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 Abstract—in this work, we present a new strategy of direct 
adaptive control denoted: Extended minimal controller synthesis 
(EMCS). This algorithm is designed for an induction motor, which 
includes both electrical and mechanical dynamics under the 
assumptions of linear magnetic circuits. The main motivation of the 
EMCS control is to enhance the robustness of the MRAC algorithms, 
i.e. the rejection of bounded effects of rapidly varying external 
disturbances.  
 

Keywords—Adaptive Control, Simple model reference adaptive 
control (SMRAC), Extended Minimal Controller synthesis (EMCS), 
Induction Motor (IM) 

I. INTRODUCTION 

IGH performance induction motor drives require 
controllers that yield fast torque response through base 

frequency and constant power with adequate torque response 
above base frequency. A vector control is the most successful 
in meeting these requirements. To date, however, considerable 
effort is expended in engineering and commissioning the 
drive, resulting in a complex drive system. Consequently, a 
vector control drive is complicated and costly and it should be 
implemented only when the application demands high 
performance. 

Most adaptive approaches are based on self-tuning concepts 
where in parameters, such as rotor resistance, are identified 
and used in the field oriented controller, more over the 
parameter adaptive algorithms usually employ a functional 
relationship that require priory knowledge of machine 
inductances and assume a linear machine model. 

The main result of this paper is to develop an adaptive 
version of the controller presented in [2] and [10]. In section 
II a state space model of an induction motor, which includes 
both electrical and mechanical dynamics, is given. The section 
III of the paper is dedicated to a theoretical presentation of the 
decoupling control. In section IV, the algorithm of a 
simplified MRAC, is given. It can be mentioned that the 
papers related to MRAC techniques become more and more 
numerous (Ohnishi, 1986; Chan, 1990; Fu, 1991). In section 
V the derivation of the EMCS algorithm is presented. It will 
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be shown that by adding suitably designed elements to the 
MRAC algorithms, the resulting EMCS algorithms reject the 
effects of external disturbances. For the derivation of the 
EMCS algorithms, the stability proofs will be carried out 
using the hyperstability theory. 

II. MATHEMATICAL MODEL OF INDUCTION MACHINE  
The reader is referred to [9] and [11] for the general theory 

of electric machines and induction motors, to [12] for related 
control problems, and to [8] for digital implementation. It is 
well known that the mathematical model of an induction 
motor can be obtained using the two-axis theory. By choosing 
the synchronous reference frame ( )qd OO

rr
, , which the supply 

voltage phases, the dynamics of a squirrel-cage induction 
motor can be represented by the following non linear 
differential equations: 
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And σ : total leakage coefficient.  
 
The electromechanical torque is given by: 

[ ]
s

I  ∧⋅=
r

r

sr
e L

M
pT φ                                                           (2) 

The mechanical equation is given by: 
 

Ω⋅−−=Ω⋅   
rre

fTTdt
dJ                                                     (3) 

H 
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III. DECOUPLING CONTROL  

    It can be see from the above equations that an induction 
motor is a non-linear system with cross-coupled control 
variables.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Principe scheme of decoupling control 
 

    However, according to the decoupling theory, if the 
secondary flux axis coincides with the dO

r
 axis, the secondary 

torque current sqI  must coincide with the qO
r

 axis when the 

decoupling conditions are satisfied, namely, 0=rqφ  and 
0=rdI . Hence, the secondary flux and the electromechanical 

torque of an induction motor are decoupled from each other 
and can separately controlled as desired. 
    The above decoupling conditions can be reached through 
slip frequency control as: 

−
==−= KIIT

I
sd

sdr

sq
sgl     ,           .ωωω                                    (4) 

    Where 
−
K  is determined by the flux-speed profile of the 

drive system. 
    
    When the speed is below the base speed, constant torque 
operation is obtained by maintaining the flux at the rated 
value. However, when the speed is above the base speed, the 
flux is programmed to be inversely proportional to speed to 
obtain a constant power operation. With a decoupling control 
governed by (4), various types of closed-loop speed schemes 
can be adopted as it can be observed in the classical literature.  

IV. SIMPLE MODEL REFERENCE ADAPTIVE CONTROL (SMRAC) OF THE 
INDUCTION MACHINE  

Unfortunately, the decoupling conditions will be violated if 
the system parameters are changed after long running. As a 
solution, an MRAC is adopted to compensate the 
unfavourable errors with an internal model structure. The 
model reference permits the computation of both speed and 
electromagnetic torque which are compared to the machine 
outputs. Then, a torque control by the intermediate of the 
stator current sqI  is computed through an adaptation 

mechanism. The dedicated current sqI  is used as an input of a 

classical indirect vector-controlled scheme with the outputs 
sqsd II   ,  and 

glω . 

    According to the hyperstability theory, in order for a 
closed-loop system to be asymptotically hyperstable, the 
transfer function of the linear part must be with positive real 
part poles [3]-[5], whereas the non linear part must satisfy the 
Popov integral inequality as:

 
2
0

0

Cduy
t

nl
T
nl −≥⋅⋅∫ τ                                                              (5)           

Here 0C  is a positive constant independent of  t. 

    In order to reduce the complex computation, a first order 
linear system for the model reference has been proposed in 
figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 SMRAC for machine drive 
 

eKKKCU epue ⋅+Ω⋅+Ω⋅== **                                        (6)  
    With the adaptive gains are given by: 

( ) T
e

t
T

eep XydXytXK     , 
0

βτα += ∫                                       (7) 

( ) T
me

t
T
meeu UydUytXK     , 

0

βτα += ∫                                       (8) 

 
   The gains βα ,  are determinate by simulation. 
       
    The simulation results at no load ( 0=

r
T ) are reported in 

Figure 3.  

Legend: 
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sqÎ  

saI  sbI  scI  

PWM 
inverter  

Switch order 
*

saV  *
sbV  *

scV  

+ + 

ω  

*
rφ

k 
h

*

e
T  a 

b 

Ω

+ 

- 
*Ω  

*
sdV  *

sqV  

 
Resolver 

glω

Decoupling 
Control 

*
sqI  *

rφ

 

KSJ
K

+⋅

    
Decoupling 

Control 

System 
(PWM Inverter 

+ IM) 

*
sdV
*

sqV

sωsr

r

Mp
L
⋅ b

aa

b

*
rφ

*
sqI

*Ω mΩ +

- 

e

Ω

*

e
T

Model  reference 

The SMRAC Adaptive mechanism 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:5, 2011

675

 

    In Figure 3 (a) and 3 (b) flux amplitude 
rd

Φ  and 
rq

Φ  are 

respectively given.  
    For the phase current (Figure 3 (c)), the first peak is 
respectively at 22 a while the steady state peak current is at 
7A. 
          The electromechanical torque is represented in figure 3 
(d). 
       The system response and the model reference response at 
no load ( 0=

r
T ) are shown in figure 3 (e). 

    The speed response is well damped within a rise time of 
0.2s and it can be observed a good concordance between 
system response and model reference response.  
   The feedforward gain and the feedback gain are shown in 
figure 3 (f). The error between the system response and the 
model reference response is reported in Figure 3 (g).  
         The system response, the model reference response, the 
adaptive gains and the error when load ( N.mT

r
 5= ) are 

shown respectively in figure 4 (a), 4 (b) and 4 (c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Simulation results at no load ( 0=

r
T ) 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Simulation results when load ( mNT

r
. 5= ) 

V. EXTENDED MINIMAL CONTROLLER SYNTHESIS  
    For the derivation, see appendix A. 
    The EMCS control input is: 

ξ+
⋅+Ω⋅+Ω⋅==

e
eNKKTU

pue

**                                 (9) 

    The EMCS has been implemented using the configuration 
figure 5. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 5 Configuration of the control system 
 
    A final test of the complete drive when using EMCS control 
law has been performed starting-up towards 1500 rpm at 

N.m) 5( =
r

T  Figure 6. The response system (Speed) and the 
response of model reference are plotted in (rd/s) against time 
in Figure 6 (a). The adaptive gains (feedforward and feedback 
gains) and the error between response system (speed) and 
response of model reference are shown in figure 6 (b) and 
figure 6 (c).  
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Fig. 6 The EMCS simulation results nonlinear  
 
    A test of robustness has been also performed by tuning the 
rotor resistance parameter with both over-estimation and 
under-estimation. 
     
    To compare the tracking performances of EMCS algorithm 
with those of MRAC algorithms in the presence of external 
disturbances, the tracking performance is improved in the case 
of EMCS algorithm. As we can see, when the EMCS 
algorithm is used, the effect of rapidly varying external 
disturbances is rejected and the error is asymptotically stable. 

VI. CONCLUSION  
     In this paper we propose, an adaptive decoupling control 
which has some advantages over classical algorithm control of 
MRAC. First a MRAC scheme for vector-controlled induction 
machine has been proposed starting from the very beginning 
of MRAC theory. 
     The use of the EMCS algorithm yields complete rejection 
of external disturbances. Therefore, the robustness properties 
are enhanced in comparison with those of the MRAC 
algorithms. 
    The improvement in drive performances can be evaluated in 
term of robustness in front of machine parameter changes 
without having to implement identification procedure. 

 
APPENDIX  A 

 
 Consider the plant described by [1] and [3]: 
 

( ) ( ) ( ) ( ) ( ) ( )tXdtUtBtXtAtX  ,      +⋅+⋅=&
                      (A.1) 
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Where: ( ) nntA ×ℜ∈ , ( ) 1×ℜ∈ ntB  , ( ) 1×ℜ∈ nX, td . 

 
    The elements of A(t) and B(t) are unknown and assumed to 
be slowly varying, i.e. constant during the adaptation process. 
The term d(X,t) represents the effects of rapidly varying 
external disturbances. 

 Similarly, the stable reference model is defined as: 
( ) ( ) ( )t  UBt  XAt X mmmmm +=&                                       (A.3)           
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 Where: 
nn

mA ×ℜ∈  and 1×ℜ∈ n
mB . 

    
     According to [1], The EMCS control law is synthesised by 
adding a suitably designed extra term to the existing MRAC 
algorithms. Therefore, we define an EMCS control law as 
follow:  
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    Where ξ  is a small positive constant.  Note that if: 0→ξ , 

then:
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    The error vector e
X  is defined as: 

 
XXX me −=  (A.10)

 
Then the error dynamics are given by:                                                                          
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 When applying Popov’s criterion to the system defined by 

(A.11), we obtain: for all 0≥t : 
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 If the following condition is satisfied for all 0≥t : 
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 The error 

e
X  is therefore globally asymptotically stable if 

condition (A.14) is satisfied. If the coefficient N is chosen so 
that Nb.

1
 is positive, then a lower limit of N is obtained from 

(A.14) as follow: 
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>Nb for all 0≥t . 
 

 If the parameter ξ  is sufficient small so that the term 

n

n

y
y ξ+

  is approximated to 1. 

 We conclude therefore that if the parameters N and ξ  are 
chosen appropriately, the use of the EMCS control law (A.5) 
yields a globally asymptotically sable error eX . 
 
REMARK: 

The satisfaction of the condition (A.15) is not related to the 
speed of variation of 1d  and therefore no matter how rapidly 
varying 1d  is, suitable values of N and ξ  must ensure the 
global asymptotic stability of the error eX .
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