
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3566

Abstract—One major difficulty that faces developers of

concurrent and distributed software is analysis for concurrency based
faults like deadlocks. Petri nets are used extensively in the
verification of correctness of concurrent programs. ECATNets [2] are
a category of algebraic Petri nets based on a sound combination of
algebraic abstract types and high-level Petri nets. ECATNets have
'sound' and 'complete' semantics because of their integration in
rewriting logic [12] and its programming language Maude [13].
Rewriting logic is considered as one of very powerful logics in terms
of description, verification and programming of concurrent systems.
We proposed in [4] a method for translating Ada-95 tasking
programs to ECATNets formalism (Ada-ECATNet). In this paper,
we show that ECATNets formalism provides a more compact
translation for Ada programs compared to the other approaches based
on simple Petri nets or Colored Petri nets (CPNs). Such translation
doesn’t reduce only the size of program, but reduces also the number
of program states. We show also, how this compact Ada-ECATNet
may be reduced again by applying reduction rules on it. This double
reduction of Ada-ECATNet permits a considerable minimization of
the memory space and run time of corresponding Maude program.

Keywords—Ada tasking, ECATNets, Algebraic Petri Nets,
Compact Representation, Analysis, Rewriting Logic, Maude.

I. INTRODUCTION
NE of the most attractive features of the Ada
programming language is the tasking, which permits

concurrent execution within Ada programs [11]. The presence
of concurrency greatly complicates analysis, testing and
debugging of code. The expression of concurrency is achieved
by the Ada tasking and rendez-vous. So, much effort is
focused on these mechanisms. To do such analysis, we often
find the utilization of Petri nets formalism [14], [15], [10]. The
choice of this formalism for the verification of the Ada
programs is reasonable, seen its strength to describe the
dynamic behavior of concurrent program. Others preferred
high-level Petri nets [7], [9] to analyze Ada programs. This
choice is motivated by the strength of CPNs unlike ordinary
Petri nets to describe both static and dynamic aspects of a
system, which is a natural need to serve the analysis of the
Ada programs in a satisfactory manner. On this path, we adopt
the utilization of ECATNets [2] to translate an Ada concurrent
program in order to verify it. As a kind of algebraic Petri nets,
ECATNets bring more intuitive description for Ada-95
constructs. ECATNets are a category of algebraic nets based

Noura Boudiaf is with Cedric-CNAM, Paris, France. (e-mail:

boudiafn@yahoo.com).
Allaoua Chaoui is with University of Constantine, Algeria (e-mail:

a_chaoui2001@yahoo.com).

on a safe combination of algebraic abstract types and high-
level Petri nets. In our sense, they present strength of
expression enough for describing many concepts in Ada-95
and particularly the concept of task. The choice of ECATNets is
motivated by their 'sound' and 'complete' semantics because of their
integration in rewriting logic [12] and so its language Maude [13].
Moreover, ECATNets have already a strong battery of
description and some analysis tools, such as static analysis [3],
reduction rules [5], [6], reachability analysis and Model
Checking of Maude; all are based on only one logic, the
rewriting logic. Rewriting logic is considered as one of very
powerful logics in terms of description, verification and
programming of concurrent systems. The integration of
ECATNets in rewriting logic allows them to benefit from
Maude all development theories [8] and tools such as
simulation, accessibility analysis and Model Checking
techniques.

Intuitively, ECATNets formalism presents a very compact
representation. Then, the ECATNets obtained as a result of
translating an Ada program are relatively minimal and
reduced. A concept of the Ada language can be comfortably
translated to the ECATNet with a minimal number of places
and transitions. Ada-ECATNet proposed in [4] and the
reduced Ada-ECATNet are equivalent. In reduced Ada-
ECATNet presented in this paper, we just ‘skip’ intermediate
states that are not necessary for the verification of properties
related to concurrency. In all existing approaches concerning
the utilization of Petri nets (simple or high level) in the
description and the verification of the Ada's programs, we
notice that these works first aim to translate Ada-programs to
Petri nets and then apply reduction rules on the obtained Ada-
nets even in the [9]. Quasar tool developed in [9] is a complete
environment for Ada-nets analysis by using CPNs. In this
work, authors translate Ada programs first to CPNs and they
reduce obtained Ada-nets after. But, in the present paper, the
proposed reduction rules may be done during translation step.
Such translation doesn’t reduce just formally the size of
program, but it minimizes effectively the number of program
states. We can present two or many statements in a sequential
bloc by using just one transition in ECATNets. This permits to
reduce considerably the number of rewriting steps in the
appropriated Maude program. So, the memory space and run
time of Maude program are reduced. We will confirm such
deduction through an example. We show how refinement
rules reduce execution steps in case of simulation, reachability
analysis and Model Checking. This proposed reduction is
specific to Ada-ECATNet. Therefore, the obtained reduced
Ada-ECATNet may be submitted to another reduction such
that proposed for APNs. This is possible because we adapted

Double Reduction of Ada-ECATNet
Representation using Rewriting Logic

Noura Boudiaf, and Allaoua Chaoui

O

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3567

and implemented reduction rules defined by Schmidt [16] to
ECATNets in [5], [6]. This double reduction allows a
meaningful decrease of the complexity of state-space analysis.
In this direction, we will show how we apply on Ada-
ECATNet, the reduction rule ‘Parallel Places’ adapted to
ECATNets in [6]. In this paper, we propose some refinement
rules to translate Ada-Statements to an ECATNet. In such a
way, we present compactly many statements in one transition.

The rest of this paper is organized as follows. In section 2,
we give a general description of ECATNets. In section 3, we
present some proposed translation guidelines and application
of our ideas through an example. In section 4, the main
reduction rules are proposed. In section 5, we show how we
apply on an example our proposed reduction rules as well the
reduction rule ‘parallel places’. Applications of some analysis
methods as simulation, accessibility analysis and Model
Checking on Ada-ECATNet are discussed in section 6.
Results obtained by using our defined reduction rules are
given in section 7. Finally, we conclude the paper in the
section 8.

II. ECATNETS
ECATNets [2] are a kind of net/data model combining the

strengths of Petri nets with those of abstract data types. Places
are marked with multi-sets of algebraic terms. Input arcs of
each transition t, i.e. (p, t), are labeled by two inscriptions
IC(p, t) (Input Conditions) and DT(p, t) (Destroyed Tokens),
output arcs of each transition t, i.e. (t, p'), are labeled by CT(t,
p') (Created Tokens), and finally each transition t is labeled by
TC(t) (Transition Conditions) (see figure 1). IC(p, t) specifies
the enabling condition of the transition t, DT(p, t) specifies the
tokens (a multi-set) which have to be removed from p when t
is fired, CT(t, p') specifies the tokens which have to be added
to p' when t is fired. Finally, TC(t) represents a boolean term
which specifies an additional enabling condition for the
transition t. The current ECATNets’ state is given by the
union of terms having the following form (p, M(p)). As an
example, the distributed state s of a net having one transition t
and one input place p marked by the multi-set a ⊕ b ⊕ c, and
an empty output place p', is given by the following multi-set :
s = (p, a ⊕ b ⊕ c).

A transition t is enabled when various conditions are
simultaneously true. The first condition is that every IC(p, t)
for each input place p is enabled. The second condition is that
TC(t) is true. Finally, the addition of CT(t, p') to each output
place p' must not result in p' exceeding its capacity when this
capacity is finite. When t is fired, DT(p, t) is removed
(positive case) from the input place p and simultaneously
CT(t, p') is added to the output place p'. Let’s note that in the
non-positive case, we remove the common elements between
DT(p, t) and M(p). Transition firing and its conditions are

formally expressed by rewrite rules. A rewrite rule is a
structure of the form ''t: u → v if boolexp''; where u and v are
respectively the left and the righthand sides of the rule, t is the
transition associated with this rule and boolexp is a Boolean
term. Precisely u and v are multi-sets of pairs of the form (p,
[m]⊕), where p is a place of the net, [m]⊕ a multi-set of
algebraic terms, and the multi-set union on these terms, when
the terms are considered as singletons. The multi-set union on
the pairs (p, [m]⊕) will be denoted by ⊗. [x]⊗ denotes the
equivalence class of x, w.r.t. the ACI (Associativity,
Commutativity, Identity = φM) axioms for ⊗. An ECATNet
state is itself represented by a multi-set of such pairs where a
place p is found at least once if it’s not empty. We now recall
the forms of the rewrite rules (i.e., the meta-rules) to associate
with the transitions of a given ECATNet.

IC(p,t) is of the form [m]⊕
Case 1. [IC(p, t)]⊕ = [DT(p, t)]⊕
The form of the rule is then given by:
t : (p, [IC(p, t)]⊕) → (p', [CT(t, p')]⊕)

where t is the involved transition, p its input place, and p' its
output place.

Case 2. [IC(p, t)]⊕ ∩ [DT(p, t)]⊕ = φM
This situation corresponds to checking that IC(p, t) is included
in M(p) and, in the positive case, removing DT(p, t) from
M(p). In the case where DT(p, t) is not included in M(p), we
have to remove the elements which are common to these two
multi-sets. The form of the rule is given by:

t : (p, [IC(p, t)]⊕) ⊗ (p, [DT(p, t)]⊕ ∩ [M(p)]⊕) → (p, [IC(p, t)]⊕) ⊗ (p', [CT(t,
p')]⊕)

Case 3. [IC(p, t)]⊕ ∩ [DT(p, t)]⊕ ≠ φM
This situation corresponds to the most general case. It may
however be solved in an elegant way by remarking that it
could be brought to the two already treated cases. This is
achieved by replacing the transition falling into this case by
two transitions which, when fired concurrently, give the same
global effect as our transition. In reality, this replacement
shows how ECATNets allow specifying a given situation at
two levels of abstraction. The forms of the axioms associated
with the extensions are, w.r.t. the explanation already given,
evident and thus not commented.

IC(p, t) is of the form ~[m]⊕
The form of the rule is given by:
t : (p, [DT(p, t)]⊕ ∩ [M(p)]⊕) → (p', [CT(t, p')]⊕)
if ([IC(p, t)]⊕ \ ([IC(p,t)]⊕ ∩ [M(p)]⊕)) = φM → [false]
IC(p, t) = empty
The form of the rule is given by:
t: (p,[DT(p,t)]⊕ ∩[M(p)]⊕) → (p',[CT(t,p')]⊕) if [M(p)]⊕ → φM
When the place capacity C(p) is finite, the conditional part of
the rewrite rule will include the following component:
[CT(p,t)]⊕ ⊕[M(p)]⊕ ∩[C(p)]⊕ → [CT(p,t)]⊕ ⊕ [M(p)]⊕ (Cap)
In the case where there is a transition condition TC(t), the
conditional part of our rewrite rule must contain the following
component: TC(t) → [true].

 Fig. 1 A generic ECATNet

P' P
IC(p, t)

DT(p, t)

TC (t)
CT(t, p’)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3568

III. SOME GUIDELINES OF TRANSLATION FROM ADA TO
ECATNET THROUGH AN EXAMPLE

Most concepts of Ada translation to ECATNets are defined
in [4]. For lack of space reason, we give here just some ideas
about the translation process through an example.

A. Example Presentation
The following segment of Ada program defines a buffer

reached by producing and consuming task. Producing task
might have the following structure:

task body Producer
Char : Character;
begin loop … -- produce the next character Char
Buffer.Write(Char) ; exit when Char = ASCII.EOT ; end loop;
end Producer;

Buffer contains an internal Pool of the managed characters.
This space has two indices, In_index denotes the place of the
next input character and Out_Index denotes the place of the
next output character.

protected Buffer is
entry Write(C :in character); entry Read(C : out character);
private Pool : Array[1..10] of character; Count : Natural := 0 ; In_Index,
Out_Index : positive := 1;
end Buffer;
protected body Buffer is
entry Write(C : in character) when Count < Pool’length is
 begin Pool(In_Index) := C; In_Index := (In_Index mod Pool’length) + 1;
Count := Count + 1; end Write;
…
end Buffer;

B. Translation of the Ada Segment to ECATNets
Types like character, positive, arrays and queues are

translated to equivalent abstract data types in ECATNets. We
define a sort ‘Producer’ to represent task type producer. In this
case, a producer task is an algebraic term constant ‘Pr’ of sort
‘Producer’. We use an n-tuple algebraic term composed of
algebraic terms that represent ‘task’ and its ‘local variables’.
The translation of entry Write gives the ECATNet in figure 2,
where: Pr: producing task, BF:Buffer, P: Pool, CT: count, II:
In_Index, and IO: Out_Index. For this entry, we associate two
places to manage the queue containing waiting tasks calling
this entry. One place TaskAskWrite serves to manage the
order of task arrival and it must have the maximal size of one
task. This last must be transferred to the queue of the entry
that is in the other place WriteQueue. The TaskAskWrite and
AcWrite places have a maximal capacity of one token. We
have a condition isempty(q) == false for the transition
TaskSelectWrite. For the translation of a protected type, we
create a place containing an n-uple composed of its variables
(place Buf). The n-uple (Bf,P,CT,II,OI) waits in this place to
be dealt by the entry Write or Read. If the token (Pr, Ch) is in
AcWrite and the token (Bf,P,CT,II, OI) is in Buf, the rendez-
vous can take place. The entry Write has a guard which is
translated directly to the condition of the corresponding
transition WriteEntry. When the rendez-vous takes place, the
firing of the transition WriteEntry removes (Bf,P,CT,II,OI)
and (Pr, Ch) from appropriate places. Removing

(Bf,P,C,II,OI) from place Buf guarantees that another entry,
procedure or a function can not be executed at the same time.
So, another task can not execute entry Read while entry White
is in evolution. When the rendez-vous takes place, we
integrate Pr and Ch in the token representing Buffer. Ch gives
its value to the variable C according to the mode ‘in’ of
parameters passing. A statement is translated to a transition.
The transition S3Write translates the assignment statement
Count := Count+1;. This transition transforms the token
(Pr,Bf,P,CT,II,OI,C) to (Pr,Bf,P,CT+1,II,OI,C) where CT is
replaced by CT+1.

C. Mapping the Obtained Ada-ECATNet to Maude
Among kinds of modules defined in Maude, we find

functional and system modules. Functional modules are used
to define data types and functions on these types through
theories of equations. System modules are used to define the
dynamic behavior of a system. This kind of modules adds
rewriting rules to the concepts defined by functional modules:
sorts, subsorts, and equations. A maximal degree of
concurrency is offered by this kind of modules. The following
module is part of the developed code which is executable
under Maude system.

fmod GENERIC-ECATNET is
 sorts Place Marking GenericTerm.
 op mt : -> Marking . op <_;_> : Place GenericTerm -> Marking .
 op _._ : Marking Marking -> Marking [assoc comm. id: mt] .
endfm

As illustrated in this code, mt is an empty marking of a full
ECATNet. We define the operation "<_;_>" which permits the

TaskSelectWrite

WriteTaskFilter

(Pr,Ch)

(Pr,Ch)

(Pr,Bf,P,CT,II,OI,C)

(Pr,Bf,P,CT,II,OI,C)

(Pr,Bf,P,CT, mod(II,lengtha(P))+1,OI,C)

(Pr,Bf,P,CT,II,OI,C)
 BeginS2Write

(Pr,Bf,P,CT,II,OI,C)

 WriteReturn

 EndWrite

 S3Write

 BeginS3Write

 S2Write

(Pr,Ch)

 TaskAskWrite

 WriteQueue
add(q,(Pr,Ch)) q q

remove(q) q q

 WriteEntry
front(q)

front(q)
AcWrite

WaitAckEWrite

(Pr,Ch)

(Bf,P,CT,II,OI)

(Pr,Bf,P,CT,II,OI,Ch)

 S1Write

BeginWrite

(Bf,P,CT,II,OI)

Buf

ct<lengtha(p)

(Pr,Bf,P,CT+1,II,OI,C)

Fig. 2 Representation of entry Write of Buffer type
by ECATNets

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3569

construction of elementary marking. The two Underlines
indicate the positions of operation's parameters. The first
parameter of this operation is a place and the second one is an
algebraic term (marking) in this place. We have not defined an
operation to implement the operation ⊕. The operation "_._"
which implements the operation ⊗ is sufficient while basing
on the concept of decomposition. If a place contains many
terms, for example (p, a ⊕ b ⊕ c), then we can write it as (p,
a) ⊗ (p, b) ⊗ (p, c). Now, we give a part of module
implementing the ECATNet buffer: BUFFER which calls
BUFFER-DATA module. This last is a functional module
calling all functional modules concerning descriptions of types
used by system module BUFFER such as List, Queue, Array,
Consumer and Producer. We describe data types like Queue of
this ECATNet in a hierarchy of functional modules when we
declare that Queue as sub-sort of GenericTerm to be able to
have a Queue as second parameter of "<_;_>":

mod BUFFER is
protecting BUFFER-DATA .
...
ops TaskAskWrite WriteQueue AcWrite WaitAckEWrite BeginWrite
BeginS2Write BeginS3Write EndWrite : -> Place . op Buf : -> Place .
var P : Array . var q : Queue . vars C Ch : EltArray .vars II OI CT : Int .
var CharL : List . var Pr : Producer .eq EOT = endoflist .
… *** rules for Write
rl [WriteTaskFilter] : < TaskAskWrite ; (Pr , Ch) >
. < WriteQueue ; q > => < WriteQueue ; addq(q, (Pr ,, Ch)) > .
…
endm
Note. For simplicity and to simulate the production of the next
character Char in the ECATNets, we introduce InitialCharList
place containing a list of characters. The producer takes each
time a character from the list in this place and put it in the
buffer. The consumer takes a character from the buffer and
put it in the list in a defined place CharListResult.

IV. REDUCTION RULES
We have defined some refinement rules leading to an

effective reduction of the Ada-ECATNet’s size. But, we
present in this section only two rules:
Rule 1. Concerning a sequence of assignment statements.
First, we study the case of two statements. Then, we
generalize the rule to many statements. For two assignment
statements, x:=e1, y:=e2 represented by the ECATNet in
figure 3 (a), we can obtain an ECATNet with only one
transition instead of two, by replacing the occurrence of x by
e1 in the expression e2 in y:=e2. We put y:= e2[x/e2]. Then we
have the new two statements x := e1 and y:= e3. These ones
are represented with the ECATNet of figure 3 (b). In general,
let I1 the statements sequence x1:= e1, x2:= e2, …, xn:=en, then
we proceed as follow: In x2:=e2, we replace each occurrence
of x1 in e2 by e1. We obtain a new statements sequence I2.
Recursively, we take xi:=ei statement and we replace in ei
each occurrence of xi, …, xn-1 by the right hand sides of the
appropriate assignments defined in Ii-1 sequence. We obtain in
this case a new statements sequence Ii. The operation
terminates after getting the last assignment statements
sequence In. This is the sequence which will be modeled by

one transition with the help of an ECATNet.

Rule 2. Concerning a sequence of assignment statements
followed by a call of a procedure (or call of a function).
Figure 4 (a) represents an ECATNet with two transitions: the
first one represents an assignment statement and the other
represents the call of a procedure. We can integrate them in
one transition as pictured in figure 4 (b). Such integration is
obtained by the refinement of the sequence of assignments in
the way presented in rule 1. To deal with parameters, we do
not put as parameters variables name but their equivalent right
hand sides of assignment statements found in refined
sequence.

V. APPLICATION OF REDUCTION RULES ON THE EXAMPLE
In this section, we describe how we apply refinement rules

and the reduction ‘parallel places’ on the obtained Ada-
ECATNet.

A. Application of Ada-ECATNet Reduction Rules on the
Example

The application of rules defined above on entry Write of
Buffer type gives a compact representation in figure 5. In
Maude program, we keep rules WriteTaskFilter and
WriteTaskSelect without any change. But, we merged the
remaining five transitions to only one transition:

crl [WriteS123EntryReturn] : < Buf ; (BF , P , CT , II , OI) >
. < AcWrite ; (Pr ,, Ch) > . < WaitAckEWrite ; (Pr ,, Ch) >
 => < Buf ; (BF , set(P, Ch, II) , (CT + 1), ((II rem lengtha(P)) + 1) , OI) >
. < BeginS2Pr ; (Pr , Ch) > if CT < lengtha(P) .

(p,x,…) (p1,x,…)

Fig. 4 Ada-ECATNet before (a) and after (b) applying
(a)

S12

S2

S1

(p,x,…)

(p,x,…)

(p,e, …) (p,e,…) (p1,e,…)

(p,x,…)

(b)

(x,e2,…)

Fig. 3 Ada-ECATNets before (a) and after (b) applying rule

(a)

S12

S2

S1

 (x,y,…)

(x,y,…)

(e1,y,…) (e1,e2(x/e1),…)

(x,y,…)

(b)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3570

B. Application of APNs’ Reduction Rules Adapted to
ECATNets on the Example

After applying reduction rules proposed in this paper on the
previous example, we note that the ECATNet given in Fig. 5
may be reduced again. We can apply reduction rule ‘parallel
places’ adapted to ECATNets. Informally, two places are said
parallel if they are linked in the same manner to all net’s
transitions. We can remove one with the smallest initial
marking. We note that WaitAckEWrite and AcWrite are
effectively parallel places. These two places are empty in
initial marking. We can eliminate one of them. We delete the
place WaitAckEWrite. We will see how this double reduction
decreases the steps of some analysis phases.

VI. ADA-ECATNET ANALYSIS
Before explaining how our proposed reduction rules have

brought efficiency in the analysis of Ada-ECATNet, we
present first analysis method of Maude system: reachability
analysis and Model Checking.

A. Reachability Analysis
By using the command ‘search’ of Maude system, we can

know if a certain state is accessible or not from initial state. In
general, we know the final state which system must reach
from a certain initial state. We want to know if a system
reaches this final state or not. In non-deterministic systems, a
simulation can not show if the system arrives to a specific
final state because of the non-determination of the behaviour
that we can not force it to follow a specific way. To know if
there is a possible way in the system execution allowing it to
reach this final state, we call the command ‘search’. In our
example, we want be sure that the previous state is reached by
the initial state initila6. The following state allows launching
the searching of all accessible state starting from initial
marking until final marking. In the absence of a solution,
Maude system displays ‘no solution’:

search in BUFFER : < InitialCharList ; 'r 'v 'b 'x 't 'y > . < BeginPr ; (Pr ,
AnyThing) > . < WriteQueue ; newq > . < BeginCs ; (Cs , AnyThing) > . <
ReadQueue ; newq > . < CharListResult ; empty > . < Buf ; (BF , newa , 0 , 1 ,
1) > =>* < EndPr ; Pr,endoflist > . < InitialCharList ; empty > . < EndCs ;
Cs,endoflist > . < CharListResult ; 'y 't 'x 'b 'v 'r > . < ReadQueue ; newq > . <
WriteQueue ; newq > . < Buf ; BF,store(store(store(store(store(newa, 't, 5), 'x,
4), 'b, 3), endoflist, 2), 'y, 1),0,3,3 > .

This command allows obtaining accessibility graph of the
ECATNet for the previous initial state. For that, we must
precise a general final state which in the case of ECATNet is
M:Marking. In this case, ‘search’ returns any accessible state
from initial state because any state of an ECATNet is an
instantiation of the state M:Marking.

search in BUFFER : < InitialCharList ; 'r 'v 'b 'x 't 'y > . < BeginPr ; (Pr ,
AnyThing) > . < WriteQueue ; newq > . < BeginCs ; (Cs , AnyThing) > . <
ReadQueue ; newq > . < CharListResult ; empty > . < Buf ; (BF , newa , 0 , 1 ,
1) > =>* M:Marking .

To have all the accessibility graph, we have to write after this
request, the following formula : show search graph .
Note. Accessibility analysis and Model Checking in Maude do
not work with infinite-states system. But, in [1] authors show
that after translating Ada programs to Petri nets, the obtained
Ada-nets are finite-states. Consequently, we can apply these
two techniques of Maude to analyze Ada-ECATNet.

B. Model Checking
In this section, we show the applicability of Maude Model

Checker in the verification of an example of property about
concurrency of Ada-ECATNet. When a task accesses to an
entry of a protected type, another task can not access to any
entry of this protected type. The task Pr (resp. Cs) is in the
entry Write (resp. Read) if it is in one of possible places of
this entry BeginWrite, BeginS2Write, BeginS3Write and
EndWrite. First, we define some propositions like Pr-In-
BeginWrite(Pr). This proposition is valid if Pr is in the place
BeginWrite. For the producer Pr and consumer Cs and the
initial state ‘initial6’, the valuation of this property is true :

red in BUFFER-CHECK : modelCheck(initial6, <> ((Pr-In-BeginWrite(Pr) \/
Pr-In-BeginS2Write(Pr) \/ Pr-In-BeginS3Write(Pr) \/ Pr-In-EndWrite(Pr))
=>~(Cs-In-BeginRead(Cs)\/Cs-In-BeginS2Read(Cs)\/Cs-In-BeginS3Read(Cs)
\/ Cs-In-EndRead(Cs)))/\<>(Cs-In-BeginRead(Cs) \/ Cs-In-BeginS2Read(Cs)
\/ Cs-In-BeginS3Read(Cs) \/ Cs-In-EndRead(Cs) =>~((Pr-In-BeginWrite(Pr) \/
Pr-In-BeginS2Write(Pr)\/ Pr-In-BeginS3Write(Pr)\/ Pr-In-EndWrite(Pr))))) .

VII. PERFORMANCE VALUATION
To show how proposed rules have reduced in efficient way

the size of Ada-ECATNet, we have applied simulation, Model
Checking and reachability analysis under Maude system. In
the sequel, we consider that:
Case1: Ada-ECATNet before applying any reduction rules.
Case2: Ada-ECATNet after applying reduction rules
proposed in this paper.
Case3: Ada-ECATNet after applying reduction rules
proposed in this paper and those proposed in [5], [6].
Let’s note that Diff. in the following three tables is between
Case1 and Case3.
Simulation. For an input InitialCharList containing every
time from 6 to 10 characters, we have made a simulation for

Fig. 5 Compact representation of entry Write of Buffer type
after applying refinement rules

WriteTaskFilter

(Pr,Ch)

(Pr,Ch)

 (Pr,Bf, set(P,Ch,II),(CT+1),
mod(II,lengtha(P))+1,OI)

(Pr,Ch)

 TaskAskWrite

 WriteQueue

add(q,(Pr,Ch)) q q

remove(q)
q q

front(q)

front(q)
AcWrite

WaitAckEWrite

(Pr,Ch)

(Bf,P,CT,II,OI)

Buf

CT<lengtha(P)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3571

the three cases. For n (n = 6,..,10) the number of characters,
we have calculated the number of rewriting steps required to
get the final marking from the same initial marking for the
three cases. We notice that the number of rewriting steps in
Case1 is always more elevated than the one in Case2.
Moreover, the gap between the two numbers rewriting steps in
Case1 and Case2 increases every time the number of the
characters InitialCharList increases. The difference between
rewriting steps’ numbers in Case2 and Case3 is small. The
result of the simulation is presented in the comparative Table
I.

TABLE I
SIMULATION: COMPARAISON OF RESULTS

Accessibility Analysis: We obtained interesting result when
we have applied the reachability analysis tool of Maude to
calculate the number of rewriting steps needed to construct
reachability graph in the three cases. The reduction proposed
in this paper has a great impact in decreasing the rewriting
steps’ number needed to construct the reachability graph. The
application of ‘parallel places’ reduction rule decreases again
this number. For instance when InitialCharList contains 10
characters, the construction of the reachability graph needed
in Case2 is approximatively 44% less than the rewriting steps
in the Case1. This difference is meaningful. The gap between
Case3 and Case2 is small. As described above, the benefit of
the reduction rules ‘parallel places’ consists to decrease steps
in creating accessibility graph. Such benefit is realized in our
situation between Case2 and Case3. The table III describes the
evolution of rewriting steps number required in Case1, Case2
and Case3 to construct accessibility graph.

TABLE III
ACCESSIBILITY ANALYSIS: COMPARAISON OF RESULTS

Model Checking: We obtain the same result when we use
Model Checker of Maude. For the input InitialCharList
containing to every time from 6 to 10 characters, the table II
resumes the evolution of rewriting steps’ number required in
Case1, Case2 and Case3 to check the correction of the
property defined above.

TABLE II
MODEL CHECKING : COMPARAISON OF RESULTS

A part of the verification of the property using Maude
Model Checker is presented in Fig. 6. The reduction rules
proposed in this paper decreases the number of rewriting steps
from 28884 in Case1 to 19424 in Case2. The application of
‘parallel place’ reduction rule of APNs decreases it again to
19392 in Case3.

Fig. 6 Property verification using Maude Model Checking before and

after applying reduction rules

VIII. CONCLUSION
ECATNets offer a compact representation of the Ada

programs. In this paper, we proposed how to get a more
compact Ada-ECATNet representation of Ada programs
during the translation step. The reduction consists to compact
these ECATNets by integrating several transitions (that
represent some Ada sequential statements) in only one
transition. Such operation reduces the size of the ECATNets,
and minimizes the number of rewriting rules considerably in
the equivalent Maude program. Therefore, the verification of
properties of this program (Ada-ECATNet after reduction)
takes less time than the initial program (Ada-ECATNet before
reduction). The reduced Ada-ECATNet will have a small size
in terms of transitions, places and arcs and so a small states
number with regard to their once before reduction.
Consequently the application of any verification tool becomes
more efficient. We have experimented simulator, reachability
analyzer and Model Checker to show what we gain. The
obtained reduced Ada–ECATNet may be reduced again by
applying reduction rules proposed for APNs. In this paper, we
show through an example how it is possible to apply a
reduction rule of APNs on Ada–ECATNet after applying
refinement rule proposed in this paper. This double reduction
decreases in efficient way the running times and the memory
consumptions of some analysis methods as simulation,
accessibility analysis and Model Checking.

REFERENCES
[1] K. Barkaoui and J-F Pradat-Peyre. "Verification in Concurrent

Programming with Petri nets Structural Techniques". In Proceedings
Third IEEE International High-Assurance Systems Engineering
Symposium November 13 - 14, 1998 Washi, 1998.

 6 C. 7 C. 8 C. 9 C. 10 C.
Case1 1098 1298 1531 1797 1966
Case2 995 1180 1398 1649 1803
Case3 994 1179 1397 1648 1802
Diff. 104 119 134 149 164

 6 C. 7 C. 8 C. 9 C. 10 C.
Case1 28622 36047 44119 52922 60747
Case2 17412 21517 25947 30702 34157
Case3 17380 21485 25915 30670 34125
Diff. 11242 14562 18204 22252 26622

 6 C. 7 C. 8 C. 9 C. 10 C.
Case1 28884 36890 45089 53965 61890
Case2 19424 24425 29959 36030 41010
Case3 19392 24393 29927 35998 40978
Diff. 9492 12497 15162 17967 20912

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3572

[2] M. Bettaz, M. Maouche. “How to specify Non Determinism and True
Concurrency with Algebraic Term Nets”. Volume 655 of LNCS, Spring-
Verlag, p. 11-30, 1993.

[3] M. Bettaz, A. Chaoui, K. Barkkaoui. “On Finding Structural Deadlocks
in ECATNets Using a Logic of Concurrency”. Journal on Computing
and Information, Vol 2 No 1, pp. 495-506, 1996.

[4] N. Boudiaf, A. Chaoui, “Towards Automated Analysis of Ada-95
Tasking Behavior By Using ECATNets”. ISIIT’04, Jordan, 2004.

[5] N. Boudiaf, K. Barkaoui, Allaoua Chaoui. “Implémentation Des Règles
de Réduction des ECATNets dans Maude”. Proceedings de la
Conférence Mosim’06, 2-5 avril, Rabat, Maroc, pp. 1505-514, 2006.

[6] N. Boudiaf, K. Barkaoui and Allaoua Chaoui. "Applying Reduction
Rules to ECATNets". Proceedings of AVIS'06 Workshop (Co-located
with the conferences ETAPS'06), 1st April, Vienna, Austria, To appear
in ENTCS, 2006.

[7] E. Bruneton and J-F. Pradat-Peyre. “Automatic Verification of
Concurrent Ada Programs”, In Proceedings Reliable Software
Technologies-Ada-Europe'99, 1999.

[8] M. Clavel and al., “The Maude 2.0 System”. In Proc. Rewriting
Techniques and Applications, V. 2706 of LNCS, Spring-Verlag, 2003.

[9] S. Evangelista, C. Kaiser, J. F. Pradat-Peyre, and P. Rousseau. “Quasar:
a new tool for analyzing concurrent programs”. In Ada-Europe 2003,
LNCS. Springer-Verlag, 2003.

[10] Ravi K. Gedela, Sol M. Shatz and Haiping Xu. "Compositional Petri Net
Models of Advanced Tasking in Ada-95". Comput. Lang. 25(2): 55-87,
1999.

[11] ISO/IEC 8652. “Information Technology – Programming Languages –
Ada”, 1995.

[12] J. Meseguer “Rewriting Logic as a Semantic Framework of
Concurrency: a Progress Report”. Seventh International Conference on
Concurrency Theory (CONCUR'96), Volume 1119 of LNCS, Springer
Verlag, p. 331-372, 1996.

[13] J. Meseguer “Rewriting logic and Maude: a Wide-Spectrum Semantic
Framework for Object-based Distributed Systems”. In S. Smith and C.L.
Talcott, editors, Formal Methods for Open Object-based Distributed
Systems. Kluwer, 2000.

[14] T. Murata, B. Shenker, S. M. Shatz. ”Detection of Ada Static Deadlocks
Using Petri Nets Invariants”. IEEE trans. Oo Software Engineering, vol.
15, No. 3, pp 314-326, 1989.

[15] S. M. Shatz, S. Tu, T. Murata, S. Duri. “An Application of Petri Net
Reduction for Ada Tasking Deadlock Analysis”. IEEE Transactions on
Parallel and Distributed Systems,1996.

[16] K. Schmidt. “Applying Reduction Rules to Algebraic Petri Nets”. TKK
Monoistamo; Otaniemi 1997, ISSN 0783 5396, ISBN 951-22-3495-5,
1997.

