs are fixed.
Tests with ENT [23] and the NIST Test Suite [22] showed no

weaknesses in the output of ASC. Therefore we believe, that

general attacks exploiting the statistics of the generated key

stream do not work against ASC. We feel, that encrypted data

can not be distinguished from random noise. Also we are not

aware of any distinguisher for the used t-function construction.

Additionaly we believe, that our modified parameter does not

substantialy weaken the state-update function therefore the

security arguments for multi-word t-functions given in [16]

hold for our construction as well.

VII. CONCLUSIONS

In this paper we have presented a new combined primitive,

which offers authentication and encryption at the same time.

Our design uses the streaming mac idea which uses the

encryption function to reduce the costs for the authentication

procedure. The primitives we used are relatively new and

promising and thus are interesting principles for further re-

search in this area. Our goal was to combine these two building

blocks in a concrete cipher design.
In this paper we have explained the interaction between mac

function and stream cipher in the streaming mac design. The

combination of encryption and authentication ability allows

for more efficient authenticated encryption than the separate

application of the different primitives would. We have pre-

sented the basic building blocks for the streaming mac design

and proposed a concrete example which we called ASC. We

have modified two existing abstract primitives and developed

practical variants which can be put together to produce a

streaming mac function.
Additionally we have developed a practical implementation

of an abstract cryptographic primitive namely a t-function

based stream cipher. We have fixed a secure parameter set for

this stream cipher and have added necessary functionality like

key scheduling and initialization. Moreover we have argued

that existing attacks on t-function based designs do not apply

to our approach because of the different keystream generation

method.
Finally we have presented a security-speed tradeoff for

our stream cipher which can increase the performance of

ASC significantly. Additionally we have given performance

meassures and security claims for our new stream cipher.

REFERENCES

[1] Vladimir Anashin. Uniformly distributed sequences of p-adic integers,
ii. arXiv Mathematics, 2002. http://arxiv.org/abs/math.NT/0209407.

[2] Vladimir Anashin. Pseudorandom number generation by
p-adic ergodic transformations. arXiv Mathematics, 2004.
http://arxiv.org/abs/cs.CR/0401030.

[3] Vladimir Anashin, Andrey Bogdanov, Ilya Kizhvatov, and Sandeep
Kumar. Abc : A new fast flexible stream cipher. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

[4] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like
cryptosystems. In Proceedings of CRYPTO 1990, volume 537 of Lecture
Notes in Computer Science. Springer Verlag, 1990.

[5] Eli Biham and Adi Shamir. Differential cryptanalysis of snefru, khafre,
redoc-ii, loki and lucifer. In Proceedings of CRYPTO 1991, volume 576
of Lecture Notes in Computer Science. Springer Verlag, 1991.

[6] Joan Daemen. Cipher and hash function design: strategies based on
linear and differential cryptanalysis. PhD thesis, Katholieke Universiteit
Leuven, 1995.

[7] Tom St Denis. Fast pseudo-hadamard transforms. Cryptology ePrint
Archive, Report 2004/010, 2004. http://eprint.iacr.org/.

[8] ECRYPT. estream, the ecrypt stream cipher project, 2004.
http://www.ecrypt.eu.org/stream/index.html.

[9] J. A. Gordon and H. Retkin. Are big s-boxes best? In Proceedings of the
Workshop on Cryptography, volume 149 of Lecture Notes in Computer
Science. Springer Verlag, 1982.

[10] Philip Hawkes, Michael Paddon, and Gregory G. Rose. The mundja
streaming mac. Cryptology ePrint Archive, Report 2004/271, 2004.
http://eprint.iacr.org/.

[11] Jin Hong, Dong Hoon Lee, Yongjin Yeom, Daewan Han, and
Seongtaek Chee. T-function based stream cipher tsc-3. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/031, 2005.
http://www.ecrypt.eu.org/stream.

[12] Liam Keliher. Linear Cryptanalysis of Substitution-Permutation Net-
works. PhD thesis, Queen’s University, Kingston, Canada, 2003.

[13] Alexander Klimov. Applications of T-Functions in Cryptography. PhD
thesis, The Weizmann Institute of Science, 2005.

[14] Alexander Klimov and Adi Shamir. A new class of invertible mappings.
In Proceedings of CHES 2002, volume 2523 of Lecture Notes in
Computer Science. Springer Verlag, 2002.

[15] Alexander Klimov and Adi Shamir. Cryptographic applications of t-
functions. In Proceedings of SAC 2003, volume 3006 of Lecture Notes
in Computer Science. Springer Verlag, 2003.

[16] Alexander Klimov and Adi Shamir. New cryptographic primitives based
on multiword t-functions. In Proceedings of FSE 2004, volume 3017 of
Lecture Notes in Computer Science. Springer Verlag, 2004.

[17] Simon Künzli, Pascal Junod, and Willi Meier. Distinguishing attacks on
t-functions. In Proceedings of Mycrypt 2005, volume 3715 of Lecture
Notes in Computer Science. Springer Verlag, 2005.

[18] Alexander Maximov. A new stream cipher mir-1. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/017, 2005.
http://www.ecrypt.eu.org/stream.

[19] David A. McGrew and John Viega. The galois/counter mode of
operation (gcm). Submission to NIST Modes of Operation Process,
2004. http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/.

[20] Joydip Mitra and Palash Sarkar. Time-memory trade-off attacks on
multiplications and t-functions. In Proceedings of ASIACRYPT 2004,
volume 3329 of Lecture Notes in Computer Science. Springer Verlag,
2004.

[21] Luke O’Connor. On the distribution of characteristics in bijective
mappings. In Proceedings of EUROCRYPT 1993, volume 765 of Lecture
Notes in Computer Science. Springer Verlag, 1993.

[22] Andrew Rukhin, Juan Soto, and James Nechvatal et al. A statis-
tical test suite for the validation of random number generators and
pseudo random number generators for cryptographic applications, 1997.
http://csrc.nist.gov/rng/.

[23] John Walker. Ent – entropy calculation and analysis of putative random
sequences, 1985. http://www.fourmilab.ch/random/.

[24] Doug Whiting, Russ Housley, and Niels Ferguson. Counter with cbc-
mac (ccm). Submission to NIST Modes of Operation Process, 2004.
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/ccm/.

[25] Doug Whiting, Bruce Schneier, Stephan Lucks, and Frederic Muller.
Phelix - fast encryption and authentication in a single cryptographic
primitive. Ecrypt Stream Cipher Project, Report 2005/020, 2005.
http://www.ecrypt.eu.org/stream.

[26] Bartosz Zoltak. Vmpc-mac: A stream cipher based authenticated
encryption scheme. Cryptology ePrint Archive, Report 2004/301, 2004.
http://eprint.iacr.org/.


