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Some Improvements on Kumlander’s Maximum
Weight Clique Extraction Algorithm

Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh and Sumio Masuda

Abstract—Some fast exact algorithms for the maximum weight
clique problem have been proposed. Östergård’s algorithm is one of
them. Kumlander says his algorithm is faster than it. But we con-
firmed that the straightforwardly implemented Kumlander’s algorithm
is slower than Östergård’s algorithm. We propose some improvements
on Kumlander’s algorithm.

Keywords—Maximum weight clique, exact algorithm, branch-and-
bound, NP-hard.

I. INTRODUCTION

FOR an undirected graph G = (V,E) and a set V ′ ⊆ V ,

G(V ′) denotes the subgraph G induced by V ′. If any

two vertices in G(V ′) are adjacent to each other, V ′ is called

a clique in G. Given an undirected graph G, the maximum

clique problem is to find a clique of the maximum size. It

is a well-known and important NP-hard problem [4], [7].

Given an undirected graph G and vertex-weight w(·), the

maximum weight clique problem is to find a clique of the

maximum weight. The maximum weight clique problem is a

generalization of the maximum clique problem.

A fast exact algorithm for the maximum weight clique prob-

lem is proposed by Östergård [5]. It is based on the branch-

and-bound technique. Before the main routine, Östergård’s

algorithm decides the branching order by the weight of

each vertex. Then the optimum solution is searched by the

branch-and-bound method with the upper bounds which can

be immediately obtained. Östergård’s algorithm makes many

branches than other algorithms based on the branch-and-bound

technique, but the time consumed on each subproblem is very

short. A program named Cliquer, based on the algorithm in

[5], is released in [6].

Kumlander [1] extended Östergård’s algorithm, which tries

to prune many subproblems by calculating the heuristic vertex

coloring . Kumlander insists that his algorithm is always faster

than Östergård’s algorithm for any instances.

In this paper, we verify the validity of the experiments

in [1]. Kumlander insists algorithms were compared fairly.

However, in our experiments, we compare his algorithm with

well-tuned programs of other algorithms, and we find out that

Kumlander’s algorithm is slower than Östergård’s Cliquer for
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the sparse graphs, and that it is slower than YM algorithm [3]

for the dense graph.

We propose a new initial ordering and a new implementation

for Kumlander’s algorithm. By computational experiments, we

show our new algorithm reduces number of branches and

computation time and it is faster than other algorithms in many

cases.

The section II describes two previous algorithms,

Östergård’s algorithm and Kumlander’s algorithm. We also

show experimental results to compare previous algorithms. In

the section III, we propose some improvements for Kumlan-

der’s algorithm. The experimental results of our new algorithm

is shown in the section IV. The conclusion is in the section

V.

II. PREVIOUS ALGORITHMS

This section describes Östergård’s algorithm and Kumlan-

der’s algorithm. The first algorithm determines the branching

order first and then performs a branch-and-bound method

according to the order. The second one is the extended version

of the first one.

A. Östergård’s algorithm

Given an undirected graph G = (V,E) and weight w(v) of

each v ∈ V , Östergård’s algorithm first sorts vertices in the

descending order of weights. Let the sequences v1, v2, · · · , vn,

where n is the number of vertices in V . For i = 1, 2, 3, · · · , n,

Vi denotes {vi, vi+1, · · · , vn} (clearly, V1 = V ).

Östergård’s algorithm searches the maximum weight clique

of G(Vi) for i = n, n − 1, · · · , 2, 1, and stores its weight

in c[i]. The branch-and-bound technique is used in searching

process for each i. During the process, for any subset S ⊆ V ,

c[min{j | vj ∈ S}] is an upper bound of the maximum weight

of cliques in G(S). This upper bound is calculated in O(1)
time by finding the minimum index of v ∈ S. An obvious

upper bound
∑

v∈S w[v], the sum of weights of vertices in

S, is also used for bounding steps. This is calculated in

O(|S|) time. The process described above is called “backtrack

search”.

The performance of backtrack search greatly depends on

the ordering of V . In Cliquer, vertices are sorted in descending

order of weights. And vertices with same weights are sorted by

descending order of the sum of weights of adjacent vertices.

B. Kumlander’s algorithm

The description of Kumlander’s algorithm is as follows.

First, it divides V into independent sets C1, C2, · · · , Ck, where
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k is the number of independent sets. This process is called

vertex coloring. And each Ci is called a color class. In this

step, vertices in each color class are sorted in ascending order

of weights. Let Vi = {Ci, Ci+1, · · · , Ck}. Then, for i =
k, k−1, · · · , 1, search maximum weight clique in G(∪k

j=iCj).

As in Östergård’s algorithm, store its weight in c[i] and use it

as an upper bound.

Kumlander’s algorithm seems to be similar to Östergård’s

algorithm. The difference is that Kumlander’s algorithm uses

not only c[·] as an upper bound but also
∑k

i=1 max{w[u] |
u ∈ Ci ∩ S}, “the coloring upper bound”, for pruning

subproblems S. Due to the sorting process, the coloring upper

bound is equal to the sum of last vertices in each color class.

Therefore it can be calculated in O(k) time. By the effect

of the coloring upper bound, Kumlander’s algorithm prunes

subproblem more frequently than Östergård’s algorithm. The

coloring upper bound is an obvious upper bound of the weight

of the maximum clique, because at most one vertex in each

color class can be included in a clique.

The detail of Kumlander’s algorithm is shown in Fig.1. Let

N(v) the set of vertices adjacent to v.

The performance of Kumlander’s algorithm greatly depends

on coloring strategy. In [1], vertices are assigned to the color

class with as small index as possible in descending order of

weights.

C. Implementation of algorithms

In the following, we compare some previous algorithms

by computer experiments. Before comparing algorithms, we

briefly show how we get the program of each algorithm. We

use the C source code of Cliquer published in [6]. And we use

the C++ program of YM algorithm that we implemented when

we contributed [3]. We implemented Kumlander’s algorithm in

C because the source code released in [2] is written in Visual

Basic, which is much slower than C.

For the implementation, vertex sets S ⊆ V can be imple-

mented with a list and a bit vector. We implement both the

list and the bit vector as follows :

List

The elements in S are divided into color classes, and

vertices in each color class are stored in an array. The

last vertex in an array has the maximum weight in

that color class. So the upper bound of coloring is

immediately obtained by calculating the sum of the

weights of the last vertices of arrays.

Bit vector

For each color class, an array of integer variables is

used. Each bit of the integer variable is correspond-

ing to the element in the color class. During calcu-

lating the coloring upper bound, the least significant

bit(LSB) of the last non-zero integer variable in each

array is searched. And the sum of weights of LSBs

is the coloring upper bound.

Inputs: an undirected graph G and vertex weight w[·]
Output: the maximum weight clique

1: function main
2: get coloring C1, C2, · · · , Ck, and order vertices

3: record ← 0
4: for i from k to 1 do

5: expand(Vi(∪k
j=iCj), 0)

6: c[i] ← record
7: end for

8: output: the maximum weight clique

9: return

10: function expand(S,weight)
11: if |S| = 0 then

12: if weight > record then

13: record ← weight
14: end if

15: return

16: end if

17: while |S| > 0 do

18: i ← min{k | vk ∈ S}
19: if weight+ coloring upper bound ≤ record then

20: return

21: end if

22: if weight+ c[i] ≤ record then

23: return

24: end if

25: S ← S \ vi
26: expand(S

⋂
N(vi), weight+ w[vi])

27: end while

30: return

Fig. 1. Kumlander’s algorithm

D. Computational Experiments

Table.I shows experimental results with 4 programs men-

tioned in the previous section. In the table, DK denotes

Kumlander’s algorithm. In each row, the average CPU time

of each program for 10 random graphs are shown, where

the weights of vertices are from 1 to 10. The CPU of the

computer used in the experiments was Intel(R) Core(TM) i7-

2600 3.40GHz. The OS was GNU/Linux. The memory was

8GB. The compiler was gcc 4.4.6 with an optimization option

-O2. The parameter d denotes the edge density of graphs.

With respect to Kumlander’s algorithm, the bit vector imple-

mentation is faster than the list implementation in most cases.

However Cliquer is the fastest when the edge density is less

than or equal to 0.7, and YM algorithm is fastest when the

edge density is from 0.8 to 0.95. Kumlander’s algorithm is

fastest only when the density is 0.98.

In order to investigate the difference between our results

and the results in [1], we read the Visual Basic program of

Östergård’s algorithm implemented by Kumlander [1], Ö-K for

short. Ö-K figured out that the vertex ordering by Kumlander

is quite different from the ordering in Cliquer. Specifically,

in Ö-K, the ordering is done by greedy coloring, whereas in
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TABLE I
COMPUTATION TIME OF ALGORITHMS [S]

n d Cliquer
DK
(bit)

DK
(list) YM

Ö-K
(in C)

4000 0.1 0.36 0.42 0.92 1.15 0.48
3000 0.1 0.18 0.18 0.35 0.45 0.19
3000 0.2 1.35 2.73 6.11 6.09 4.51
2500 0.2 0.69 1.19 2.64 2.45 1.94
2500 0.3 10.12 24.5 44.21 37.99 58.29
2000 0.3 3.4 7.73 14.19 12.16 17.59
1500 0.4 14.74 35.12 55.16 41.27 100.16
1000 0.4 1.61 3.34 5.59 3.63 9.31
1000 0.5 30.08 66.34 96.75 62.6 274.81
900 0.5 14.6 33.94 49.01 31.48 133.66
700 0.6 67.08 172.38 230.89 106.21 899.52
500 0.6 5.69 14.1 19.23 7.53 59.29
500 0.7 186.96 500.03 639.6 216.49 3934.02
300 0.7 3.28 6.63 8.52 2.34 32.74
300 0.8 194 347.09 421.06 83.52 3868.94
200 0.8 4.74 5.87 7.64 1.36 52.55
200 0.9 1172.94 631.47 724.49 99.16
150 0.9 24.83 9.2 9.7 1.75
150 0.95 1296.95 62.26 56.59 16.97
100 0.95 1.03 0.09 0.09 0.03
150 0.98 13847.82 16.97 13.1 41.65
100 0.98 0.99 0.02 0.01 0.01

Cliquer vertices are ordered by weights and the sum of weights

of adjacent vertices.

To show the effect of the ordering to the performance, we

implemented Ö-K in C and compare to the original Cliquer.

The results are in Table.I. In this comparison, Östergård’s

algorithm is greatly slower than Kumlander’s algorithm. This

is same as [1]. From these results, we can get the following

conclusion.

• The overall performance of Östergård’s algorithm greatly

depends on the initial ordering.

• The ordering for Östergård’s algorithm used in [1] was

not efficient.

III. OUR ALGORITHM

In this section, first, we propose new initial ordering for

Kumlander’s algorithm. Second, we show positive effect of

“limitation on color class size”. Then we propose a new

implementation technique for calculating the coloring upper

bound.

A. Initial ordering

From the results in the previous section, vertices should be

sorted in descending order of weights because the initial order-

ing in Cliquer is in such a way. But Kumlander’s algorithm

cannot adopt the same ordering because vertices in a color

class, which may contain vertices of different weights, must

be consecutive in the initial ordering. Therefore, we devise a

new ordering algorithm, which produces similar order to the

descending order of weights.

1) Coloring ordering: First we show a new initial sorting

for greedy coloring. In our algorithm, vertices are assigned

to a color class in weight descending order like Kumlander’s

algorithm, and moreover, we consider the sum of the weights

of adjacent vertices (denoted by adjw[·]).

TABLE II
RESULT OF NEW ORDERING[S]

n d Cliquer
DK

(new)
DK
(bit)

DK
(list) YM

4000 0.1 0.36 0.29 0.42 0.92 1.15
3000 0.1 0.18 0.13 0.18 0.35 0.45
3000 0.2 1.35 2.25 2.73 6.11 6.09
2500 0.2 0.69 0.99 1.19 2.64 2.45
2500 0.3 10.12 20.39 24.5 44.21 37.99
2000 0.3 3.4 6.07 7.73 14.19 12.16
1500 0.4 14.74 27.49 35.12 55.16 41.27
1000 0.4 1.61 2.7 3.34 5.59 3.63
1000 0.5 30.08 50.92 66.34 96.75 62.6
900 0.5 14.6 24.63 33.94 49.01 31.48
700 0.6 67.08 136.02 172.38 230.89 106.21
500 0.6 5.69 9.77 14.1 19.23 7.53
500 0.7 186.96 330.77 500.03 639.6 216.49
300 0.7 3.28 4.55 6.63 8.52 2.34
300 0.8 194 201.77 347.09 421.06 83.52
200 0.8 4.74 3.81 5.87 7.64 1.36
200 0.9 1172.94 333.96 631.47 724.49 99.16
150 0.9 24.83 5.35 9.2 9.7 1.75
150 0.95 1296.95 28.35 62.26 56.59 16.97
100 0.95 1.03 0.03 0.09 0.09 0.03
150 0.98 13847.82 4.67 16.97 13.1 41.65
100 0.98 0.99 0.02 0.02 0.01 0.01

Vertices are assigned to color classes in descending order of

weights. If vertices u, v have the same weight and adjw[u] ≤
adjw[v], u is colored first. We briefly show the reason in the

following.

Suppose that a vertex v has the maximum weight in V
and is adjacent to more vertices with weight w[v] than other

vertices. If v is stored in the first color class, many vertices of

weight w[v] cannot get into the first color class. The resulting

ordering may be quite different from the descending order. If

v is colored after any adjacent vertex with same weight, other

vertices with same weight may get into the first color class,

and the ordering may be closer to the weight descending order.

2) Sorting in color classes: In Kumlander’s algorithm,

vertices in each color class are sorted in ascending order of

weights. We change it to the descending order of weights. This

change makes the ordering closer to the descending order of

weights than Kumlander’s.

We add another modification. Although branching by color

classes is proposed as a new technique in [1], the average

performance got worse. So we just omit the technique, and

make the backtrack search for each vertex, same as Östergård’s

algorithm.

3) Computational Experiments: To investigate the perfor-

mance of our new ordering, we compared our ordering with

Kumlander’s ordering by experiments. Results are shown in

Table.II. In each row, the average CPU time of each program

for 10 random graphs are shown, where the weights of vertices

are from 1 to 10.

For all instances, our new ordering is faster than the original

Kumlander’s ordering. But still the improved Kumlander’s

algorithm is not fastest.

B. Limitation on color class size

If the length of a bit vector of a color class is longer than the

one word length, iterations on each word arise for calculation
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of AND operation (intersection of sets), finding MSB and LSB

(to find branching variable and upper bound), and so on. In

order to reduce the iteration, we limit the maximum size of

a color class beforehand. If the size of a color class reaches

the size limit during greedy coloring, we stop adding vertices

to that color class and create a new color class. If the limit is

smaller than the length of one word, the size of each color class

must be smaller than the length of one word, and iterations in

processing color classes can be removed.

Although this limit may increase the number of color classes

and seems to increase the coloring upper bound, this limit

actually works in a good way as follows :

• The new color classes made by this limit usually has

vertices with small weights. So the coloring upper bound

does not increase seriously.

• This limit makes the ordering closer to the descending

order of weights. Because, vertices not added to the color

class because of the limit probably have small weights

and are assigned to a color class later.

• After all, the number of branches are reduced.

If the limit size is too small, a lot of small color classes

are created and the performance becomes worse. We experi-

mentally investigated the optimal limit for several cases.The

fastest limit size is 4 if the edge density is greater than 0.6, 8

if the density is between 0.4 and 0.6, 12 if the density is 0.3,

and 20 if the density is less than 0.3.

C. upper bound table

With an ordinary coding, the coloring upper bound is

calculated by the following steps :

1) Find the last vertex by finding LSB from the bit vector.

2) Get the weight of the last vertex by referring to the array

of weights.

3) Do step 1. and 2. for all colors, and calculate the sum

of them.

This computation time can be reduced in the following way.

Let k be the size of a color class, the number of all combina-

tions of the bit vector is 2k. We calculate the coloring upper

bound for all patterns and store them to a table (an array in C).

With this upper table, the process to get the maximum weight

of a color class can be replaced with only one operation to

refer the upper table.

Examples of upper tables are shown in the following. Let

the size of a block is 8.

Given a subset {01100011 11010110 01010101},

the upper bound of block 3 is

upperTable[3][01100011b] = upperTable[3][99],
the upper bound of block 2 is

upperTable[2][11010110b] = upperTable[2][214], and

the upper bound of block 1 is

upperTable[1][01010101b] = upperTable[1][85].
And the sum of these value is an upper bound of the subset.

As written in III-B, the optimal size of one block is not too

big. Therefore, the amount of memory space is several mega

bytes per block.

When the graph is dense and the limit of color class size

is small, more than one color class can be packed in a word.

TABLE III
CPU TIMES ON RANDOM GRAPHS[S]

n d Cliquer ours DK(bit) DK(list) YM
4000 0.1 0.36 0.86 0.42 0.92 1.15
3000 0.1 0.18 0.51 0.18 0.35 0.45
3000 0.2 1.35 2.71 2.73 6.11 6.09
2500 0.2 0.69 1.25 1.19 2.64 2.45
2500 0.3 10.12 16.48 24.5 44.21 37.99
2000 0.3 3.4 8.03 7.73 14.19 12.16
1500 0.4 14.74 14.62 35.12 55.16 41.27
1000 0.4 1.61 1.23 3.34 5.59 3.63
1000 0.5 30.08 18.69 66.34 96.75 62.6
900 0.5 14.6 10.26 33.94 49.01 31.48
700 0.6 67.08 37.28 172.38 230.89 106.21
500 0.6 5.69 2.68 14.1 19.23 7.53
500 0.7 186.96 65.97 500.03 639.6 216.49
300 0.7 3.28 1.12 6.63 8.52 2.34
300 0.8 194 39.68 347.09 421.06 83.52
200 0.8 4.74 0.94 5.87 7.64 1.36
200 0.9 1172.94 66.46 631.47 724.49 99.16
150 0.9 24.83 1.25 9.2 9.7 1.75
150 0.95 1296.95 6.27 62.26 56.59 16.97
100 0.95 1.03 0.06 0.09 0.09 0.03
150 0.98 13847.82 1.06 16.97 13.1 41.65
100 0.98 0.99 0.07 0.02 0.01 0.01

This is especially efficient in dense graphs, because sizes of

color classes are small.

IV. COMPUTER EXPERIMENTS

We implement our new algorithm including all of our new

ideas and compare it to other algorithms. Table.III shows

experimental results.

In almost all conditions, our new algorithm is faster than

Kumlander’s algorithm of bit vector and list, especially in

dense graphs. When the edge density is more than or equal to

0.4, our algorithm is greatly faster than other algorithms. In

cases n = 100 and the density is 0.95 and 0.98, our algorithm

is not faster than others. This is because creating the upper

table needs O(2k) time before the branch-and-bound steps.

The preprocessing time could have been reduced if k were

smaller, therefore it does not matter. When the edge density

is less than or equal to 0.3, Cliquer is fastest.

V. CONCLUSION

We proposed some improvements on Kumlander’s algo-

rithm. The original Kumlander’s algorithm is not as fast as

mentioned in [1], actually much slower than other algorithms.

So we tried to reduce the computation time only by improving

the initial ordering, but it was not succeeded. Then we propose

two new ideas, limit of color class size and upper table. Then

the program gets faster than others when the graph is dense.

The idea of upper table might be applied to other situa-

tions. We try to apply the upper table of branch-and-bound

techniques of other NP-hard problems.
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