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Hyung-Weon Cho, Youngyoon Lee, Seung Goo Kang, Dahae Chong,
Myungsoo Lee, Chonghan Song, and Seokho Yoon

Abstract—This paper proposes a novel spectrum sensing technique
for the digital video broadcasting-terrestrial (DVB-T) systems, which
utilizes the periodicity of pilot signals in the orthogonal frequency
division multiplexing (OFDM) symbols. The proposed scheme can
overcome the effect of the timing synchronization error by re-
correlating the correlation values in the same sample distances. The
numerical results demonstrate that the detection probability perfor-
mance of the proposed scheme outperforms that of the conventional
scheme when there exists a timing synchronization error.

Keywords—DVB-T, spectrum sensing, OFDM, timing synchro-
nization error.

I. INTRODUCTION

THE spectrum sensing is one of the most essential tech-
nologies for the implementation of cognitive radio (CR)

systems [1], [2], which continually searches for a vacant
spectrum band and helps the CR to utilize the unoccupied
band. Recently, there have been many countries allowing the
CR to access the digital television bands [3], and thus, its use
in digital video broadcasting-terrestrial (DVB-T) systems has
attracted much attention.

Considering the known patterns of pilots in DVB-T systems,
several schemes suitable for the spectrum sensing have been
proposed to scan the frequency band of interest and investigate
the existence of the primary user (PU), the licensed user
of the frequency band [4], [5]. The scheme in [4] senses
the spectrum of PU by using the correlation between the
local pilots generated in the receiver and the pilots in the
received orthogonal frequency division multiplexing (OFDM)
symbol; however, this scheme is operational only for the
ideal additive white Gaussian noise (AWGN) environment.
Considering the fact that the effect of the channel on the
adjacent pilots can be generally assumed to be the same, the
scheme in [5] has overcome the effect of multipath fading by
using the correlations between a continual pilot (CP) and its
nearest scattered pilot (SP) in an OFDM symbol. However,
they are not straightforwardly applicable to the practical CR
systems, requiring the perfect timing synchronization before
the spectrum sensing process.

In this paper, thus, we propose a novel spectrum sensing
scheme for the practical DVB-T systems, which can overcome
the effect of the synchronization error. The novel scheme first
partitions the correlation values between the CPs and SPs
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Fig. 1. Pilot arrangement in the DVB-T systems with 2K mode.

nearest to the CPs into several groups based on the distance
between the CP and SP, and then, combines the correlation
values in the same group eliminating the effect of the timing
synchronization error.

II. SYSTEM MODEL

The DVB-T system can be operated with one of the 2K or
8K mode, depending on the total number of subcarriers. In this
paper, we focus on the DVB-T system with 2K mode, where
1705 subcarriers among 2048 total subcarriers are used to
transmit data, 45 CPs, and 142 or 143 SPs. Fig. 1 describes the
pilot arrangement in the DVB-T systems with 2K mode, where
Kmin and Kmax are the smallest and largest subcarrier indices
of the active subcarriers, respectively. The SPs are periodically
inserted every twelve subcarriers in an OFDM symbol and
their locations are periodic for every four OFDM symbols [6],
where the values of pilots with the same subcarrier index in
all OFDM symbols are the same.

Since the signal features for the DVB-T systems are well-
standardized in [6], the CR may have the rough information on
the frequency band of the PUs. Thus, using the information
as the initial estimate of the frequency band of the PU, the
spectrum sensing schemes search for the exact location of the
PU on the frequency domain and help the CR to avoid the
occupied frequency band.

In the DVB-T systems, the complex baseband OFDM
symbol is generated by taking the inverse FFT (IFFT) of the
quadrature amplitude modulation (QAM) data and inserting
the guard interval at the beginning of the OFDM symbol to
prevent the intersymbol interference. Then, the n-th sample
of the l-th received OFDM symbol in the receiver can be
expressed as

yl(n) = xl(n+ τ)ej2πΔ(lNT+n+τ)/N + wl(n),

for l = 0, 1, · · · , and n = 0, 1, · · · , N − 1, (1)
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where τ is the timing synchronization error normalized to
the sampling interval; Δ is the frequency difference between
the initial frequency estimate and real frequency of the PU
normalized to the subcarrier spacing; N is the size of the
IFFT; NT is the number of the samples in the OFDM
symbol including the guard interval; and wl(n) is the AWGN
sample with zero-mean and variance of σ2

w = E{|wl(n)|2},
respectively. Here, the signal xl(n) can be represented as

xl(n) =
1√
N

N−1∑
k=0

Xl(k)Hl(k)e
j2πkn/N ,

for l = 0, 1, · · · , and n = 0, 1, · · · , N − 1, (2)

where Xl(k) is a pilot or data transmitted through the k-th
subcarrier of the l-th OFDM symbol and Hl(k) is the channel
frequency response on the k-th subcarrier of the l-th OFDM
symbol.

Then, the FFT output corresponding to the k-th subcarrier
of the l-th received OFDM symbol is given as

Yl(k) =ej2πΔlNT /Nej2πτk/N

×Hl(k −Δi)Xl(k −Δ) +Wl(k), (3)

where Wl(k) is the FFT output of the AWGN sample wl(n).
From (1), we can observe that the timing synchronization error
causes the phase shift in the received OFDM symbol, resulting
in the degradation of the spectrum sensing performance.

III. CONVENTIONAL SCHEME

The conventional scheme searches for the frequency differ-
ence Δ by exploiting information on the indices and values
of the CPs and its nearest SPs in an OFDM symbol [5]. At
first, the conventional scheme generates a template

Tm(k) =
X(m)(k′)
X(m)(k)

,

for k ∈ Ccp and m ∈ {0, 1, 2, 3}, (4)

where Ccp is the set of subcarrier indices of CPs; m is the
OFDM symbol index indicating one of the the four different
pilot patterns described in Section II; Xm(k) (Xm(k′)) de-
notes the CP with the subcarrier index k (SP the nearest to the
Xm(k)) in the m-th pilot pattern. The value of the template is
either +1 or -1 and known to the both transmitter and receiver,
which will be used to align the sign of the correlation values

To search for the exact location of the PU on the frequency
domain, the pilot pattern of the PU needs to be estimated
prior to the estimation of frequency difference Δ. By taking
all the trial values of the Δ into consideration, the pilot pattern
estimate m0 is obtained as

m0 = argmax
m∈{0,1,2,3}

{
Re

(
Ψ(f,m)

)}
, for |f | ≤ N/2, (5)

where Ψ(f,m) =
∑

k∈Ccp
Y0(km + f)Y ∗

0 (k
′
m + f)Tm(km);

f is the trial value of the frequency difference Δ; and km is
(k′m) the index of the CP with the index k (SP the nearest to

km) in the m-th pilot pattern. Then, the relatively reliable α
trial values among all the trial values are selected as

{f1, · · · , fα} =argmaxc
|f |≤N/2

{
Re

( ∑
k∈Ccp

Y0(km0
+ f)

× Y ∗
0 (k

′
m0

+ f)Tm0
(km0

)
)}
, (6)

where argmaxc
|f |≤N/2

(·) collects the α largest values among f in

descending order. By exploiting the selected α trial values ,
we can calculate the correlation value of the pilots in the D
consecutive OFDM symbols as

Ω(f) =
∑
k∈Ccp

D−1∑
l=0

Yl(km0⊕l + f)

× Y ∗
l (k

′
m0⊕l + f)Tm0⊕l(km0⊕l), (7)

for f ∈ {f1, f2, · · · , fα, where m0 ⊕ l is the residue when
the sum of the m0 and l is divided by 4, and D is the OFDM
symbols used for estimation of Δ. Then, the trial value

Δ̂ = argmaxc
f∈{f1,f2, ··· ,fα}

{
Re

(
Ω(f)

)}
, (8)

which maximizes the real value of (7) is determined to be the
frequency difference between the initial frequency estimate
and real frequency of the PU. If α is set to be 1, the
conventional scheme searches for the spectrum of PU by using
only one received OFDM symbol.

In order to clarify the effect of the timing synchronization
error on the conventional scheme, we can rewrite (7) as

Ω(f) =
∑
k∈Ccp

D−1∑
l=0

ej2πτ(km0⊕l−k′m0⊕l)/N

×
∣∣∣Hl(km0⊕l + f −Δ)

∣∣∣2Xl(km0⊕l + f −Δ)

×X∗
l (k

′
m0⊕l + f −Δ)

X(m0⊕l)(k′m0⊕l)
X(m0⊕l)(km0⊕l)

+ Ŵl(km0⊕l), (9)

where Ŵl(km0⊕l) is the noise component. As shown in (9),
the timing synchronization error τ causes the phase rotation,
resulting in the performance degrade of the conventional
spectrum sensing scheme.

IV. PROPOSED SCHEME

When we correlate the value between each CP and the
SP the nearest to the CP for every CPs, the correlation
values can be classified into several groups depending on
the predetermined sample distances (±3, ±6, ±9, and ±12),
which stems from the fact that the pilot signals are located
periodically over the consecutive OFDM symbols. Then the
correlation values in the same group have the same effect of
the timing synchronization error, since the correlation values
with the same sample distance undergo the same effect of
the timing synchronization error. Thus, we propose a novel
spectrum sensing scheme which overcomes the effect of the
timing synchronization error by re-correlating a correlation
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value with the correlation value in the same group. This
procedure is performed for all pilot patterns and all trial values
of the frequency difference Δ, then the trial value which
maximizes the real value of the re-correlation is determined
to be the estimate of the frequency difference Δ between the
initial frequency estimate and real frequency of the PU.

With the same approach as in (4), the proposed scheme
generates a template

Tm
(
Ig,m(k)

)
=
X(m)(Ig,m(k) + g)

X(m)(Ig,m(k))
,

for m ∈ {0, 1, 2, 3}, (10)

where g is the sample distance between the CP and the SP the
nearest to the CP and Ig,m(i) is the subcarrier index of the
i-th CP that belongs to the group with the sample distance g in
the m-th pilot pattern. Then, the pilot pattern in the received
OFDM symbol is estimated as

m0 = argmax
m∈{0,1,2,3}

{
Re

(
Λ(f,m)

)}
, for |f | ≤ N/2, (11)

where Λ(f,m) is given as

Λ(f,m) =
D−1∑
l=0

∑
g∈G

Gn(g)−1∑
i=1

Gn(g)∑
j=i+1

Yl(Ig,m⊕l(i) + f)

× Y ∗
l (Ig,m⊕l(i) + g + f)Tm⊕l(Ig,m⊕l(i))

×
{
Yl(Ig,m⊕l(j) + f)Y ∗

l (Ig,m⊕l(j) + g + f)

× Tm⊕l(Ig,m⊕l(j))
}∗
,

(12)

where G is the set of the sample distances and Gn(g) is the
number of the CPs with the sample distance g.

As mentioned previously, then, we classify the correlation
values between a CPs and the SPs the nearest to the CPs
into several groups according to the predetermined sample
distances. Then, we re-correlate the correlation values in the
same group as

Γ(f) =
D−1∑
l=0

∑
g∈G

Gn(g)−1∑
i=1

Gn(g)∑
j=i+1

Yl(Ig,m0⊕l(i) + f)

× Y ∗
l (Ig,m0⊕l(i) + g + f)Tm0⊕l(Ig,m0⊕l(i))

×
{
Yl(Ig,m0⊕l(j) + f)Y ∗

l (Ig,m0⊕l(j) + g + f)

× Tm0⊕l(Ig,m0⊕l(j))
}∗
.

(13)

Finally, the proposed spectrum sensing scheme determines
the trial value of f which maximizes the correlation value
in (13) to be the estimate of the frequency difference Δ and
informs the CR to avoid the frequency band occupied by the
PU.

Δ̂ = argmax
|f |≤N/2

{
Re

(
Γ(f)

)}
. (14)

It should be noted that proposed spectrum sensing scheme
is not influenced by the timing synchronization error, which
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Fig. 2. Detection probabilities of the conventional and the proposed schemes
when the SNR is 5 dB.

can be confirmed by rewriting the (13) as

Γ(f) =

D−1∑
l=0

∑
g∈G

Gn(g)−1∑
i=1

Gn(g)∑
j=i+1

∣∣∣Hl(A)
∣∣∣2Xl(A)

×X∗
l (A+ g)

X(m0⊕l)(Ig,m0⊕l(i) + g)

X(m0⊕l)(Ig,m0⊕l(i))

∣∣∣Hl(B)
∣∣∣2

×X∗
l (B)Xl(B + g)

×
{X(m0⊕l)(Ig,m0⊕l(j) + g)

X(m0⊕l)(Ig,m0⊕l(j))

}∗

+ Ŵl(Ig,m0⊕l(j)),
(15)

where A = Ig,m0⊕l(i)+f −Δ, B = Ig,m0⊕l(j)+f −Δ, and
Ŵl(Ig,m0⊕l(j)) is the noise components.

V. SIMULATION RESULTS

In this section, the proposed scheme is compared to the
conventional scheme in terms of the detection probability
in the Rayleigh multipath channel environment. We consider
DVB-T systems with 2K mode and 4-QAM data modulation.
The simulation parameters used in the simulation are as
follows: the guard interval size of 128, D = 1 or 2, N = 2048,
Δ = 1, and α = N . Also, the number of the multipath is set
to be 10 with path delays of 0, 10, · · · , 90 samples. The
amplitude of each path varies independently from the others
according to the Rayleigh distribution with an exponential
power delay profile and the power ratio of the first fading
tap to the last fading tap is set to be 20 dB. The phase of
each path is uniformly distributed in (−π, π] and the Doppler
frequency is set to be 100 Hz.

Fig. 2 shows the detection probabilities of the conventional
and proposed schemes as the function of the timing synchro-
nization error. The signal to noise ratio (SNR) ρ is defined
as ρ � σ2

x/σ
2
w with σ2

x = E{|xl(n + τ)|2}, which is set to
be 5 dB and the timing synchronization error is normalized
to the length of one OFDM symbol. From the figure, we
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Fig. 3. Detection probabilities of the conventional and the proposed schemes
when the timing synchronization error is 60 samples.
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Fig. 4. Detection probabilities of the conventional and the proposed schemes
when the timing synchronization error is 80 samples.

can see that the detection probability of the conventional
scheme degrades as the timing synchronization increases,
whereas the proposed scheme searches for the spectrum of PU
robustness to the timing synchronization error. Fig. 3 and Fig.
4 compare the detection probabilities of the conventional and
the proposed schemes with the fixed timing synchronization
error of 60 and 80 in terms of the SNR, respectively. When
they are normalized to the length of one OFDM symbol, the
timing timing synchronization errors are 15/512 and 5/128,
respectively. From Fig. 3 and Fig. 4, we can also confirm that
the proposed scheme outperforms the conventional scheme in
terms of the detection probability regardless of the value of
timing synchronization error.

VI. CONCLUSION

In this paper, we have proposed a novel spectrum sensing
scheme based on the periodicity of the pilot signals in the

OFDM symbol of the DVB-T systems. The proposed scheme
is robust to the timing synchronization error by partitioning
the correlation values between the CPs and SPs nearest to
the CPs into several groups based on the sample distances,
and then, combining the correlation values in the same group
eliminating the effect of the timing synchronization error.
From the simulation results, it has been shown that the
detection probability of the proposed scheme does not degrade
when there exists a timing synchronization error, whereas the
conventional scheme fails to sense the spectrum of PU.
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