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Group invariant solutions for radial jet having finite

fluid velocity at orifice
I. Naeem, R. Naz

Abstract—The group invariant solution for Prandtl’s boundary
layer equations for an incompressible fluid governing the flow in
radial free, wall and liquid jets having finite fluid velocity at the
orifice are investigated. For each jet a symmetry is associated with the
conserved vector that was used to derive the conserved quantity for
the jet elsewhere. This symmetry is then used to construct the group
invariant solution for the third-order partial differential equation for
the stream function. The general form of the group invariant solution
for radial jet flows is derived. The general form of group invariant
solution and the general form of the similarity solution which was
obtained elsewhere are the same.

Keywords—Two-dimensional jets, radial jets, group invariant so-
lution

I. INTRODUCTION

The flow in radial jets is governed either by the system of

two partial differential equations for the velocity components

or by a single third-order partial differential equation for the

stream function. The similarity solution for the third-order

partial differential equation for the stream function for the

radial free jet was discussed by Schwarz [1]. Schlichting [2]

and Bickley [3] derived the similarity solution for the third-

order partial differential equation for the stream function for

two-dimensional free jet. Mason in [4] constructed the group

invariant solution for the same equation. In [5] authors found

the group invariant solution for system of equations for the

velocity components for both radial and two-dimensional free

jets. Glauret [6] obtained the similarity solution for radial

and two-dimensional wall jets. Riley in [7] established the

similarity solution for the radial free, wall and liquid jets. In

all these problems the fluid velocity at the orifice was infinite.

Watson suggested the general form of similarity solution

for the flows having finite velocity at the orifice. Riley [8]

considered the problem of radial and two-dimensional wall

jets for which the velocity remains finite at orifice and so our

solution has some significance even near axis. The similarity

solution was constructed for both radial and two-dimensional

wall jets. The similarity solution for the radial free, wall

and liquid jets with finite velocity at the orifice was studied

by Riley [9]. Schwarz in [1] derived the similarity solution

for the stream function equation for radial free jet having

finite as well as infinite velocity at orifice. Watson in [10]

derived the similarity solution for system of equations for

velocity components for the radial and two-dimensional liquid

jets having finite velocity at the orifice. To the best of our

knowledge, the group invariant solution for the third-order

partial differential equation for stream function for radial free,

wall and liquid jets, having finite fluid velocity at the orifice
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is still not attempted in the literature. It is considered in this

paper.

The similarity solution transforms the third-order partial

differential equation to a third-order ordinary differential equa-

tion. By using the certain transformations same third-order

ordinary differential equation can be deduced for the radial

jets whether the velocity at the orifice is finite or infinite. The

third-order ordinary differential equation for radial free jet was

first solved numerically by Schlichting [2] and later, Bickley

[3] found the analytical solution. For the wall jet, Glauert [6]

solved the third-order ordinary differential equation. Riley in

[7], [9] found the solution for ordinary differential equation

which appeared for radial liquid jet. The authors in [11] solved

the third-order ordinary differential equations for radial free,

wall and liquid jets by symmetry methods.

In this paper we will derive the group invariant solution for

the radial free, wall, liquid jets having finite velocity at the

orifice. In [12] the conserved quantities for radial free, wall and

liquid jets have been derived using the conservation laws. The

symmetry associated with the conserved vector which is used

to establish the conserved quantity for each jet generates the

group invariant solution for the third-order partial differential

equation for the stream function. This symmetry is obtained by

using the approach introduced by Kara and Mahomed [13]. We

give explicitly the general form of group invariant solution for

radial jet flows. We concluded that the group invariant solution

and similarity solution are equivalent. In similarity solution

method the form of stream function was assumed whereas

in the group invariant method the form of stream function is

derived.

II. RADIAL JETS

The coordinate axis are chosen such that the x-axis is along

the jet and the y-axis is perpendicular to the jet. The jet is

symmetrical about the x-axis and the origin is at the orifice.

Prandtl’s boundary layer equations for an incompressible fluid

governing the flow in radial jets, in absence of a pressure

gradient, are

uux + vuy = νuyy, (1)

(xu)x + (xv)y = 0, (2)

where u(x, y) and v(x, y) are velocity components in the x

and y directions respectively, and ν is the kinematic viscosity

of the fluid. Introduce a stream function

u =
1

x
ψy, v = − 1

x
ψx, (3)
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then system (1)-(2) is transformed to the third-order partial

differential equation

1

x
ψyψxy − 1

x2
ψ2

y − 1

x
ψxψyy − νψyyy = 0. (4)

A. Lie point symmetries for third-order partial differential

equation for the stream function

The Lie point symmetry generator

X = ξ1(x, y, ψ)
∂

∂x
+ ξ2(x, y, ψ)

∂

∂y
+ η(x, y, ψ)

∂

∂ψ
, (5)

of the third-order partial differential equation (4) are derived

by solving

X [3]G |G=0= 0, (6)

where

G =
1

x
ψyψxy − 1

x2
ψ2

y − 1

x
ψxψyy − νψyyy. (7)

In equation (6), X [3] is the third prolongation of the operator

X and is defined by

X [3] = ξ1
∂

∂x
+ ξ2

∂

∂y
+ η

∂

∂ψ
+ ζx

∂

∂ψx

+ ζy

∂

∂ψy

+ζxx

∂

∂ψxx

+ ζxy

∂

∂ψxy

+ ζyy

∂

∂ψyy

, (8)

with

ζi = Di(η) − ψsDi(ξ
s), (9)

ζij = Dj(ζi) − ψisDj(ξ
s), (10)

ζijk = Dk(ζij) − ψijsDk(ξs), (11)

where Di are the total derivative operators defined as

D1 = Dx =
∂

∂x
+ ψx

∂

∂ψ
+ ψxx

∂

∂ψx

+ ψxy

∂

∂ψy

+ · · · , (12)

D2 = Dy =
∂

∂y
+ ψy

∂

∂ψ
+ ψyy

∂

∂ψy

+ ψyx

∂

∂ψx

+ · · · . (13)

Equation (6) is separated according to the different combina-

tions of derivatives of ψ and resulting system is solved for

unknown coefficients ξ1, ξ2 and η. The Lie point symmetry

generator of equation (4) is

X = [c1x +
c2

x2
]

∂

∂x
+ [(2c1 −

c2

x3
− c3)y + k(x)]

∂

∂y

+[c3ψ + c4]
∂

∂ψ
, (14)

where c1, c2, c3 and c4 are constants and k(x) is an arbitrary

function.

III. GROUP INVARIANT SOLUTION FOR RADIAL FREE JET

The governing equations for radial free jet are (1) and (2).

The boundary conditions and the conserved quantity for radial

free jet are

y = 0 : v = 0, uy = 0, (15)

y = ±∞ : u = 0, (16)

and

J = 2ρ

∫

∞

0

xu2dy. (17)

In terms of stream function the boundary conditions and

conserved quantity become

y = 0 : ψx = 0, ψyy = 0, (18)

y = ±∞ : ψy = 0, (19)

J = 2ρ

∫

∞

0

1

x
ψ2

ydy. (20)

The similarity solution for the third-order partial differential

equation (4) for the stream function with finite fluid velocity

at the orifice was derived in [1], [9]. We will derive the group

invariant solution for the third-order partial differential equa-

tion (4) subject to conditions (18)-(20) having finite velocity

at the orifice. In [12] authors showed that the conserved vector

T 1 =
1

x
ψ2

y, T 2 = − 1

x
ψxψy − νψyy (21)

gives the conserved quantity (20) for the radial free jet.

The symmetry associated with the conserved vector (21) will

give the group invariant solution for the third-order partial

differential equation (4) subject to conditions (18)-(20). The

symmetries associated with a known conserved vector can be

determined by using (see Kara and Mahomed [13])

X [m](T i) + Dk(ξk)T i − Dk(ξi)T k = 0, (22)

where X [m] is the mth prolongation of X if T i depend upon

mth derivatives. Equation (22) gives rise to following two

equations

X [1](T 1) + T 1Dy(ξ2) − T 2Dy(ξ1) = 0, (23)

X [1](T 2) + T 2Dx(ξ1) − T 1Dx(ξ2) = 0, (24)

which yield

3T 1[c3 − c1] = 0, 3T 2[c3 − c1] = 0. (25)

Equations (23) and (24) are satisfied when c1 = c3. Thus

X = [c1x +
c2

x2
]

∂

∂x
+ [(c1 −

c2

x3
)y + k(x)]

∂

∂y

+[c1ψ + c4]
∂

∂ψ
, (26)

is the Lie point symmetry generator associated with the

conserved vector (21).

Now, ψ = φ(x, y) is a group invariant solution of the

equation (4) if

X(ψ − φ(x, y)) |ψ=φ= 0, (27)
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where operator X is given in equation (26). The equation (27)

yields

[c1x +
c2

x2
]φx + [(c1 −

c2

x3
)y + k(x)]φy = c1φ + c4. (28)

The solution of equation (28) for ψ = φ(x, y) is of the form

ψ =

(

x3 +
c2

c1

)1/3

g(ξ) − c4

c1

, c1 6= 0, (29)

ξ =
xy

(x3 + c2

c1

)2/3
− K(x), (30)

where

K(x) =
1

c1

∫ x x3k(x)

(x3 + c2

c1

)5/3
dx. (31)

The conserved quantity given by equation (20) becomes

J = 2ρ

∫

∞

−K(x)

(

dg

dξ

)2

dξ, (32)

and is independent of x provided K(x) is a constant. We

choose constant to be zero and to make K(x) = 0 we choose

k(x) = 0. Since the stream function is determined up to an

arbitrary constant, c4 can be chosen to be zero.

Now, the substitution of equation (29), with c4 = 0 and

k(x) = 0, into equation (4) results in a third-order ordinary

differential equation for g(ξ):

ν
d3g

dξ3
+ g

d2g

dξ2
+

(

dg

dξ

)2

= 0. (33)

To solve equation (33), introduce

η =
Aξ

ν
, Af = g, (34)

where A is arbitrary constant. Equation (33) transforms to

f ′′′ + ff ′′ + f ′2 = 0, (35)

where prime denotes differentiation with respect to η. The

boundary conditions (18) and (19) and conserved quantity

(32), in terms of f(η), become

f(0) = 0, f ′′(0) = 0, f ′(±∞) = 0, (36)

J =
2A3ρ

ν

∫

∞

0

f ′2dη. (37)

The solution of equation (35) subject to (36) and condition

f(∞) = 1 is (see [3], [7], [9])

f(η) = tanh

(

η

2

)

. (38)

The value of A in terms of J is

A =

(

3νJ

2ρ

)1/3

. (39)

Substitution of (38) and (39) and Af = g in (29) yields

ψ =

[

3νJ

2ρ

(

x3 +
c2

c1

)]1/3

f(η), (40)

u(x, y) =

[

9J2

4ρ2ν(x3 + c2

c1

)

]1/3

f ′(η), (41)

and

η =

[

3Jx3

2ρν2(x3 + c2

c1

)2

]1/3

y. (42)

The symmetry which generated the group invariant solution is

X =

(

x +
c2

c1x2

)

∂

∂x
+

(

1 − c2

c1x3

)

y
∂

∂y
+ ψ

∂

∂ψ
. (43)

The ratio of constants c2/c1 can be taken as l3 where l

is a characteristic length associated with the boundary-layer

development. Equations (40)-(42) with c2/c1 = l3 agree with

the results derived by Scwarz [1] and Riley [9]. In, [1], [9] the

similarity solution method was used to solve (4) and the form

of stream function was assumed not derived whereas in group

invariant method the form is derived. Now u(x, 0) is finite at

x = 0 and so our solution may has some significance even

near the axis. Scwarz in [1] discussed the methods how to

determine l. By taking c2 = 0 the results for infinite velocity

at orifice [1], [5] can be rediscovered.

IV. GROUP INVARIANT SOLUTION FOR RADIAL WALL JET

Equations (1) and (2) are the governing equations for

the radial wall jet. The boundary conditions and conserved

quantity for radial wall jet are

y = 0 : u = 0, v = 0, (44)

y = ∞ : u = 0, (45)

and

F =

∫

∞

0

xu

(
∫

∞

y

xu2dy∗

)

dy. (46)

For the stream function ψ equations (44)-(46) take the follow-

ing form:

y = 0 : ψx = 0, ψy = 0, (47)

y = ∞ : ψy = 0, (48)

F =
1

x

∫

∞

0

ψy

(
∫

∞

y

ψ2

y∗dy∗

)

dy. (49)

Riley [8], [9] derived the similarity solution for the radial wall

jet with finite velocity at the orifice. We will derive the group

invariant solution for the radial wall jet having finite velocity

at orifice. The conserved vector

T 1 =
1

x
ψψ2

y, T 2 = − 1

x
ψψxψy +

ν

2
ψ2

y − νψψyy (50)

gives the conserved quantity (49) for radial wall jet (see [12]).

Equations (23) and (24), for conserved vector (50) result in

T 1[4c3−3c1]+
∂T 1

∂ψ
c4 = 0, T 2[4c3−3c1]+

∂T 2

∂ψ
c4 = 0, (51)

and thus
c3

c1

=
3

4
, c4 = 0. (52)

The Lie point symmetry generator associated with the con-

served vector (50) is

X = [c1x +
c2

x2
]

∂

∂x
+ [(

5

4
c1 −

c2

x3
)y + k(x)]

∂

∂y
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+
3

4
c1ψ

∂

∂ψ
. (53)

Now, ψ = φ(x, y) is a group invariant solution of the equation

(4) if

X(ψ − φ(x, y)) |ψ=φ= 0, (54)

where X is given in (53). The equation (54) finally yields the

group invariant solution for ψ = φ(x, y) of the form

ψ =

(

x3 +
c2

c1

)1/4

g(ξ), ξ =
xy

(x3 + c2

c1

)3/4
− K(x), (55)

where

K(x) =
1

c1

∫ x x3k(x)

(x3 + c2

c1

)7/4
dx. (56)

The conserved quantity

F =

∫

∞

−K(x)

dg

dξ

(
∫

∞

ξ

(

dg

dξ∗

)2

dξ∗
)

dξ (57)

is independent of x only if K(x) = 0 which gives k(x) = 0.

The insertion of equation (55) into equation (4) gives rise to

a third-order ordinary differential equation for g(ξ):

ν
d3g

dξ3
+

3

4
g
d2g

dξ2
+

3

2

(

dg

dξ

)2

= 0. (58)

Letting η = 3A
4ν

ξ and g = Af , then equation (58) transforms

to

f ′′′ + ff ′′ + 2f ′2 = 0, (59)

where prime denotes differentiation with respect to η. The

boundary conditions (47) and (48) and conserved quantity (57)

become

f(0) = 0, f ′(0) = 0, f ′(∞) = 0, (60)

and

F =
3A4

4ν

∫

∞

0

f ′

(
∫

∞

η

f ′2dη∗

)

dη. (61)

Equation (55) results in

ψ = A

(

x3 +
c2

c1

)1/4

f(η), (62)

and

η =
3Axy

4ν(x3 + c2

c1

)3/4
. (63)

Integrating equation (59) twice, we have (see Glauret [6])

f−1/2f ′ +
2

3
f3/2 = constant. (64)

Glauret in [6] selected a solution with f(∞) = 1 and value

of constant was determined to be 2/3. Equation (64) becomes

dh

dη
=

1

3
(1 − h3), where h2 = f, 0 ≤ h ≤ 1, (65)

which gives

η = log

√
1 + h + h2

1 − h
+

√
3 tan−1

√
3h

2 + h
. (66)

The conserved quantity will be used to determine the unknown

constant A. The integration in (61) with respect to η∗ and η

is transformed to integration with respect to h by using (65)

and thus we have

F =
2A4

ν

∫

1

0

h

(
∫

1

h

h∗2(1 − h∗3)dh∗

)

dh, (67)

which yields

F =
3A4

40ν
. (68)

Hence we obtain

ψ =

[

40Fν

3
(x3 +

c2

c1

)

]1/4

f(η), (69)

u(x, y) =

[

15F

2ν(x3 + c2

c1

))

]1/2

f ′(η), (70)

η =

[

135Fx4

32ν3(x3 + c2

c1

)3

]1/4

y. (71)

The symmetry

X =

(

x +
c2

c1x2

)

∂

∂x
+

(

5

4
− c2

c1x3

)

y
∂

∂y
+

3

4
ψ

∂

∂ψ
(72)

generates the group invariant solution for radial wall jet.

Equations (69)-(71) with c2/c1 = l3 agree with the results

derived by the similarity solution method (see [8], [9]). A

method whereby l is roughly determined is given in [14]. By

choosing c2 = 0, the results for infinite velocity at orifice [6]

can be rediscovered.

V. GROUP INVARIANT SOLUTION FOR RADIAL LIQUID JET

The governing equations for radial liquid jet are (1) and (2).

The boundary conditions and conserved quantity are

y = 0 : u = 0, v = 0, (73)

y = φ(x) : uy = 0, (74)

and

M =

∫ φ(x)

0

xudy. (75)

The conserved vector

T 1 = xu, T 2 = xv (76)

gives the conserved quantity (75) for the radial liquid jet (see

[12]).

In terms of stream function the boundary conditions, con-

served quantity and conserved vector become

y = 0 : ψx = 0, ψy = 0, (77)

y = φ(x) : ψyy = 0, (78)

M =

∫ φ(x)

0

ψydy, (79)

and

T 1 = ψy, T 2 = −ψx. (80)

Riley [9] discussed the similarity solution for third-order

partial differential equation for the stream function governing

the flow in radial liquid jet having finite velocity at the orifice.
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Watson in [10] studied the similarity solution for system

of equations for the velocity components. We will derive

the group invariant solution for third-order partial differential

equation for the stream function for radial liquid jet having

finite fluid velocity at the orifice.

Equations (23) and (24), for conserved vector (80) give

T 1c3 = 0, T 2c3 = 0, (81)

and thus

c3 = 0. (82)

The Lie point symmetry generator associated with the con-

served vector (80) is

X = [c1x+
c2

x2
]

∂

∂x
+[(2c1−

c2

x3
)y +k(x)]

∂

∂y
+ c4

∂

∂ψ
, (83)

and generates the group invariant solution for radial liquid jet.

The group invariant solution of the equation (4) subject to

boundary conditions (77) and (78) is of the form

ψ = g(ξ) + ln(x3 +
c2

c1

)c4/3c1 , ξ =
xy

x3 + c2

c1

−K(x), (84)

where

K(x) =
1

c1

∫ x x3k(x)

(x3 + c2

c1

)2
dx. (85)

The condition that the conserved quantity is independent of

x is satisfied only if K(x) = 0 which gives k(x) = 0.

Since ψx(x, 0) = 0 and therefore ψ(x, 0) = constant. Thus

the stream function contains an additive constant and we can

choose c4 = 0 and therefore

ψ = g(ξ), ξ =
xy

x3 + c2

c1

, (86)

which after substitution into equation (4) results in

ν
d3g

dξ3
+ 3

(

dg

dξ

)2

= 0. (87)

Letting η = A
ν
ξ and g = Af in (87) yields

f ′′′ + 3f ′2 = 0 (88)

and the boundary conditions (77) and (78) are

f(0) = 0, f ′(0) = 0, f ′′(1) = 0, (89)

where the free surface is chosen to be η = 1. The stream

function ψ becomes

ψ = Af(η), η =
Axy

ν(x3 + c2

c1

)
. (90)

Equation (88) yields (see [7], [9], [11])

f ′′ = [2(k1 − f ′3)]
1

2 . (91)

The boundary condition f ′′(1) = 0 and assumption f ′(1) = 1
give k1 = 1. Define t = f ′, (91) becomes

dt

dη
= [2(1 − t3)]

1

2 . (92)

The final form of solution of equation (88) in parametric form

is (see [11])

η =
2

3
√

2

[

2F1[
1

2
,
2

3
,
3

2
, 1]−(1 − t3)

1

2 ×2F1[
1

2
,
2

3
,
3

2
, 1−t3]

]

,

(93)

where 2F1 is the Hypergeometric function of first kind. Thus

from equation (93) we may tabulate the values of η for given

values of parameter t = f ′. The constant A can be determined

from the conserved quantity M . The conserved quantity (79)

with the help of (92) becomes

M =

∫

1

0

Af ′dη =
A√
2

∫

1

0

t(1 − t3)−1/2dt, (94)

which yields (see [9])

M =
Aπ

3
√

3
. (95)

Therefore

ψ(x, y) =
3
√

3M

π
f(η), (96)

u(x, y) =
27M2

νπ2(x3 + c2

c1

)
f ′(η), (97)

η =
3
√

3Mx

νπ(x3 + c2

c1

)
y. (98)

The Lie-point symmetry that generates the group invariant

solution is

X =

(

x +
c2

c1x2

)

∂

∂x
+

(

2 − c2

c1x3

)

y
∂

∂y
. (99)

Equations (96)-(98) with c2/c1 = l3 agree with the results

derived by Riley [9] and Watson [10] by the similarity solution

method. Watson [10] discussed how to compute l. By taking

c2 = 0, we get solution for infinite velocity at orifice.

VI. GENERAL FORM OF GROUP INVARIANT SOLUTION FOR

RADIAL JETS

The governing equations for radial free, wall and liquid jet

are (1) and (2). By introducing the stream function ψ, system

(1)-(2) reduces to a single third-order partial differential equa-

tion (4). For each of radial jets we have a conserved quantity

and certain boundary conditions. The Lie-point symmetry

generator is given in equation (14). The symmetry associated

with the conserved vector that gives conserved quantity for jet

flow generates the group invariant solution. We first calculated

that symmetry and we obtain

c3 = (2 − α)c1, (100)

where α = 1 for radial free jet, α = 5/4 for radial wall jet

α = 2 for radial liquid jet. For the radial wall jet we obtain

c4 = 0 also. We choose c4 = 0 for free and liquid jets because

the stream function is determined up to an arbitrary additive

constant and we specify that constant by choosing to zero. The

group invariant solution is of the form

ψ =

(

x3 +
c2

c1

)

2−α

3

g(ξ), (101)
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ξ =
xy

(x3 + c2

c1

)
α+1

3

− K(x), (102)

where

K(x) =
1

c1

∫ x x3k(x)

(x3 + c2

c1

)
α+4

3

dx. (103)

The condition that conserved quantity is independent of x

provided K(x) is a constant. We choose the constant to be

zero. To make K(x) = 0 choose k(x) = 0, in each of free,

wall and liquid jets. Equation (101) transforms equation (4) to

a third-order ordinary differential equation for g(ξ):

ν
d3g

dξ3
+ (2 − α)g

d2g

dξ2
+ (2α − 1)

(

dg

dξ

)2

= 0. (104)

To solve equation (104), define the transformation

η = (2 − α)
A

ν
ξ radial free and wall jets

η =
A

ν
ξ radial liquid jet, g = Af, (105)

where A is a constant. The final form of group invariant

solution is

ψ =

(

x3 +
c2

c1

)

2−α

3

Af(η), (106)

η = (2 − α)
Axy

ν(x3 + c2

c1

)
α+1

3

radial free and wall jets

η =
Axy

ν(x3 + c2

c1

)
α+1

3

radial liquid jet. (107)

Watson [10] suggested the same form for the stream function

and η for the similarity solution. He just assumed the form

whereas by group methods this form is derived. For radial

free and wall jets equation (104), with the help of (106) and

(107), is transformed to

f ′′′ + ff ′′ +
2α − 1

2 − α
f ′2 = 0, (108)

and for radial liquid jet we obtain

f ′′′ + 3f ′2 = 0. (109)

The symmetry that generates the group invariant solution is

X = (x+
c2

c1x2
)

∂

∂x
+(α− c2

c1x3
)y

∂

∂y
+(2−α)ψ

∂

∂ψ
. (110)

VII. VELOCITY PROFILES FOR FREE, WALL AND LIQUID

JETS

The velocity profile f ′(η) for radial free jet having finite

or infinite fluid velocity is the same and is shown in Figure 1

(see [7], [9]). In Figure 2, the variations of η with f ′(η) for

the radial wall jet are illustrated (see [6]). For radial liquid jet

the velocity profile is shown in Figure 3 which agrees with

Riley [7], [9].
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Fig. 1. The velocity profile f ′(η) for free jets.
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Fig. 2. The velocity profile f ′(η) for wall jets.
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Fig. 3. The velocity profile f ′(η) for liquid jets.

VIII. CONCLUSIONS

The Lie-point symmetry generators for third-order partial

differential equation for the stream function for radial jets

were derived. The radial free, wall and liquid jets satisfy

the same partial differential equation but boundary conditions

and conserved quantity for each jet were different. For each

jet a Lie point symmetry was associated with the conserved

vector that generated the conserved quantity for each jet. The

group invariant solution for the third-order partial equation

for stream function subject to boundary conditions for each

jet was generated by that Lie point symmetry. The velocity of
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fluid at the orifice was finite. The third-order partial differential

equation was reduced to the third-order ordinary differential

equation.

The velocity profile for radial free jet having finite or infinite

velocity at orifice was same and was shown in Figure 1. The

velocity profile, as shown in Figure 2, for radial wall jet having

finite or infinite velocity at orifice was same. Also for the radial

liquid jet the velocity profile having finite or infinite velocity

at orifice was same and was shown if Figure 3.

The general form of group invariant solution for the radial

jet flows was derived whereas for the similarity solution this

form was just assumed and not derived.
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