
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

980

Low power and less area architecture for integer
motion estimation

C Hisham, K Komal, and Amit K Mishra, Member, IEEE

Abstract—Full search block matching algorithm is widely
used for hardware implementation of motion estimators in
video compression algorithms. In this paper we are proposing
a new architecture, which consists of a 2D parallel processing
unit and a 1D unit both working in parallel. The proposed
architecture reduces both data access power and computational
power which are the main causes of power consumption in
integer motion estimation. It also completes the operations
with nearly the same number of clock cycles as compared
to a 2D systolic array architecture. In this work sum of
absolute difference (SAD)-the most repeated operation in
block matching, is calculated in two steps. The first step is
to calculate the SAD for alternate rows by a 2D parallel
unit. If the SAD calculated by the parallel unit is less than
the stored minimum SAD, the SAD of the remaining rows
is calculated by the 1D unit. Early termination, which stops
avoidable computations has been achieved with the help of
alternate rows method proposed in this paper and by finding a
low initial SAD value based on motion vector prediction. Data
reuse has been applied to the reference blocks in the same
search area which significantly reduced the memory access.

Keywords—sum of absolute difference, high speed DSP.

I. INTRODUCTION

Portable video devices like videophones and cam-
eras require low power and low silicon area imple-
mentation of video compression algorithms. Motion
estimation is one of the most time and power
consuming block in any video compression algo-
rithm. For example in H.264 codec implementation,
integer motion estimation contributes to 74.29%
of the computational complexity and 77.49% of
memory access [1]. There are several algorithms for
motion estimation like full search block matching
algorithm (FSBMA) [2] and fast algorithms like
three step search, hexagonal search etc [2]. FSBMA
has simple and regular structure which makes it one
of the best choices for hardware implementation
of motion estimation [3]. The basic idea of block
matching algorithm (BMA) is to divide the current

The authors are with the Department of Electronics and Communi-
cation Engineering, Indian Institute of Technology, Guwahati, India
e-mail: akmishra@ieee.org

frame in a video sequence, into smaller blocks [3],
[4]. For each block we try to find the corresponding
block from the search area of the previous frame,
which matches the most with the current block.
To find how closely two blocks match with each
other, we have different approaches like, calculation
of mean square error(MSE), sum of absolute dif-
ference(SAD), mean of absolute difference(MAD)
etc. [2]. Out of these methods SAD is one of the
most preferred algorithms, because it requires only
addition and no multiplications. The SAD operation
is represented by the following equation [5].

SADP,Q(m,n) =
P−1∑

i=0

Q−1∑

j=0

|c(i, j)− r(i + m, j + n)|

(1)
P and Q are length and width of the block. Each
can be 4,8 or 16 pixels. m and n give the maximum
horizontal and vertical displacements.

Processing element (PE) array based architectures
have been proposed, like the one proposed in [6],
where a two dimensional array of PEs iteratively
compute the partial SAD value until the final value
is determined.Early termination is used in this
method, so that power consumption is reduced by
30% [6]. A method by using most significant bit(
MSB) first bit-serial implementation [5] is suggested
to reduce the area of systolic architecture. Since
the consecutive reference frames are overlapped, the
reuse of reference pixels can be used to reduce
the memory access [1]. For variable block size
motion estimation, the results obtained from smaller
blocks can be reused to compute motion vectors for
larger blocks [7], [8]. Sum of absolute difference
(SAD) calculation is the most repeated operation in
any block matching algorithm. The main objective
in a block matching algorithm is to find a block
with minimum SAD [9]. Hence, we can stop the
computations if the SAD being calculated is greater
than the stored minimum SAD.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

981

Most of the works done so far to reduce the area
and memory access of full search is by compro-
mising the system throughput and optimizing at the
circuit level. Our work reduces the area and memory
access an architecture level, without a considerable
change in the throughput.

The rest of the paper is organized as follows.
The Next section describes about the proposed ar-
chitecture and several optimization techniques used
in this architecture like alternate rows, data reuse
and minimum SAD prediction. Section 3 describes
about the results and the last section concludes the
paper.

II. PROPOSED ARCHITECTURE

Figure-1 shows the proposed architecture for 4×4
integer motion estimation. Here for each 4×4 block
in the current frame, a 4 × 4 block with minimum
SAD is to be found in the given search area of
reference frame. There are two major blocks in this
architecture, a parallel 2D SAD unit(2 × 4) and
one 1D SAD unit. This architecture uses the help
of early termination to avoid nonessential operations
so that operations for a particular reference block
will be stopped if calculated SAD > SAD mini-
mum. The sooner the termination occurs the more
computations can be saved.

In this architecture mainly two techniques have
been applied to achieve fast early termination.

1) Initial SAD value prediction
Initial value of SAD minimum is calculated
from a block which is directed by the pre-
dicted motion vector. The motion vectors are
predicted from three previous motion vectors
using median operation [5].

2) Alternate rows method In this architecture,
instead of calculating SAD for the entire 4x4
blocks at a time, we are calculating the SAD
in two steps. At first SAD for a strip which
can represent the block more effectively, and
if it is less than SAD minimum, SAD of
remaining part of the block. A strip with
half size of a block having alternate rows or
columns can more effectively represent that
block than a strip of half size with consec-
utive rows or columns. So if we are taking
alternate rows or columns of both reference
block and current block and computing their
SAD(parallel SAD) first, we can disable 1D

SAD unit in more percentage. Percentage of
disabling 1D unit for continuous rows [2×4],
continuous columns [4 × 2], alternate rows
[2 × 4] and alternate columns [4 × 2] has
been calculated for different test videos and
it is observed that percentage of disabling 1D
unit is more while taking alternate rows of
both current block and reference block and
computing their SAD.

Memory access has been reduced in this architecture
with the help of re-use of accessed reference pixels
among different processing elements .

A. 2D Parallel unit

Figure 2 shows 2D unit for 4 × 4 block. In this,
odd rows of current block are loaded in to PE
arrays and they remain fixed in PE. Odd rows of
different reference blocks within the search area will
be loaded to the PEs in each clock cycle. Parallel
2 × 4 section will compute the SAD of alternate
rows in parallel within one clock cycle (parallel
SAD). If parallel SAD is less than stored SAD
minimum comparator 1 output will be set to ’1’.
If the comparator 1 output is ’1’, parallel SAD
value and information of that block will be stored
in temporarily memory, which will manage the
computations of 1D SAD unit, even if comparator
output=1 for few consecutive blocks.
Pixels of reference block are reused by adjacent
PEs. Two horizontally adjacent 4 × 4 reference
blocks differ only by 4 pixel values and since we
are using only odd rows of these blocks, only 2
new memory access are required by this unit per
reference block.

B. 1D SAD unit

1D SAD unit which is shown in figure 3 will
calculate the SAD of even rows of the block by
taking more clock cycles. The even rows of current
block will be stored in two circular buffers. The
reference frame pixels will be accessed by two PEs
in this unit. Initially parallel SAD results will be
added with sum of absolute difference from even
rows in that cycle(SAD even) to form SAD total.
In remaining cycles SAD total will be added with
SAD even to update SAD total using same adder.

SADtotal = SADParallel+SADevenrows (2)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

982

Fig. 1. Proposed architecture

Fig. 2. Parallel 2x4 SAD unit

In each clock cycle, SAD total will be compared
with SAD minimum. Early termination is applied
for 1D SAD unit also. Operations in the 1D SAD
unit will be the stopped if the sum (SAD total) goes
above the SAD minimum. Since the SAD of even

Fig. 3. 1D SAD unit (2x1)

rows are added with SAD parallel, there is high
chance of early termination. Table 2 shows the effect
of early termination in 1D unit for different video

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

983

TABLE I
COMPARISON OF PERCENTAGE OF DISABLING 1D UNIT IN DIFFERENT METHODS FOR BLOCKS OF SIZE 4X4.

test video continuous 4x2 continuous 2x4 alternate columns alternate rows
with without with without with without with without

prediction prediction prediction prediction prediction prediction prediction prediction

Mobile (CIF) 66.86 62.16 68.01 56.57 69.68 62.61 70.31 63.00
Tempete (CIF) 73.47 63.95 72.76 59.60 75.75 64.72 76.1 64.87
News (QCIF) 75.75 60.00 75.95 58.88 77.49 60.98 77.68 61.33

Foreman (QCIF) 79.88 67.28 79.16 66.88 81.7 68.87 82.1 69.25
Silent(QCIF) 82.60 66.20 83.32 67.17 83.55 67.70 83.82 68.02

Container(QCIF) 72.68 51.26 72.30 52.03 81.55 51.74 82.13 51.99

TABLE II
AVERAGE NUMBER CYCLES PER SAD IN 1D UNIT

test video Average number cycles in 1D unit
Mobile 1.9

Tempete 1.95
News 2.25

Foreman 2.15
Silent 2.3

Container 1.92

Fig. 4. Processing Element(PE)

frames. It can be observed that 1D unit finishes
computations around 2 cycles instead of 4 cycles
due to early termination inside the 1D SAD unit. By
result it has been observed that around 75% of the
cases 1D SAD block will be disabled. 1D unit oper-

ations will be completed by an average of 2-3 cycles
since we are using two PE. In general, even for a
fast moving video the total 1D operations can be
completed while finishing parallel operations even
if the number of SAD PEs in 1D unit is 4 times less
than that of 2D unit. In general for N×N block,we
need N2/2 PEs in 2D SAD unit and (N2/8) PEs
in 1D SAD unit. So totally we need only (5N2/8)
PEs in this architecture instead of N2 PEs in systolic
architectures [5]. So for N = 4, Parallel unit will
be having 8 SAD PEs and so the 1D unit must have
two PEs which are working in parallel(one for each
row). Total sequence of operations can be explained
by the following algorithm.

C. Processing Element(PE)

The processing element(PE) will calculate the
absolute difference between two pixel values. For
calculating the absolute difference between two
pixel values, the 2’s complement of smaller pixel
value is added with the bigger pixel value. In this
work, to calculate absolute difference between two
pixel values A and B, find Ā and we are generating
carry of Ā+B by using a carry generator(shown in

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

984

Algorithm 1 Find the motion vector for a particular
current block

Calculate the initial SAD minimum from the
predicted block.
if SAD Parallel � SAD minimum then

disable 1D operations for that block and load
next reference block to 2D SAD unit.

else if SAD Parallel < SAD minimum then
Complete SAD calculation of remaining even
rows with 1D unit and load next reference
block to 2D SAD unit.
if SAD total � SAD minimum then

stop the computation of 1D unit.
else if SAD total < SAD minimum then

continue the computations.
if output of second comperator=1 after all
computations then

Replace SAD minimum by SAD total.
else if output of second comparator �= 1
after all computations then

Take the next inputs to the 1D unit.
end if

end if
end if
Calculate the motion vector from the reference
block with minimum SAD.

Fig. 5. Carry generator

figure 4). If carry is not generated, B is the smaller
one. Find B̄ (of the smaller number).
The concept used here for absolute difference
calculation is B̄ = 2n−1−B, so |A−B| = A+B̄+1
and neglect n + 1th bit to get absolute difference
between A and B.

1) Carry generator: Carry generator is shown in
fig.5. In this work instead of finding carry out of 8th

bit, we are finding carry of first nibbles and second
nibbles separately to reduce the delay. In this work
area is reduced by grouping all the common logical
functions together and by storing them. For two
numbers A and B, possibility of carry generation
on ith bit will be G = A(i) ∗ B(i), and possibility
of propagating previous carry is P = A(i) + B(i).
So carry out of ith bit is G + P ∗ carryout(i − 1).

III. RESULTS AND DISCUSSIONS

From table-1 it can be observed that alternate
pixel method proposed in this architecture gives bet-
ter results than consecutive pixel methods. Among
alternate pixel methods, alternate row method gives
a slightly better result. From table 1 it can also be
observed that prediction of minimum SAD by pre-
dicting motion vectors improved the disabling of 1D
unit by more than 10%. Variation of disabling of 1D
unit with respect to correlation between reference
frame and current frame has been studied and given
in table 3. Table-3 shows even if two frames are
highly uncorrelated, around 60% of disabling of 1D
unit can be achieved.
From table 4 it can be observed that the proposed
method have less hardware (about half) compared
to the parallel architecture.

Bandwidth of memory access is reduced in this
method compared to parallel architecture. Table 5,
6 shows that this architecture achieved speed of 2D
systolic array [5] architecture with less memory
access. Table 6 shows the number of PEs and
memory access/cycle for N=16, m=24 and n=16.

IV. CONCLUSION

This paper proposes an architecture for full search
integer motion estimation in which a 2D parallel
unit and one 1D unit works in parallel. Data re-
use has been employed for reference blocks in a
given search area to reduce the memory access. The

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

985

TABLE III
VARIATION OF PERCENTAGE OF DISABLING 1D UNIT FOR DIFFERENT FRAME NUMBERS

Test video frame nos Correlation Percentage of disabling Avg. number of cycles
reference., current. 1D unit in 1D unit

9,10 0.96 76.12 1.87
8,10 0.92 74.19 1.82

Tempete 7,10 0.87 74.84 1.85
6,10 0.82 74.56 1.87
5,10 0.79 73.8 1.85
1,100 0.20 60.01 2

TABLE IV
COMPARISON OF FUNCTIONAL UNITS WITH 4X4 ARCHITECTURE

Block size 2D Systolic Architecture [5] Proposed Method

4x4 16 absolute diff. PEs 10 absolute diff. PEs ,
15 adders, 1 comparator 9 adders, 2 comp.

TABLE V
COMPARISON WITH DIFFERENT ARCHITECTURES

Architecture Zhang and Gao [10] Chen et al [11] A.M. Campos et al. [12] Proposed Method

Num. of

abs.diff PEs N2 N2 N2 5N2/8

Bytes/cycle 2n + N N + 1 2N (N/2 + E∗)

Here N is the block size m, n are maximum horizontal and vertical displacements and E can be N/2 or
0 depends on whether 1D unit is enabled or not.

TABLE VI
COMPARISON WITH DIFFERENT ARCHITECTURES FOR N=16, M=24, N=16

Architecture Zhang and Chen Campos Proposed
Gao [10] et al [11] [12] Method

Num. of 256 256 256 160
abs.diff PEs

Bytes/cycle 55296 30816 55296 Bestcases : 25673
∗

Normalcases : 28862
∗

Worstcases : 31644
∗

∗ Based on best, normal and worst situations from table 1

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

986

alternate rows method proposed in this architecture
and prediction of motion vector helps to achieve
early termination at the earliest . Our results shows
that this method significantly reduced the hardware
and memory access without reducing the speed
compared to 2D systolic architectures.

REFERENCES

[1] T.-C. Chen, Y.-H. Chen, S.-F. Tsai, S.-Y. Chien, and L.-G. Chen,
“Fast algorithm and architecture design of low-power integer
motion estimation for h.264/avc,” IEEE Trans. on Circuits and
Systems for Video technology, vol. 17, MAY. 2007.

[2] I. Richardson, H.264 and MPEG-4 Video compression. John
Wiley and Sons Ltd, 2003.

[3] Z.Wujian and Z. Runde, “A high-throughput systolic array for
motion estimation using adaptive bit resolution,” IEEE Trans.
on Circuits and Systems for Video technology, pp. 378–381,
Mar. 2001.

[4] J. Olivares, J. Hormigo, J. Villalba, and I. Benavides, “Min-
imum sum of absolute differences implementation in a single
fpga device,” Lecture Notes in Computer Science, Springer, vol.
3203, pp. 986–990, Aug. 2004.

[5] M.H.Brian and H.W.Leong, “Serial and parallel fpga-based
variable block size motion estimation processors,” Journal of
Signal Proc.Systems, vol. 51, pp. 77–98, Aug. 2007.

[6] K. Lam and C. Tsui, “Low power 2-d array vlsi architecture
for block matching motion estimation using computation sus-
pension,” IEEE Workshop on Signal Proc. Systems, pp. 60–69,
2000.

[7] S. Lpez, F. Tobajas, A. Villar, V. de Armas, J. F. Lpez, and
R. Sarmiento, “Low cost efficient architecture for h.264 motion
estimation,” IEEE International Symposium on Circuits and
Systems, vol. 1, pp. 412–415, May 2005.

[8] Z. Liu, Y. Huang, Y. Song, S. Goto, and T. I. IPS, “Hardware-
efficient propagate partial sad architecture for variable block
size motion estimation in h.264/avc,” Great Lakes Symposium
on VLSI, March 2007.

[9] Y.-W. Huang, C.-Y. Chen, C.-H. Tsai, C.-F. Shen, and L.-G.
Chen, “Survey on block matching motion estimation algorithms
and architectures with new results,” Journal of VLSI Signal
Processing, vol. 42, no. 8, pp. 297–320, 2006.

[10] L.Zhang and W. Gao, “Improved fsbm algorithm and its vlsi
architecture for variable block size motion estimation of h.264,”
International Symposium on Intellig. Signal Pro.Comm. Syst.,
pp. 445–448, 2005.

[11] C. Chen, S. Chien, Y. Huang, T. Chen, T. Wang, and L.G.Chen,
“Analysis and architecture design of variable block-size motion
estimation for h.264/avc,” IEEE Trans. on Circuits and Systems,
vol. 53(2), p. 578593, 2006.

[12] A. Campos, F. Merelo, M.A.M.Peiro, and J. Esteve, “Integer-
pixel motion estimation h.264/avc accelerator architecture with
optimal memory management,” Microprocessors and Microsys-
tems in Elsevier, 2007.

