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Abstract—In this paper, we propose a novel algorithm for 

delineating the endocardial wall from a human heart ultrasound scan. 

We assume that the gray levels in the ultrasound images are 

independent and identically distributed random variables with 

different Rician Inverse Gaussian (RiIG) distributions. Both synthetic 

and real clinical data will be used for testing the algorithm. Algorithm 

performance will be evaluated using the expert radiologist evaluation 

of a soft copy of an ultrasound scan during the scanning process and 

secondly, doctor’s conclusion after going through a printed copy of 

the same scan. Successful implementation of this algorithm should 

make it possible to differentiate normal from abnormal soft tissue and 

help disease identification, what stage the disease is in and how best 

to treat the patient. We hope that an automated system that uses this 

algorithm will be  useful in public hospitals especially in Third World 

countries where problems such as shortage of skilled radiologists and  

shortage of ultrasound machines are common. These public hospitals 

are usually the first and last stop for most  patients in these countries.  

 

Keywords—Endorcardial Wall, Rician Inverse Distributions, 

Segmentation, Ultrasound Images. 

I. INTRODUCTION 

HE on-going improvements in the design of medical 

imaging modalities like X-Rays, Ultrasounds (US) and 

Computerized Tomography (CT) have revolutionized medical 

diagnosis. These technologies are used to image internal 

human organs and they provide extremely good views of these 

internal anatomies [1]. The use of these tools allows improved 

diagnosis, surgical planning, radiotherapy and tracking of 

disease progress. 

Medical image analysis is aimed at processing, measuring, 

and quantifying embedded structures in medical images with 

improved accuracy, repeatability and efficiency. However, the 

study of medical images is heavily dependent on the 

radiologists’ visual interpretation. This process is not only 

subjective and time consuming, but also depends on the 

experience of the radiologist [2]. Furthermore, the size, shape 

and appearance of anatomical structures can vary between 

individuals depending on a variety of factors including age 

and gender [3]. 

While it is true that modern imaging techniques present 

very good views of human internal anatomy, there is still 

limited use of computers for an automated quantification and 

analysis of the large amounts of medical data provided by 

these imaging modalities[2]. This limitation makes automated 
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medical image analysis an important research field. The use of 

computer-aided systems also helps alleviate some of the 

challenges faced by the radiologist [2]. 

Deformable models are among the algorithms that have 

been developed to aid doctors [2]. These algorithms search an 

image for a particular human organ and attempt to delineate 

the exact boundary of the anatomical structure. The size, 

shape, location and appearance of the extracted boundary 

serve as useful tools in helping doctors reach the best 

conclusions concerning the patient’s health [2].  

US medical image segmentation has been an active research 

area for many years. Difficulties with US medical image 

segmentation include their low SNR, attenuation, diffraction 

and the presence of speckle. Generally, US images have a 

grainy appearance, which is the result of a spatial stochastic 

process known as speckle. Speckle also causes low contrast of 

boundaries 

Currently, one of the most frequently used US imaging 

techniques for diagnostic purposes is the Brightness mode (B-

mode). Speckle in US B-mode scans constitutes an issue that 

is not yet completely understood. An open question is: Should 

the speckle in the image of the functional tissue of an organ 

(as opposed to the supporting and connecting tissue) be seen 

as image signal or should it be seen as undesirable noise [4]? 

Using stochastic analysis, many researchers of US B-mode 

scanning have described the character of the US speckle as 

random noise. These researchers have obtained evidence of 

this by comparing their predictions to measurements of image 

speckle. Examples include work done in [4]-[7]. 

Conversely, there are researchers who view speckle in some 

clinical US B-scan images as associated with the 

microstructure of tissue parenchyma. Such a view qualifies 

speckle to be considered as image signal and thus can be used 

as an aid for diagnosis. These include the work described in 

[8]-[10]. Researchers who view speckle as noise in US images 

first clear the speckle before doing any segmentation on the 

image. Because of the latter viewpoint, we propose to directly 

segment our images without first smoothing out speckle. 

For segmenting the image, we use a deformable model.  

Since speckle appears random, it can cause false positives in a 

deformable model algorithm that directly searches an US 

image for the edges of a particular anatomical structure. As a 

result, the evolving model often ends up trapped in locations 

that are far from the true boundary. The main idea of our 

research is to use the RilG distribution [11] in a Bayesian 

framework to assist the deformable model segment US 

images.  The approach uses an optimization procedure that we 

propose to solve using the exploration/selection algorithm 

proposed in [12] together with the steepest ascent algorithm.  

N. Mpofu and M. Sears 

Segmenting Ultrasound B-Mode Images Using 

RiIG Distributions and Stochastic Optimization 
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The Bayesian approach relies on the work developed in [13], 

[14]. 

This paper is organized as follows. In the next section we 

give a brief overview of the how US interacts with body 

tissue. We follow this section by giving a brief overview of 

active shape models. We then provide a theoretical framework 

of the Bayesian estimation of the segmentation problem, 

which results in us formulating a cost problem. We propose 

solving this cost problem using a combination of the 

estimation/selection algorithm together with the steepest 

ascent algorithm. Before we conclude, we show one of the 

steps we do in fitting the RilG distribution to our data set. 

II. INTERACTIONS WITH TISSUE 

A. Modes of Interaction 

The transducer (a component of an US probe) consists of 

one or more piezoelectric elements. These piezoelectric 

elements are able to generate an US wave when they are 

excited by an electrical wave. As the wave moves through the 

body and encounters various tissues, some of it is reflected 

back to the transducer whereas the rest of it is transmitted 

further into the body. The reflected energy, when it reaches 

the transducer, is transmitted back to electrical energy for 

further processing before producing the image displayed on 

the US screen [15]. The time frame it takes for the echo to 

return gives an idea of where exactly the material is [26]. The 

medium that the sound wave travels through impacts its speed. 

For most body tissue, the sound speed lies in the 1,500m/s, for 

example, in fat, the speed is 1,450m/s, in kidney, it is 

1,565m/s and in amniotic fluid, the speed is 1,540m/s [16]. 

As the sound wave interacts with the body tissues, it loses 

its energy. This is called attenuation. Four different ways that 

the sound interacts with tissue have been identified. These are 

incident reflection, off-angle reflection, specular reflection and 

scatter. Scatter reflection plays an important role in US image 

formation as it helps us identify a certain body organ type, for 

example, whether it is a liver or a kidney [16].  

 

 

Fig. 1 Scatter Example 

 

Fig 1 above, adapted from [16], shows an example of 

scatter whereby the solid curves represent the sound waves 

scattered into numerous directions when the transmitted signal 

encounters a tiny reflector along its path. The dotted curves 

mean that the scattered sound waves over time are reflected 

back to the transducer.  

If the scattering medium is modeled as a distribution of 

independent and identically distributed random variables, then 

the detected signal from a given resolution cell can be as: 
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Where N is the number of scatteres in the cell, 
ia is the 

amplitude, iφ is the phase of the  scatterer, X and Y are the in-

phase (I) and the quadrature  (Q) components respectively 

[11]. Researchers have modeled the amplitude statistics of 

coherent images for some timenow. Some of the current 

existing algorithms utilize a Bayesian approach where 

accurate locale statistical models for the speckled and speckle 

free images become essential. Furthermore, it becomes a goal 

for the users of B-mode US images to accurately classify and 

characterize image regions [11]. Distributions for the local 

brightness of the speckle pattern of US B-mode scan images 

have been proposed in the literature. These include the 

Rayleigh distributions, generalized Rician distribution, the K-

distribution, the Nakagami distributions and recently, the RilG 

distributions [22]-[25], [11]. 

III. ACTIVE SHAPE MODELS (ASM) 

An ASM is a technique that is used to build compact 

models of a shape and appearance of almost any flexible 

object. An ASM can also be used to search an image for a new 

shape example. In an ASM, objects are represented as labeled 

points and the statistics of their co-ordinates are examined 

over a number of training models, for example, the Point 

Distribution Models (PDMs) [17]. 

A. Training Set 

The features of interest in medical images are represented 

by sets of labeled points. This method works by modeling, as 

the shape varies, how different labeled points (landmarks) tend 

to move together [18]. The following criteria can be used in 

the selection of landmark points: easily located biological 

marks, points of high curvature and the ’T’ junctions between 

boundaries [19]. These points are hardly enough for a shape 

representation. Therefore, the additional points that can be 

added are those that lies on boundaries. These points will have 

to be placed equally within well-defined landmarks [19]. 

B. Aligning a Set of Training Shapes 

For the purpose of comparing equivalent points from 

different shapes, the coordinate points of these shapes are 

aligned in the same way with respect to a set of axes. The 

Generalized Procrustes Analysis (GPA) is used for aligning 

these shapes [20]. Fig 2 shows an example of shape alignment.  

The code used was adapted from [27]. 
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Fig. 2 Shape alignment examples for shapes like Fig 3
 

Fig. 3 Shape example 

C. Capturing the Statistics of a Set of Aligned Shapes

Let each shape be represented by a total of 

single point in a 2n dimensional space can be used to represent 

each example of the aligned shape. In this 2

space, a set of N example shapes produces a cloud of 

An assumption can then be made that these points lie within 

an ‘Allowable Shape Domain’ [18], (a space region), and that 

an indication of the shape and the size of this region can be 

obtained using these points. 

Each one of the 2n dimensional points within this domain 

includes a set of landmarks. These land

that is in a strong sense, similar to those in the training set. 

New shapes can then be generated by just moving about the 

domain in a systematic way [18]. 

If ix is a vector that describes the n points of the 

in the set: 

 

inikikiii xyxyxx ,...,,,...,( 00 −=
 

where ),( ijij yx is the 
thj  point of the 

shape x  is calculated as follows: 
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The modes of variation, that is, the ways in which the points 

of the shape tend to move together, can be found by applying 

PCA to the deviations from the mean as follows:

 

 

 

Shape alignment examples for shapes like Fig 3 

 
 

Capturing the Statistics of a Set of Aligned Shapes 

Let each shape be represented by a total of n points. A 

dimensional space can be used to represent 

each example of the aligned shape. In this 2n dimensional 

example shapes produces a cloud of N points. 

An assumption can then be made that these points lie within 

], (a space region), and that 

an indication of the shape and the size of this region can be 

dimensional points within this domain 

a set of landmarks. These landmarks have a shape 

sense, similar to those in the training set. 

New shapes can then be generated by just moving about the 

points of the 
thi shape 

T

iny ), 11 −−           
(2) 

thi shape. The mean 

                                    (3) 

The modes of variation, that is, the ways in which the points 

of the shape tend to move together, can be found by applying 

PCA to the deviations from the mean as follows: 

xdxi =
 

The covariance matrix is then computed using the following 

equation: 
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Let kλ  be the 
thk eigenvalue of the 

where nk 2,...2,1= , and 

variation of the points of the shape are described by 

the unit eigenvectors of S are described such that: 

 

pkS =
 

The most significant modes of the variation are

by the largest eigenvectors of the covariance matrix that 

corresponds to the largest eigen

nt 2<<  explains almost the total variance [3]. The following 

equation is then used to calculate a new model:

 

xx ≈
 

where ),...,,( 21 tpppP =  

eigenvectors and b = bb ,( 1

the t eigenvectors. 

The criteria for determining the number of eigen

be used is chosen so that the eigen

certain amount of the variation

ranging from 90% to 95% so that new examples of the shape 

parameter can be generated by varying the parameters 

within a suitable limit [21]. Fig

how the mean shape of example 

vary within the “Allowable Shape Domain”.

 

Fig. 4 An example of how the mean shape can vary

 

xxi −
                                

(4) 

The covariance matrix is then computed using the following 

∑ T

iidxdx

                             

(5) 

eigenvalue of the 
thk  eigenvector kp , 

, and 1+≥ kk λλ , then the modes of 

variation of the points of the shape are described by kp , and 

are described such that:  

kk pλ
                                 

(6) 

The most significant modes of the variation are described 

vectors of the covariance matrix that 

the largest eigenvalues. A small number 

explains almost the total variance [3]. The following 

equation is then used to calculate a new model: 

Px + b                                      (7) 

 is the matrix of the first t 

T

tbb ),...,2 , the weight vector of 

determining the number of eigenvectors t to 

sed is chosen so that the eigenvectors will represent a 

the variation in the training set, usually 

ranging from 90% to 95% so that new examples of the shape 

parameter can be generated by varying the parameters kλ
within a suitable limit [21]. Fig. 4 below shows an example of 

of example shapes shown in Fig 2, can 

vary within the “Allowable Shape Domain”. 

 

Fig. 4 An example of how the mean shape can vary 
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Fig 5 below shows an example of a set of 

below and above each landmark of an example image.

 

Fig. 5 An example of landmark profiles

D. Gray-level Appearance 

The normalized derivative of the pro

perpendicular to the landmark contour and centered at the 

landmark is the gray-level appearance model that describes the 

local texture feature around each landmark

m points are chosen on either side of the each landmark point. 

Estimation of the next best landmark position

searching process is done using this gray 

The symbol ijg is used to denote the gray level profile of the 

thj landmark in the 
thi  image. This represents a 2

dimensional vector. Thus:  

  

 

 10 ,...,,= ijijij gggg

 

where ijmg  is the gray level intensity of a corresponding pixel 

and 12,...,1,0 += nm . The derivative along the profile is 

estimated by: 
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The derivative profile is then normalized by:
 

∑
=

=
n

k

ijm

ij

ij

dg

dg
y

2

0                          
 

where ijmmijijm ggdg −= + )1( . The covariance for the 

normalized derivative profile is given by 
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and y  is the mean profile. 

For the shape model to fit accurately to 

in the image, the ASM utilizes the obtained information from 

the modeling of the gray level statistics around each landmark 

 

Fig 5 below shows an example of a set of m pixels taken 

below and above each landmark of an example image. 

 

landmark profiles 

rmalized derivative of the profiles sampled 

mark contour and centered at the 

level appearance model that describes the 

local texture feature around each landmark. A total number of 

points are chosen on either side of the each landmark point. 

the next best landmark position during the 

rocess is done using this gray level information. 

is used to denote the gray level profile of the 

image. This represents a 2n+1 

12 +ng
               

(8) 

is the gray level intensity of a corresponding pixel 

. The derivative along the profile is 

)2()12 nijn g−+    
(9) 

The derivative profile is then normalized by: 

                         

(10) 

. The covariance for the 

− T

ij y)

           

(11) 

 the object of interest 

in the image, the ASM utilizes the obtained information from 

the modeling of the gray level statistics around each landmark 

to determine the desired movement or adjustment of each 

landmark. However, the form of the fit measure is di

determine. If the shape model represents the target feature 

boundaries and strong edges of the object, then a useful 

measure is the distance between a given model point and the 

nearest strong edge in the image. Euclidean or Mahalanobis 

distance is often used in such cases [19]. The equation given 

below shows how the Mahalanobis distance can be used:

 

()( yyf −=
 

Therefore, minimizing 

probability of y according to a given Gaussian distribution

The current shape is then aligned with the new shape (the 

one determined by the new set of landmark points). This step 

produces the next best shape. The parameters are then adjusted 

and a new model is generated.

new shape, aligning the two shapes, adjusting the parameters 

and generating a new shape is repeated until convergence is 

reached [19]. 

However, ASMs tend to perform poorly on US images as 

US images have a low SNR, have low a

speckle. Using the Bayesian framework, deformable models 

have been used in conjunction with speckle models to segment 

B-mode US images [13], [14]. 

IV. BAYESIAN ESTIMATION OF THE 

In this paper, we propose modeling the gr

of blood and tissue in US B-

using the RilG distributions in conjunction with a deformable 

model. Our original deformable model is the mean of a set of 

endocardial wall images. This mean shape is computed u

the ASM. The RilG model is

was recently introduced in [11]. This statistical distribution is 

specifically for non-Rayleigh amplitude statistics and has three 

parameterα (controls the distribution steepness), 

(determines the distribution skewness) and 

parameter). The presence of three parameters make

distribution very flexible and thus the density function can 

take many forms. The RilG distribution is a mixture of the 

Rician distribution with the Inverse Gaussian Distribution. 

The RilG model for the intensity distribution is 

as: 
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to determine the desired movement or adjustment of each 

landmark. However, the form of the fit measure is difficult to 

determine. If the shape model represents the target feature 

boundaries and strong edges of the object, then a useful 

measure is the distance between a given model point and the 

nearest strong edge in the image. Euclidean or Mahalanobis 

is often used in such cases [19]. The equation given 

below shows how the Mahalanobis distance can be used: 

)() jij

T

j yyCy −
             

(12) 

is the same as maximizing the 

according to a given Gaussian distribution. 
The current shape is then aligned with the new shape (the 

one determined by the new set of landmark points). This step 

produces the next best shape. The parameters are then adjusted 

and a new model is generated. The process of searching for a 

new shape, aligning the two shapes, adjusting the parameters 

and generating a new shape is repeated until convergence is 

However, ASMs tend to perform poorly on US images as 

US images have a low SNR, have low attenuation and contain 

sing the Bayesian framework, deformable models 

have been used in conjunction with speckle models to segment 

14].  

STIMATION OF THE CONTOUR POSITION 

In this paper, we propose modeling the gray level statistics 

-mode images of the human heart 

using the RilG distributions in conjunction with a deformable 

model. Our original deformable model is the mean of a set of 

This mean shape is computed using 

The RilG model is a new statistical distribution that 

was recently introduced in [11]. This statistical distribution is 

Rayleigh amplitude statistics and has three 

(controls the distribution steepness), β  

(determines the distribution skewness) and ∂  (dispersion 

parameter). The presence of three parameters makes the 

distribution very flexible and thus the density function can 

any forms. The RilG distribution is a mixture of the 

Rician distribution with the Inverse Gaussian Distribution. 

The RilG model for the intensity distribution is defined in [11] 

)exp(
2

1
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(.) is the modified Besselfunction 
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of the second kind and order 
2

3
, and (.)0I  is the modified 

Bessel function of the first kind and zero order. 

Following some of the ideas in [13], [14], we formulate the 

a posterior distribution using Bayes’rule as follows: 
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whereC is an initial a priori contour whose a priorI 

probability is p(C) and is the mean contour computed from the 

ASM. The data likelihood is given by )|( CIp . 

A. Data Likelihood 

The data likelihood is given by p(I|C) and p(I) is a 

normalizing constant and I is the image. Since our data 

likelihood is based on the RilG model and there are two 

regions, rb(for blood) and rt(for tissue), the data likelihood 

then becomes: 
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where iA  is the brightness value of the 
thi  sample, parare the 

parameters and 
,, ,,,,, tttbbb ∂βα∂βα are the parameters of 

the RilG density function, depending on the contour position 

as well as on the regionsrb’s andrt’s brightness respectively.  

 

 

 

B. Prior Energy Term 

This term penalizes the deviation of the deformed template 

from the original prototypeC , (the mean of the shape 

obtained using the ASM). The deformed template (our new C) 

can then be generated using the following equation: 
 

)())())((),1(( dttdbbCddssMC ++++++= φθθ (17) 

 

whereb is the shape parameter, φ  are  the eigenvectors, s,θ   

and t are the pose parameters. M is a matrix for a rotation 

followed by scaling and t is a translation vector. The shape 

and the pose parameters need to be determined. The 

adjustment db can be found using the equation 
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anddS is computed as: 
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andY represents the next best set of points to move to. 

B. Maximum a Posterior 

The search for 
MAPθ̂  is then given by the equation 
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Equation (20) can be numerically solved. We propose 

estimating the optimal values of the parameters using the 

exploration/selection algorithm in combination with gradient 

ascent, which is workthat is currently, still inprogress. We also 

note that there are possible variations within the tissue region. 
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V. CURVE FITTING 

We conducted an experiment on each of our images 

whereby we independently investigated the intensity 

distributions of the blood and tissue regions in our images. In 

this experiment, we selected regions of homogeneous 

brightness within the images, computed their histograms and 

compared these histograms with the RilG distribution. Figs

and 7 below show an example of a sample image and a 

selected region of interest. Fig 8 is the histogram of the 

selected image portion. 

 

Fig. 6 An example image

 

Fig. 7 Selected portion of the image in Fig 6

 

We also computed a chi-square test for each image. For the 

curve to fit the histogram, a number of iterations have to be 

made in search of the optimal parameters. 

parameters can be computed using either the iterative 

maximum likelihood method or the iterative moment method. 

Both methods were proposed in [11]. Fig

attempt to fit the RilG model into the histogram in Fig 8. The 

Goodness of Fit test shown in Table I, proves that this is not 

the optimal curve as yet. In Table I, the initial parameter 

values for βα ,  and ∂  are 9.8760e-

0.1228, respectively.  A total of 2 degrees of freedom was 

used. The test-statistic value was 1.0137e+04 and the chi

square critical value: (significance level –

5.991 Curve Fitting was done using the modified code adapted 

from [28]. The format of Table I was adapted from [29].
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Fig. 6 An example image 

 

Fig. 7 Selected portion of the image in Fig 6 

square test for each image. For the 

iterations have to be 

rch of the optimal parameters. The optimal 

parameters can be computed using either the iterative 

maximum likelihood method or the iterative moment method. 

Both methods were proposed in [11]. Fig. 9 shows our first 

attempt to fit the RilG model into the histogram in Fig 8. The 

proves that this is not 

, the initial parameter 

-09, 9.9328e-16 and  

respectively.  A total of 2 degrees of freedom was 

alue was 1.0137e+04 and the chi-

– 0.05) 
)05.0(,2χ was 

Curve Fitting was done using the modified code adapted 

was adapted from [29]. 

Fig. 8 Histogram for the selected image portion

 

Fig. 9 First iteration

 
TABLE I 

INTERMEDIATE VALUES FOR THE 

Row InitEn

d 

CellProb 

 

Expected

1 0.0697 0.4621 

2 0.1394 0.4456 

3 0.2090 0.3141 

4 0.2787 0.2141 

5 0.3484 0.1510 

6 0.4181 0.1111 

7 0.4878 0.0847 

8 0.5575 0.0665 

 Total 1.8491 2.9311

VI. CONCLUSION

This paper proposed a novel algorithm for the segmentation 

of ultrasound B-mode scan images

together with the steepest ascent algorithm. Using synthetic 

data, we have shown how the mean shape of a set of shapes 

can be derived using the ASM. Since the ASM performs badly 

on US images, we have discussed an alternative method that 

has been used in the literature for segmenting ultrasound. This 

method uses a model of the speckle statistics of an image in 

conjunction with a deformable model. We thus chose the RilG 

 

Histogram for the selected image portion 

 

First iteration 

TABLE I  
ALUES FOR THE RILGGOF   T/TEST 

Expected 

1.0e+03* 

Observed (e-o)^2/e 

1.0e+03 

7.3250 7433 7.3250 

7.0625 5091 7.0625 

4.9789 2442 4.9789 

3.3936 565 3.3936 

2.3941 231 2.3941 

1.7603 54 1.7603 

1.3420 25 1.3420 

1.0543 10 1.0543 

2.9311e+04 15851  

ONCLUSION 

This paper proposed a novel algorithm for the segmentation 

mode scan images using the RilG model 

together with the steepest ascent algorithm. Using synthetic 

data, we have shown how the mean shape of a set of shapes 

can be derived using the ASM. Since the ASM performs badly 

on US images, we have discussed an alternative method that 

used in the literature for segmenting ultrasound. This 

method uses a model of the speckle statistics of an image in 

conjunction with a deformable model. We thus chose the RilG 
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model because of its flexibility and its capability to fit into 

various shapes. We then fit the model into our set of images 

which we followed by a theoretical description of our 

Bayesian estimation of the contour position in the image. This 

resulted in the formulation of a cost function which we 

propose to numerically solve using the estimation/selection 

algorithm together with the steepest algorithm theorem and 

this is the work that we are currently doing. 
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