
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3947

Abstract—Modeling of the distributed systems allows us to

represent the whole its functionality. The working system instance
rarely fulfils the whole functionality represented by model; usually
some parts of this functionality should be accessible periodically.
The reporting system based on the Data Warehouse concept seams to
be an intuitive example of the system that some of its functionality is
required only from time to time. Analyzing an enterprise risk
associated with the periodical change of the system functionality, we
should consider not only the inaccessibility of the components
(object) but also their functions (methods), and the impact of such a
situation on the system functionality from the business point of view.
In the paper we suggest that the risk attributes should be estimated
from risk attributes specified at the requirements level (Use Case in
the UML model) on the base of the information about the structure of
the model (presented at other levels of the UML model). We argue
that it is desirable to consider the influence of periodical changes in
requirements on the enterprise risk estimation. Finally, the
proposition of such a solution basing on the UML system model is
presented.

Keywords—Risk assessing, software maintenance, UML, graph
grammars.

I. INTRODUCTION
OWADAYS, computer systems are characterized by a
very complicated structure which consists of many

subsystems, many single software applications and hardware
components. Their complexity grows in the continuous
process of changes forced by technology development and
increasing (changing) users’ requirements. For the effective
management of a computer systems evolution, a crucial
problem is how to control the system structure, the
characteristic of its components and the relations among them.
This necessity is reflected in many models of computer
systems which are focusing on different aspects of the
properties of systems. One of the most important aspects
considered here is the quality requirements control. From the
engineering point of view “quality” is too imprecise, so in
theory and practice we use rather “quality attributes”, which
are defined as measurable (or observable) properties and are
divided into a few categories such as: performance,
availability, security, reliability, stability or fault-tolerance.

Manuscript received October 9, 2001.
Dariusz Dymek is with the Institute of Computer Science, Cracow

University of Economy, Rakowicka 27, 31-510 Kraków, Poland (e-mail:
eidymek@cyf-kr.edu.pl).

Leszek Kotulski is with the Department of Automatics, AGH University of
Sciencce and Technology, Al. Mickiewicza 30, 30 059 Kraków, Poland (e-
mail: kotulski@agh.edu.pl).

Such an approach is supported in many methods ([1],[2],[3]).
Moreover, when we want to assure the fulfillment of quality
attributes requirements in newly developed systems, it’s very
important to have formal tools, which allow as to manage the
evolution of the system and to maintain the achieved level of
quality attributes ([4],[5)].

The fact that these methods represent only the engineers’
point of view is their weakness. Each system component is
characterized by values of many quality attributes that reflect
on its technical properties, but there are no information about
influence of the given software component on the effective
realization of the whole system functionality.

One of the most important properties of complex systems is
the fact that during regular execution not the whole system
functionality is used at the same time. Some system functions
are used only in given period of time, depending on users’
demands. It means that the system structure change in time
even while the usual exploitation. So we should consider not
only dynamical evolution of the system structure while its
maintenance (long period) but also the periodical evolution of
the system during its normal live time. Such a system behavior
is typically characteristic for Data Marts systems created as a
part of Decision Support Systems (see chapter 2).

The necessity of considering time dependencies has been
approved by OMG that incorporate Timing Diagrams into
UML 2.0 standard [10]. UML dynamic notation supports both
the users’ requirements and other details of the system
solutions (software and hardware). The information presented
at different levels (e.g. in Use Case diagrams and Class
diagrams) are not related in a formal way. The introduction of
the graph repository [4] allows us to introduce vertical
relations among the elements belonging to the different types
of UML diagrams (in section 3). These vertical relations we
use to calculate the Importance Ratio, that exemplifying the
importance of system’s components from the business point of
view, and we show how this ratio can be used to merge both
engineering and business point of view (in section 4). Finally
we will show, how the graph repository concept and the
introduced of the business measures allow us to project the
timing relations (represented by Timing Diagrams for Use
Case components) to the software and hardware components
(described at the Deployment Diagrams).

II. TIME DEPENDENCY IN THE COMPLEX SYSTEM
Every business organization during its activity generates

many single reports. Some of them are created for managers

Evaluation of Risk Attributes Driven by
Periodically Changing System Functionality

Dariusz Dymek, and Leszek Kotulski

N

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3948

and executives for an internal use only; others are created for
external organizations which are entitled to monitoring state
and activity of given organization. For example, in Poland
commercial banks have to generate obligatory reports inter
alia to the National Bank of Poland (WEBIS reports), the
Ministry of Finance (MF reports) and the Warsaw Stock
Exchange (SAB reports)1. In all external reports, it is few
hundreds of single sheets with thousands of single data. In
general, these reports base on almost the same kind of source
data, but external requirements on format and contents causes
that different software tools (based on different algorithms)
are needed. These reports have periodical character –
depending of demands given report must be drown up every
day, week, decade, month, quarter, half of the year or year,
base on data from the end of the corresponding day.

Let’s consider an example of a Reporting Data Mart system
based on Data Warehouse. The relations among DMs and DW
are presented on generic schema presented in Fig. 1.

Fig. 1 Relations among Data Marts and Data Warehouse

It can see, the Extraction Transformation and Loading
process (ETL process) to a single Data Mart is a result of
many single Data Warehouse processes. It’s ease to realize
that for different Data Marts the set of used DW processes can
be different. Analyzing the information content of reports we
can divide them into a few categories, based on kind of source
data and the way of their processing. Each of those categories,
regardless of periodical character, is generated by different
processes. Their results are integrated on the level of the user
interface depending on period and external organization. The
schema of data flow for Reporting Data Mart is presented in
Fig. 2.

Each User Application represents functionality associated
with the single period and with the single type of obligatory
reports. So, we can treat these applications as user
requirements, defining Data Mart functionality.

As we mention above, reports have periodical character. It
means that processes associated with these reports category
have also the periodical character. They are executed only in
the given period of time.

1 Structure and information contents of those reports are based in

international standards so the same situation we can meet in other countries.

Fig. 2 Schema of Reporting Data Mart

This period is strictly connected with organizational process

of drawing up the given type of reports. Let us notice that the
obligatory reports for the National Bank of Poland must fulfill
many control rules, before they can be send out. In practice, it
means that those reports are not generated in a single
execution of the proper software process. Instead of this, we
have organizational process which can progress even few
days, during which the software process is executed many
times after the correction of data. So, if we analyzing the time
of availability of system functionality connected with those
reports, we must take into account the larger time of the
readiness of the hardware environment than in the case of the
single process execution.

As an example we can take a simple Reporting Data Mart
which functionality is restricted to only three reports
categories: weekly, decadal and monthly. For simplification
we can assume that we have only one ETL process, common
for all the categories of reports. So we have four processes.
Organizational processes for those reports categories have the
following time characteristic2:

- weekly reports have to be ready before Thursday,
- decadal reports have to be ready in five workdays,
- monthly reports have to be ready till 20 day of the

next month.
The characteristic of the ETL process is more complicated

and depends on its functionality. For purpose our example, we
assume that subprocesses associated with weekly, decadal and
monthly reports generation are started appropriately 2, 3 or 4
days before the processes of the reports generation. We also
assume that the hardware supporting one, two or three of these
subprocesses creates the weak, middle or strong workload of
the system. Now, we can express the ETL process activity
using robust notation of the timing diagrams as presented in
the Fig. 3.

Timing diagrams are one of the new artifacts added to UML
2.0. They are used to explore the behaviors of one or more
objects throughout a given period of time. The concise
notation seems to be very convenient for the presentation of
the timing properties of the reporting activities as presented in
the Fig. 4. More complex situation is with the loading process,
that supports extraction data for one, two or three reports
areas, so can be in idle or weak, middle or strong workload
states.

2 Those characteristics (for decadal and monthly reports) are taken from

National Bank requirements.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3949

We must however note that the presented timing behavior
of this process represents only the expectation of the system
designer and in not associated with the generated system
structure. As plain as a pikestaff it is that these dependences
will change when the loading process will be realized on
several computers. We have a tool inside UML to express the
final system architecture (deployment diagrams) but there is
no influence of these diagrams evolution on the timing
diagram.

cd ETL

E
TL

 o
ve

rl
oa

d

strong

middle

weak

idle

0 5 10 15 20 25 30 35 40 45 50 55 60

Fig. 3 Aggregated workload created by ETL process

td raports

W
ea

kl
y on

off

de
ca

da
l

on

off

m
ou

nt
ly on

off

0 5 10 15 20 25 30 35 40 45 50 55 60

Fig. 4 Time schedule of ETL process associated with reports

generating processes

III. GRAPH REPOSITORY AND THE RELATIONS AMONG THE
UML’S DIAGRAMS

The ULM notation [10] is a recent approach to strengthen
the effort of designing an object-oriented modeling language
where all main issues of system analysis and design are taken
into account. Its visual notation, express (at different
abstraction level) the association among requirements,
software components and the static associations software
components with the hardware ones. The presentation of the
separate diagrams causes the loss of the significant part of the
project’s information such as the influence of the users’
requirements on the behavior of a given part of the final
system. On the other hand, this problem, as strongly related to
the graph isomorphism problem, is unsolved in the polynomial
time in a general case.

Fortunately, we can accompany the development of the
graph repository to the project’s process and simultaneously
maintain it. In [9] it was proved that with help of aedNLC
graph transformation system [8] we can control the generation

of such a graph repository with O(n2) computational
complexity. In the presented solution [9] we can:

• represent deployment of the final objects to the
proper computing nodes,

• show nested software structure (introduced by
packages),

• trace, inside whose class (in case of class inheritance)
the given objects method has been defined.

Finally in the same way we can extend this representation by
the:

• association of the object’s method with the proper
edges in the Interaction Diagrams,

• associate graph representing the Interaction Diagram
with the given Use Case activity.

In the graph repository we can to distinguish following layers:
- the Use Case layer (UL),
- the Interaction Diagram layer (IL),
- the Class layer (CL), divided onto the class body

layer (CBL) and the Class Method layer (CML),
- the Object layer3 (OL), divided onto the Object Body

layer (OBL) and the Object Method layer (OML),
- the Hardware layer (HL).

In the paper, we are especially interested in the relations
among these layers. For example when we consider the user
requirement, we can designate either objects that serve this
requirement, or directly the object methods; next we can
designate classes responsible for the definition structures and
algorithms supporting this requirement service.

The relations among elements of the same layer
(represented by graph edges) will be called the horizontal
relation and the relations among elements belonging to
different layers will be called the vertical relation. For any G,
representing a subgraph of the graph repository R, the
notation G|XL means the graph, with the nodes belonging to
the XL layer (where XL stands for any UML layer) and the
edges induced from the connections inside R. For example,
for the full graph R, R|UL∪OL means the graph with all the
nodes (n_set (R|UL∪OL)) representing user requirements and all
the objects, servicing these requirements, with the edges
(e_set(R|UL∪OL)) representing both horizontal and vertical
relation inside the graph repository.

Considering the system structure we can distinguish two
different ways of viewing it. The first one corresponds with
System Architecture presented in [1]. It shows the relation
inside Use Case and Class diagrams and among their
components and is called the logical level. The second one
shows the relation inside Use Case and Deployment diagrams
and among their components and is called the execution level.
The execution level can be described as R| UL∪OL∪HL and the
logical level can be described as R| UL∪ CL.

To manage the vertical relations we introduce Accomplish
Relationship (AR) function:
AR : (Node,Layer) → AR(Node,Layer) ⊂ n_set(R|Layer)
where:
Node ∈ n_set (R|XL) : XL ∈ {UL, CBL, CML, OBL, OML,HL}
Layer ∈ { UL, CBL, CML, OBL, OML, HL}, Layer ≠ XL

3 Packages introduce some sub-layers structure inside this layer.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3950

AR(Node,Layer) is a subset of nodes from n_set(R|Layer),
which stay in relationship of the following type: “support
service” or “is used to” with given Node, based on role
performed in the system structure. For better understanding,
let’s consider an example:

- for any user requirement r∈ n_set (R|UL),
AR(r,OBL) returns a set of objects which support
this requirement service,

- for any object o∈ n_set (R|OBL), AR(o,UL) returns a
set of requirements that are supported by any of its
methods,

- for any object o∈ n_set (R|OBL), AR(o,HL) returns a
set of computing (hardware) nodes in which given
object is allocated,

- for any class c∈ n_set (R|CBL), AR(c,UL) returns a
set of requirements that are supported by any of its
method.

The above relations are maintained by the repository graph
structure, so there are no complexity problems with their
evaluation. Moreover, the graph repository is able to trace any
software or requirement modification, so these relations are
dynamically changing during the system live time.

IV. RISK EVALUATION
Analyzing large modern business systems, it’s easy to

realize that their functionality can be divided into several
categories, depending on an influence of the given system’s
function in the achievement of business goals. Our goal is to
create the hierarchy of these functions that reflects theirs
business importance. As a criterion we can take a possible loss
associated with the situation of temporary inaccessibility of
the given function. Results of such analyze depends on the
type of business organization and the period of inaccessibility
time.

For example, in the case of banking, the most substantial
functions are these connected with a customer support. Their
unavailability, even in a short period of time, can leads to loss
of clients, which in consequence can create a significant
potential financial loss. On the other hand, the inaccessibility
of some analytical or reporting functions even thought one
day period in many cases creates the small financial loss, if
any. In the presented approach, we don’t need exactly
calculate the financial loss. We must only to designate the
ratio joining the satisfaction of the criterion with the given
system’s function. This ratio, called Importance Ratio for the
given function f is described as IR(f). Because all system’s
functions descent from previous defined users requirements,
we can assume, that users of the system can ascribe the
Important Ration Function for all requirements defined at the
Use Case Layer (IR(r)).

Technically for simplify of the calculation and presentation
we assume that the value of IR(r) (r∈ n_set (R|UL) is unique for
each system’s function. This assumption implies the
descending order relation in set of system’s requirements
(IR(rj)>IR(rk) for j>k). For the same reasons we normalize
IR(r) values to [0,1] interval.

Basing on IR defined at Use Case Layer, we can calculate
IR values for the parameter belonging to other layers in the
way described below.

In the graph repository representing the system model the
nodes representing requirement are connected with nodes
representing methods. So with the node representing a method
m (m∈OML) we can bind a set of requests {ri} such that
ri∈AR(m,UL). Let n be a number of all requirements in set
n_set (R|UL)

Now we can calculate Importance Ratio for any method
m∈OML, using weighted average (WA) function, in the
following way:

)/n)IR(x*)(pos(xUL))WA(AR(m,IR(M)
UL)AR(m,x

ii
i

∑
∈

==

where pos(xi) is position of xi in the n_set (R|UL) vector.
Using both normalization and weighted average, we

calculate value of IR(m) in a more objective way, by reducing
direct user impact on IR value; note that WA function,
strengthens the values associated with requirements having
higher priority in user ranking.
Having defined IR(m) for methods we can easily define IR for
objects and classes:

for any o∈OBL, IR(o) = A({IR(mi) : i=1…k}),
mi∈AR(o,OML)
for any c∈CBL, IR(c) = A({IR(mi) : i=1…p}),
mi∈AR(c,CML)

where A means the arithmetical average.
For the computing (hardware) nodes we can define IR values
as follows:

for any h∈HL, IR(h) = S({IR(oi) : i=1…q}),
oi∈AR(h,OBL)

where S means the sum of value4.
As a result we attribute each system component with IR

value, which show the importance of this component from the
business point of view. It allows us to designate the key-
components of the system. In the previous section we have
introduced the logical and execution levels. Analysis on the
logical level, where we consider the system architecture,
should be made in very early state of the development process,
and should give us an essential information about severity of
the single component in the future system. On the other hand,
analyses on the execution level give us the same information
about components of the running system.

The introduced scheme of the inheritance of the business
importance ratio defined at the requirements level by the
software systems components is applied to the current state of
the system. For tracing and managing the system evolution we
should introduce the third dimension of the components
relation – time.

To express the time relations among the elements of system
structure associated with periodical character of system
functions (mentioned in section 2) we introduce the Time of
Required Availability (TRA) function.

4 Selection of functions for defining IR can depend on goals of the

provided analysis or the kind of the system, e.g. for Hardware Layer
in a real-time system function IR(h) = max{IR(oi): i=1…p} seems to
be more suitable.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3951

For any r∈ n_set (R|UL), TRA(r,t) → {0,1}: TRA(r,t) = 1
when in the time t the system function corresponding with the
requirement r is demanded by user to be active, and TRA(r,t)
= 0 otherwise. Having defined TRA for requirements we can
calculate it for objects and hardware nodes.
 For any o∈ n_set (R|OBL) U

)UL,o(ARr

)t,r(TRA)t,o(TRA
∈

=

 For any h∈ n_set (R|HL) U
),(

),(),(
OBLhARo

toTRAthTRA
∈

=

 where ∪ means the logical sum.
Function TRA for Hardware Layer gives us information

about the time of activity of the hardware nodes, triggered by
execution of processes corresponding with objects allocated at
it. To estimate the importance of given hardware node in
whole system from the business point of view, we can extend
IR for hardware nodes as follow:

∑
∈

∗=
),(

))(),((),(
OLhARo

oIRtoTRAthIR

Knowing the value of IR in time we are able to indicate the
crucial hardware nodes of the running system in the arbitrary
period of time. This time characteristic can be used e.g. for
choosing best time for the hardware maintenance activity such
as reconfiguration, update or others.

Let’s notice that function TRA can be used to estimate the
level of utilize of hardware equipment. If we are able to
estimate the (average, periodical) performance of the object
components and the computing power of the hardware nodes
(described adequately as per(o) and cp(h) then the function

)(

))(),((
),(),(

hcp

opertoTRA
thEF OBLhARo

∑
∈

∗
=

shows us the efficiency of utilizing hardware nodes in the
time. It can be used to indicate the periods of time in which
the hardware equipment is almost not used or is very close to
overloading. Detail analysis of presented function show us
that we have three ways of influence on its value: (1) we can
reschedule the user requirements, changing business
processes, (2) we can decrease performance demanded by the
object’s processes by rewriting software modules or (3) we
can increase the hardware computing power.

V. CONCLUSION
For any business organization the most important goal is

keeping up with trends of the modern market in the
dynamically changing environment. Role of the Information
Technology is the support this goal by giving the organization
right tools for the quick and effective fulfillment the existing
and the possible users needs. From such a point of view,
business usability can be much more valuable then a technical
perfection. It doesn’t mean that technical principles are not
important, but they must take into account the business
principles, too. Having this fact in the mind is one of the most

important the distinguishing feature of a modern approach to
IT in the business use.

Modern complex software system has not a static structure.
Even during regular execution the structure of running system
changes according to users’ activity. We use UML notation to
represent user requirements, the system software structure and
the allocation its software components onto the hardware
environment.

The introduction of the graph repository, which is built
(under the control of the aedNLC grammar) during the
designing of the system, allows us to introduce the (vertical)
relations among the elements of these layers of abstraction.

For the Time of Required Availability function (TRA)
defined at the requirements (Use Case) level, we are able to
calculate (with help of vertical relations and other UML
diagrams) the TRA for all objects in this system. Let us note
that extended TRA changes not only when the user changes
timing requirements of the system functionality, but also when
the software or hardware structure changes. It gives us a tool
for better understanding system behavior, so we are able to
better utilize the system’s recourses. Merge up with IR
functions gives us a detail view of system structure in given
period of time from users’ points of view. It can be very
useful in unexpected situation such as system breakdown,
when we can use such information for planning system
recovery policies.

The other possibility of using IR and TRA functions is the
analyze of quality attributes. We can use them as a weight
quotient in the process of estimation value of these attributes,
which allow us to incorporate the time and business
importance factor of any system components.

Proposed approach is the supplement of architectural based
methods of analyzing the characteristic of software systems
such as ATAM [8] or MAAP [2], particularly of analyzing the
quality attributes, which is crucial in risk management. It
allows us to connect in one method the engineering and the
business points of view of the software system. The ways in
which we introduce and use the IR function (describing the
components importance) enable its utilization both in the
development and the maintenance phases of system life cycle.
It can be used to plan new system or during execution of
existing one in a way to decrease the risk connected with
failure of any system component.

REFERENCES
[1] R. Allen, R. Douence and D. Garlan, “Specifying and Analyzing

Dynamic Software Architectures”, Lecture Notes in Computer Science,
vol. 1382, pp. 21-36, 1998.

[2] J.C. Alberts and J.D. Audrey, “Mission Assurance Analysis Protocol
(MAAP): Assessing Risk in Complex Environments”, Technical Report
CMU/SEI-2005-TN-032, 2005.

[3] R. Bahsoon and W. Emmerich “Evaluating Software Architectures:
Development, Stability, and Evolution”, Proceedings of ACS/IEEE Int.
Conf. on Computer Systems and Applications, Tunis, Tunisia, July, 2003

[4] D. Dymek and L. Kotulski, “On Hierarchical Composition of the Risk
Management Evaluation in the Computer Information Systems”,
accepted for 25-th IASTED Multi-international Conference on Applied
Informatics, Software Engineering, February 13-15, Insbruck, 2007.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3952

[5] R. Kazman, L. Bass, G. Abowd, and M. Webb, “SAAM: A Method for
Analyzing the Properties of Software Architecture”, International
Conference on Software Engineering, pages 81-90, 1994.

[6] R. Kazman, M. Klein and P. Clements, “ATAM, Method for
Architecture Evaluation”, Technical Report CMU/SEI-2000-TR-004,
2000.

[7] M. Klain and R. Kazman, “Atribute-Based Architectural Styles”,
Technical Report CMU/SEI-99-TR-022, 1999.

[8] L. Kotulski, „Model wspomagania generacji oprogramowania w
środowisku rozproszonym za pomocą gramatyk grafowych - DSc
degree”, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, ISBN
83-233-1391-1, 2000.

[9] L. Kotulski, “Nested Software Structure Maintained by aedNLC graph
grammar”’ Proceedings of the 24th IASTED International Multi-
Conference Software Engineering, February 14-16, pp 335-339,
Innsbruck, Austria, 2006.

[10] OMG-Unified Modeling Language, v2.0. www.rational.com

Leszek Kotulski received:
• the M.S. degree in Computer Science from Institute of Computer Science,

Jagiellonian University, Kraków, 1979,
• the Ph.D. degree in Computer Science from AGH University of Science

and Technology, Krakow, 1984,
• DSc degree in Theoretical Computer Science from Wroclaw University of

Technology, Wrocław, 2002.
He works as a Professor at AGH University of Science and Technology. His
research interests include graph grammars, foundation of distributed
computing, agents systems and software development methodology.
Prof. Kotulski is member of ACM.

Dariusz Dymek received:
• the M.S. degree in Mathematic from Institute of Mathematic, Jagiellonian

University, Kraków, 1989
• the M.S. degree in Computer Science from Institute of Computer Science,

Jagiellonian University, Kraków, 1991,
• the Ph.D. degree in Economics Science from Krakow University of

Economy, Krakow, 2000.
He works as Professor Assistant in the Institute of Computer Science at the
Krakow University of Economy. His research interests include project
management, information systems, risk management, software quality
management and software development methodology.

