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Abstract—The fundamental aim of extended expansion concept is 

to achieve higher work done which in turn leads to higher thermal 
efficiency. This concept is compatible with the application of 
turbocharger and LHR engine.  The Low Heat Rejection engine was 
developed by coating the piston crown, cylinder head inside with 
valves and cylinder liner with partially stabilized zirconia coating of 
0.5 mm thickness.  Extended expansion in diesel engines is termed as 
Miller cycle in which the expansion ratio is increased by reducing the 
compression ratio by modifying the inlet cam for late inlet valve 
closing.  The specific fuel consumption reduces to an appreciable level 
and the thermal efficiency of the extended expansion turbocharged 
LHR engine is improved. 

In this work, a thermodynamic model was formulated and 
developed to simulate the LHR based extended expansion 
turbocharged direct injection diesel engine.  It includes a gas flow 
model, a heat transfer model, and a two zone combustion model.  Gas 
exchange model is modified by incorporating the Miller cycle, by 
delaying inlet valve closing timing which had resulted in considerable 
improvement in thermal efficiency of turbocharged LHR engines.  The 
heat transfer model, calculates the convective and radiative heat 
transfer between the gas and wall by taking into account of the 
combustion chamber surface temperature swings.  Using the two-zone 
combustion model, the combustion parameters and the chemical 
equilibrium compositions were determined.  The chemical equilibrium 
compositions were used to calculate the Nitric oxide formation rate by 
assuming a modified Zeldovich mechanism.  The accuracy of this 
model is scrutinized against actual test results from the engine.  The 
factors which affect thermal efficiency and exhaust emissions were 
deduced and their influences were discussed.  In the final analysis it is 
seen that there is an excellent agreement in all of these evaluations. 
 

Keywords—Low Heat Rejection, Miller cycle. 

I. INTRODUCTION 
NERGY conservation and efficiency have always been the 
quest of engineers concerned with internal combustion 

engines. The diesel engine generally offers better fuel economy 
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than its counterpart petrol engine. Even the diesel engine 
rejects about two thirds of heat energy of the fuel, one-third to 
the coolant, and one third to the exhaust, leaving only about 
one-third as useful power output. Theoretically if the heat 
rejected could be reduced, then the thermal efficiency would be 
improved, at least up to the limit set by the second law of 
thermodynamics. Low Heat Rejection engines aim to do this by 
reducing the heat energy from transferring to the engine 
coolant.  This energy could be recovered to promote a slight 
power increase at the flywheel and at turbocharger with higher 
boost and higher efficiency.  This Low heat rejection (LHR) 
engine concept proved to be a viable means of recovering 
thermal energy normally radiated or exhausted from the diesel 
engine [1]. 

A Low heat rejection engines employs suitable insulation 
coatings such as ceramics etc to the cylinder and piston.  LHR 
engine with 0.5 mm thickness insulation coating for 
components gives better performance than with 1 mm 
thickness.  The thermal efficiency with 0.5 mm coating is 
higher by about 6 to 8% under various operating conditions [5].  
Due to the insulation provided on the required surfaces of the 
cylinder, the amount of heat loss to the coolant is reduced and 
hence results in high combustion chamber temperatures.  This 
leads to severe problems such as high NOx emission levels and 
exhaust blow-down losses. 

The blow-down losses are mainly associated with the 
difference in pressure between the engine cylinder and turbine 
inlet duct prevailing at the beginning of the exhaust stroke.  
This can be overcome by using a concept called expanded cycle 
[8].  The extended expansion cycle with a short compression 
stroke is one of the engine concepts that are available for 
improving engine performance and reducing fuel consumption.  
The short compression stroke is achieved by late closing of the 
intake valve [6].  These engines with extended expansion 
stroke and short compression stroke are also known as Miller 
cycle.  Diesel engines with extended expansion strokes can be 
expected to have specific fuel consumption up to about 8% 
lower, than those achievable with conventional diesel engines 
employing equal compression and expansion strokes [8][9].  
For both spark ignition and Diesel engines the use of extended 
expansion reduces emissions in proportion of specific fuel 
consumption [9]. 
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To understand the fundamental processes in engine system 
the development of computer technology has encouraged the 
use of simulation models.   Hence, computer simulation has 
been performed for IC engine processes for each degree crank 
angle using the ‘C’ language to predict the performance and 
emissions of the test engine. 

A. Low Heat Rejection Engines 
The basic means of reducing heat rejection and loss in 

engines is to insulate the combustion chamber [2].  The primary 
advantage of low heat rejection engines is the increased gas 
temperatures that are allowed and maintained during operation.  
This corresponds to an increased enthalpy in the exhaust gases.  
Progress in raising combustion temperatures in the early days 
of engine design was restricted by the limitations of cast irons 
and other construction materials.  Thick walled combustion 
chambers were built to conduct heat away from the burning 
gases in the cylinder.  Materials that were then examined 
included glass derivatives and others thought to have low 
thermal conductivities.  Glass had excellent insulating qualities, 
low expansion ratios, low cost, but unfortunately lacks 
sufficient strength for engines.  The desirable material 
characteristics are Low thermal conductivity, Low specific 
heat, High flexure strength, High fracture toughness, High 
thermal shock resistance, Good wear resistance, Chemical 
inertness and Thermal expansion equal to iron and steel. 

Zirconia is a ceramic material that has very low thermal 
conductivity values, good strength, thermal expansion 
coefficients similar to metals, and is able to withstand much 
higher temperatures than metals.  However, one 
disadvantageous trait is its characteristic of changing phases as 
its temperature is greatly increased.  Phase changes occur on 
the molecular level and involve the altering of molecular 
bonding and structure.  Eliminating this phase change would 
ease the burdens of construction and use of the material in an 
engine that would often go through the problem temperature 
ranges. Partially stabilized zirconia (PSZ) has been developed 
that decreases the magnitudes of these changes and is now 
considered a good candidate for engine use [2]. 

In this case, the turbocharged conventional engine is 
modified to turbocharged LHR engine by insulating the 
combustion chamber surfaces and coolant side of the cylinder 
with partially stabilized zirconia of 0.5 mm thickness. Insulated 
engine components consist of pistons, cylinder head with 
valves and cylinder liner.  Fig.1 shows the photographic view 
of engine components before ceramic coating and Fig.2 to 4 
shows the Photographic view of engine components like 
cylinder liner, piston top and cylinder head with valves after 
ceramic coating respectively. 
 

 
Fig. 1 Photographic View of Engine Components 

(Before Coating) 
 

 

 
Fig. 2 Photographic View of Cylinder Liner 

(After Ceramic Coating) 
 
 
 

 
Fig. 3 Photographic View of Piston top 

(After Ceramic Coating) 
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Fig. 4 Photographic View of Cylinder Head with valves 

(After Ceramic Coating) 
 

B. Extended Expansion (Or) Miller Cycle 

The Extended expansion or Miller cycle concept was 
achieved, in this case by closing the inlet valve late.  
Conventionally, the inlet valve closes at 45º aBDC.  In the 
Miller cycle the inlet valve is allowed to close at 60ºaBDC. 
Fig.5 and 6 shows the conventional valve timing diagram and 
extended expansion cycle valve timing diagram respectively. 

The valve timing diagram was modified by modifying the 
intake cam.  Fig.7 and 8 shows the conventional intake cam and 
the modified intake cam respectively.  The duration of inlet 
valve opening in the conventional valve timing diagram is 233º 
Crank angle (CA) and in the case of the extended expansion 
cycle is 248º Crank angle (CA). 
 
 
 

 
 

Fig. 5 Conventional valve timing diagram 

 

Fig. 6 Extended expansion cycle valve timing diagram 

 

Fig. 7 Conventional intake cam 

 

 

Fig. 8 Modified intake cam 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:1, 2010

101

 

II. SIMULATION PROCEDURE 
Calculation of Number of Moles of Species of Reactant and 

Product 
In this simulation during the start of compression, the mole 

of different species that are considered to be present includes 
oxygen, nitrogen from intake and carbon dioxide, water 
(gaseous), nitrogen and oxygen from the residual gases. The 
overall complete combustion equation considered is  
 

( )2 2 2

2 2 2
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λ  excess air ratio 
n  Number of carbon atoms in diesel 
m  Number of hydrogen atoms in diesel 
 

Total Moles of Species of Reactant (TMR) 
This equation gives total number of moles of species of 

reactant 
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Total Moles of Species of Product (TMP) 
This equation gives total number of moles of species of 

product 
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Cylinder Volume (Vθ ) 
Cylinder volume at a crank angle is calculated from the 

equation given by [16] 
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CV  Cylinder volume (m3) 

B  Bore diameter (m) 
S  Stroke length (m) 

Cl  Connecting rod length (m) 
z  Constant 
 

Initial Temperature and Pressure during Start of 
Compression 

Initial temperature at the beginning of the compression 
process is calculated as follows [16] 
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T  Cylinder Temperature (K) 
P  Cylinder Pressure (bar) 
V  Cylinder volume  (m3) 
R  Characterestic gas constant (kJ/kg-K) 

VC  Specific heat at constant volume (kJ/kg-K) 
 

Work Done (dW) 
Work done in each crank angle 
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2 12
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Mass of Fuel Injected 
Considering that nozzle open area is constant during the 

injection period, mass of the fuel injected for each crank angle 
is calculated using the following expression given by [4]  
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fm  Mass of fuel injected (kg) 

DC  Coefficient of discharge of injector nozzle 

nA  Nozzle hole area (m2) 

fρ  Density of fuel (kg/m3) 

PΔ  Pressure drop across the nozzle 
θΔ  Nozzle open period in crank angle degrees 

N  Engine speed (rpm) 
    

Unburned Zone Temperature 
The unburned zone temperature is calculated using the 

equation given by [31] 
1

u SOC
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γ
−
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uT  Unburned zone temperature (K) 

SOCT  Temperature during the start of combustion (K) 
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SOCp  Pressure during the start of combustion (bar) 
 

Preparation Rate 
The preparation rate is calculated using the following 

equation given by [16] 
 

2

(1 )x x L
r i u OP KM M P−=                       (11) 

0.414 1.414 1.414 1.414 3.6440.085 i nK N M P h d− − −=      (12) 
 

rP  Preparation rate (kg per degree crank angle) 

2OP  Partial pressure of oxygen (bar) 

iM  Total mass of fuel injected in the cylinder upto the  
time of injection (kg) 

uM  Part of the fuel still available for preparation (kg) 

M  Mass of fuel injected (grams/cycle/cylinder) 
K  Constant 

iP  Injection period (degree crank angle) 

h  Number of nozzle holes in injector nozzle 

nd  Nozzle hole diameter (mm) 

,L x  Constants 
 

Reaction Rate 
The reaction rate is calculated using the following equation 

given by [16] 
1

2
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rR  Reaction rate (kg per degree crank angle) 

θ  Crank angle (degree) 
act  Activation energy  

1K  Constant 
 

Initial Temperature 
Initial temperature during the start of combustion after the 

ignition delay is calculated using the equation given below 
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1M  Mass in cylinder during start of combustion (kg) 

fM Mass of fuel (kg) 

vsQ  Lower heating value (kJ/kg) 
 
 

Annand’s Total Heat Transfer Model 
First term of this equation shows that Prandtl number for the 

gases forming the cylinder contents will be approximately 

constant at a value 0.7, claims that Reynolds number is the 
major parameter affecting convection.  The second is a straight 
forward radiation term assuming grey body radiation.  
 

4 4Re ( ) ( )
b

C W C W
dQ ak T T c T T
dt d

= − + −        (15) 

 
Q  Total Heat transfer (kJ) 

, ,a b c  Constants 

Re  Reynolds number 

wT  Cylinder wall temperature (K) 

CT  Cylinder mean temperature (K) 
   

Wall Heat Transfer Model 
This model is used to find out conductive heat transfer 

through cylinder to the coolant and thereby to find 
instantaneous wall temperature. 

Initial temperature is found out using the following 
expression [5] 
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wQ  Wall Heat transfer (kJ) 

gT  Gas temperature (K) 

gh  Gas wall heat transfer coefficient (kJ/m2–hr–K) 

l  Stroke length (m) 
     
The total conductive resistance offered by the cylinder liner, 
piston rings, cylinder head and piston for the heat transfer from 
cylinder gases to coolant is calculated from the following 
expression given by [5] 
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 (18)  
R  Total conductive resistance 

1l   Cylinder length (m) 

pT  Thickness of the piston crown (m) 

ch  Wall – coolant heat transfer coefficient (KJ/m2–hr–K) 

ck  Thermal conductivity of ceramic material (W/m2-K) 

sk  Thermal conductivity of skirt material (W/m2-K) 
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lk  Thermal conductivity of liner material (W/m2-K) 

pk  Thermal conductivity of piston material (W/m2-K) 

rk  Thermal conductivity of ring material (W/m2-K) 

1 2 3 4 5 7 8 9, , , , , , ,r r r r r r r r  Radii of the composite cylinder wall 
with respect to cylinder axis (m) 
 

Energy Equation 
According to first law of thermodynamics the energy balance 

equation is given by 
 

2 1( ) ( ) f VSE T E T dW dQ dM Q= − − +       (19) 

 
E  Internal energy (kJ) 
ER  Error in accuracy 

2M  Mass in the cylinder at the end of combustion 
 
To find the correct value of T2, both sides of the above equation 
should be balanced. 
 
So the above equation is rearranged as shown below 

2 1( ) ( ) f VSER E T E T dW dQ dM Q= − + + −      (20) 

   

If the numerical value of ER is less than the accuracy required, 
then the correct value of T2 has been established, otherwise a 
new value of T2 is calculated for new internal energy and Cv 

values. 
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Nitric Oxide Formation 
Initial nitric oxide formation rate is given by [4] 
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Nitric oxide equilibrium concentrations are calculated by  
 

[ ] [ ] [ ]( )1/ 2

2 220.3*exp( 21650 / )
e e e

NO T O N= −   (25) 

[      ] denotes species concentration (moles/cm3) 

2[ ]eO  Equilibrium oxygen concentration (moles/cm3) 

2[ ]eN  Equilibrium nitrogen concentration (moles/cm3) 

[ ]NO  Nitric oxide concentration (moles/cm3) 

[ ]eNO  Equilibrium nitrogen oxide concentration 
(moles/cm3) 

1 2 3, ,R R R  are constants 
 

Minimum Valve Flow Area 
The instantaneous flow area depends on valve lift and the 

geometric details of the valve head, seat and stem.  There are 
three separate stages to the flow area development as valve lift 
increases.  The stages change according to the conditions as the 
valve lift increases [16].   
 
In the first stage,  
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 The minimum flow area is  
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vL  Valve Lift (m) 
w  Valve seat width (m) 
β  Valve seat angle (deg) 

mA  Minimum flow area (m2) 

vD  Valve head diameter (m) 

pD  Port diameter (m) 

sD  Valve stem diameter (m) 
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Mass Flow during Exhaust Blow Down 
During exhaust blow-down the flow of gases out of the 

cylinder is due to high pressure existing within the cylinder.  
Mass flow rate is given by [16] 
 

2m
dm A dp
dt

ρ=                 (33) 

ρ  Density (kg/m3) 

dp  Pressure drop across the valve 
   

Mass Flow during Displacement 
During displacement cylinder pressure is assumed constant.  
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Intake 
The instantaneous mass flow through the inlet valve is given 

by [16] 
 

dtAdPCm mS=&                 (35)  
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Pressure drop across the valve during suction is given by [16] 
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oαΔ  Angle of opening (degree) 

cyA  Cylinder cross-sectional area (m2) 

III. EXPERIMENTAL SET UP AND PROCEDURE 
To validate computer simulation results, cylinder peak 

pressure was determined through the experiments at identical 
design and operating conditions. An experiment set-up was 
developed to conduct test on a four cylinder, four stroke water 
cooled turbocharged DI Diesel engine.  The test engine is 
coupled with a hydraulic dynamometer.  In addition to this, fuel 
measuring burette, air flow measuring U-tube manometer were 
also fitted to the test engine set up.  A provision was made to 
mount a piezoelectric pressure transducer flush with the 
cylinder head surface to measure the cylinder pressure.  The 
engine specifications are number of cylinders 4, cylinder bore 
111 mm, stroke 127 mm, rated speed 1500 rpm, compression 
ratio 16:1, IVO - 8º bTDC, IVC - 45º aBDC, EVO - 45ºbBDC, 
EVC - 12ºaTDC.  The experimental set up is shown in Fig.9.  
The experiments were carried out on the same engine with 
modifications to Turbocharged LHR engine by coating the 
cylinder liner outside, piston top, cylinder head with partially 

stabilized zirconia of 0.5mm thickness and Turbocharged LHR 
Extended Expansion engine by late closing of intake valve. 

 
 

 
 

Fig. 9 Experimental Set up 
 

1. Engine 
2. Hydraulic dynamometer 
3. Inlet line 
4. Exhaust line 
5. Air surge tank 
6. Compressor 
7. Turbine 
8. Exhaust gas analyzer 
9. Crank angle encoder 
10. Charge Amplifier 
11. CRO 

IV. RESULTS AND DISCUSSION 
Figs. 10-21 shows the comparison of Cylinder Pressure, 

Cylinder Mean Temperature, Rate of Heat Release, Cumulative 
Heat Release, Cumulative work done, Total Heat Transfer, 
Nitric oxide concentration, Brake specific fuel consumption 
and Brake thermal efficiency for turbocharged conventional 
engine, turbocharged LHR engine and turbocharged LHR 
extended expansion engine.  

 
A. Comparison of Cylinder Peak Pressure 
Comparison of prediction of in cylinder peak pressure as a 

function of crank angle is shown in Fig.10.  The prediction 
shows that the cylinder peak pressure for turbocharged LHR 
engine is higher by about 4.03% and 2.61% when compared to 
turbocharged conventional and turbocharged LHR extended 
expansion engine respectively.  Under identical conditions the 
experimental values of cylinder peak pressures as compared to 
theoretical predictions are higher by 0.52% for turbocharged 
LHR extended expansion engine and 0.47% for turbocharged 
conventional engine and 0.17% for turbocharged LHR engine.  
Fig.11-13 shows the comparison between experimental and 
simulated values of cylinder pressure for turbocharged 
conventional, turbocharged LHR and turbocharged LHR 
extended expansion engine. The increase in the pressure in the 
case of turbocharged LHR engine is mainly due to higher 
operating temperature.  Also the peak cylinder pressure of 
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turbocharged LHR extended expansion engine is 
comparatively lesser than the turbocharged LHR engine because of 
the lower effective compression ratio. 
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Fig. 10 Comparison of Cylinder Pressure for Conventional, LHR and 
LHR (EEE) for the diesel fuel supplied (0.0694g/cycle/cylinder) at 

1500 rpm 
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Fig. 11 Comparison of Experimental and Simulated Cylinder Pressure 

for Turbocharged Conventional engine for the diesel fuel supplied 
(0.0694g/cycle/cylinder) at 1500 rpm 
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Fig. 12 Comparison of Experimental and Simulated Cylinder Pressure 

for Turbocharged LHR engine for the diesel fuel supplied 
(0.0694g/cycle/cylinder) at 1500 rpm 
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Fig. 13 Comparison of Experimental and Simulated Cylinder Pressure 
for Turbocharged LHR extended expansion engine for the diesel fuel 

supplied (0.0694g/cycle/cylinder) at 1500 rpm 
 

B.  Comparison of Cylinder Mean Temperature 
Fig. 14 shows the comparison of cylinder mean temperature.  

The percentage increase of cylinder mean peak temperature in 
the case of turbocharged LHR engine are about 5.69% and 
1.45% when compared to turbocharged conventional and 
turbocharged LHR extended expansion engines.  The trend 
shows that the turbocharged LHR engines are operating at 
higher temperatures.  The high temperatures achieved are 
mainly attributed to insulation coatings applied to combustion 
chamber walls. 
 

C.  Comparison of Rate of Heat Release 
Fig. 15 shows the trend of rate of heat release.  The 

percentage increase in the peak rate of heat release during 
premixed combustion in the case of turbocharged LHR 
extended expansion engines were about 25.25% when 
compared to turbocharged LHR engines and decreased by 
about 12.42% when compared to turbocharged conventional 
engine.  The trend shows that the turbocharged LHR engines 
are exhibiting a lower rate of peak heat release during premixed 
combustion.  The decrease in peak heat release during 
premixed combustion in the case of turbocharged LHR engines 
is due to the decrease in delay period because of the higher 
operating temperatures. 
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Fig. 14 Comparison of Cylinder Mean Temperature for Conventional, 

LHR and LHR (EEE) for the diesel fuel supplied (0.0694 
g/cycle/cylinder) at 1500 rpm 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

330 350 370 390 410

Crank angle (deg)

R
at

e 
of

 H
ea

t R
el

ea
se

 (k
J/

de
g 

C
A)

Conventional

LHR

LHR (EEE)

TDC

Peak rate of heat release (kJ/deg CA)
(Premixed, Diffusion)
Conventional   0.1484, 0.0967
LHR   0.1013, 0.0975
LHR (EEE)   0.132, 0.096 

 
Fig. 15 Comparison of Rate of Heat Release for Conventional, LHR 
and LHR (EEE) for the diesel fuel supplied (0.0694g/cycle/cylinder) 

at 1500 rpm 
 

D.  Comparison of Cumulative Heat Release 
Fig. 16 shows the comparison of cumulative heat release.  

The percentage increase in cumulative heat release in the case 
of turbocharged LHR engine are about 2.93% and 1.83% when 
compared to turbocharged conventional and turbocharged LHR 
extended expansion engine respectively.  The increase in the 
cumulative heat release in the case of turbocharged LHR 
engine is due to longer combustion duration due to higher 
operating temperatures. 
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Fig. 16 Comparison of Cumulative heat release for Conventional, 

LHR and LHR (EEE) for the diesel fuel supplied (0.0694 
g/cycle/cylinder) at 1500 rpm 

 
E.  Comparison of Cumulative Work Done 
The comparison of cumulative work done is shown in 

Fig.17.  The percentage increase in cumulative work done in 
the case of turbocharged LHR extended expansion engine are 
about 5.52% and 0.4% when compared to turbocharged 
conventional and turbocharged LHR engines.  This increase in 
the cumulative work done in the case of turbocharged LHR 
extended expansion engine is mainly attributed to the decrease 
in compression work. 
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Fig. 17 Comparison of Cumulative work done for Conventional, LHR 
and LHR (EEE) for the diesel fuel supplied (0.0694g/cycle/cylinder) 

at 1500 rpm 
 

F.  Comparison of Total Heat Transfer 
Total heat transfer is the sum of convective and radiative heat 

transfer. The comparison of total heat transfer is shown in Fig. 
18.  In the case of turbocharged conventional engines the total 
heat transfer is higher by about   48.4%    and    50.9% when 
compared to turbocharged LHR and turbocharged LHR 
extended expansion engine.  This is because of the insulation 
coating applied on the cylinder components.  Also it is seen that 
the total heat transfer in the case of turbocharged LHR 
extended expansion engines is less then 4.98% when compared 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:1, 2010

107

 

to turbocharged LHR engines, this may be because of the 
reduced cylinder temperature in the turbocharged LHR 
extended expansion engine. 
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Fig. 18 Comparison of Total heat transfer for Conventional, LHR and 

LHR (EEE) for the diesel fuel supplied (0.0694g/cycle/cylinder) at 
1500 rpm 

 
G. Comparison of Nitric Oxide Concentration 
Fig. 19 shows the trend of nitric oxide concentration.  The 

percentage increase in the nitric oxide concentration in the case 
of turbocharged LHR engines are about 34.45% and 10.6% 
compared to turbocharged conventional and turbocharged LHR 
extended expansion engine.  The trend shows that the 
turbocharged LHR engines are producing higher nitric oxide 
concentration.  The increase in nitric oxide concentration in the 
case of turbocharged LHR engines is because of the higher 
cylinder mean peak temperature.  The decrease in nitric oxide 
concentration in the case of turbocharged LHR extended 
expansion engines when compared to turbocharged LHR 
engine is due to its lower operating temperature because of its 
lower effective compression ratio. 
 

H.  Comparison of Brake Specific Fuel Consumption 
Fig. 20 shows the comparison of simulated and experimental 

brake specific fuel consumption under identical conditions for 
turbocharged conventional, turbocharged LHR and 
turbocharged LHR extended expansion engine.  For the 
turbocharged LHR extended expansion, the decrease in brake 
specific fuel consumption of 3.73%, 3.65%, 3.9%, 3.35% 
3.09% and 4.16% at 1000 rpm, 1100 rpm, 1200 rpm, 1300 rpm, 
1400 rpm, 1500 rpm speed respectively as compared to that of 
turbocharged LHR engine are predicted by simulation.  Under 
identical conditions the experimental values are 4.57%, 4.58%, 
4.56%, 3.70%, 3.61% and 4.09%. 
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Fig. 19 Comparison of Nitric oxide concentration for Conventional, 

LHR and LHR (EEE) for the diesel fuel supplied 
(0.0694g/cycle/cylinder) at 1500 rpm 
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Fig. 20 Comparison of simulated and experimental brake specific fuel 

consumption for Conventional, LHR and LHR (EEE) for the diesel 
fuel (0.0694g/cycle/cylinder) 

 
I.  Comparison of Brake Thermal Efficiency 
Fig. 21 shows the comparison of simulated and experimental 

brake thermal efficiency under identical conditions for 
turbocharged conventional, turbocharged LHR and 
turbocharged LHR extended expansion engine.  For the 
turbocharged LHR extended expansion, the increase in brake 
thermal efficiency of 3.60%, 3.52%, 3.76%, 3.24%, 3.00% and 
3.99% at 1000 rpm, 1100 rpm, 1200 rpm, 1300 rpm, 1400 rpm 
and 1500 rpm speed respectively as compared to that of 
turbocharged LHR engine are predicted by simulation. Under 
identical conditions the experimental values are of 4.37%, 
4.38%, 4.36% 3.57%, 3.48% and 3.93%. 
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Fig. 21 Comparison of simulated and experimental brake thermal 

efficiency for Conventional, LHR and LHR (EEE) for the diesel fuel 
(0.0694g/cycle/cylinder) 

 

V. CONCLUSION 
The turbocharged conventional diesel engine was converted 

into turbocharged LHR engine and later modified into 
turbocharged LHR extended expansion engine.  The following 
can be concluded from the data presented. 

The increase in the thermal efficiency of Turbocharged LHR 
extended expansion engine is mainly attributed to the increase 
in cumulative work done, which may be due to the decrease in 
work consumed during compression. 

The turbocharged LHR extended expansion engine offers 
superior brake specific fuel consumption over the turbocharged 
LHR diesel engine. 

The turbocharged LHR extended expansion engine shows 
better lower NOx emission than the turbocharged LHR diesel 
engine at all speeds and load condition. 

Power increase of 4.84% at the rated speed 1500 rpm was 
achieved at about same fuel consumed for turbocharged LHR 
extended expansion engine when compared to turbocharged 
LHR engine. 

The simulated results of brake specific fuel consumption and 
thermal efficiency for the turbocharged conventional engine, 
turbocharged LHR engine and turbocharged LHR extended 
expansion engine have been found in good agreement with the 
experimental results. 

Even though this performance is appreciable, still there 
exists a scope for further improvement to bring the NOx 
emission level nearer to the practical and useful values of 
conventionally water cooled engines.  This can be done by 
incorporating both Miller cycle and internal exhaust gas 
recirculation. 
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