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Stability Analysis of Impulsive BAM Fuzzy
Cellular Neural Networks with Distributed Delays

and Reaction-diffusion Terms
Xinhua Zhang and Kelin Li

Abstract—In this paper, a class of impulsive BAM fuzzy cellular
neural networks with distributed delays and reaction-diffusion terms
is formulated and investigated. By employing the delay differential
inequality and inequality technique developed by Xu et al., some
sufficient conditions ensuring the existence, uniqueness and global
exponential stability of equilibrium point for impulsive BAM fuzzy
cellular neural networks with distributed delays and reaction-diffusion
terms are obtained. In particular, the estimate of the exponential con-
vergence rate is also provided, which depends on system parameters,
diffusion effect and impulsive disturbed intention. It is believed that
these results are significant and useful for the design and applications
of BAM fuzzy cellular neural networks. An example is given to show
the effectiveness of the results obtained here.

Keywords—Bi-directional associative memory; fuzzy cellular neu-
ral networks; reaction-diffusion; delays; impulses; global exponential
stability.

I. INTRODUCTION

THE reaction-diffusion neural networks were firstly in-
troduced by L. O. Chua in order to study passivity

and complexity [1]. M. Itoh and L. O. Chua had further
investigated the complexity of reaction-diffusion CNN with
various boundary conditions such as the Neumann boundary
conditions, the Dirichlet boundary conditions and the periodic
boundary conditions [2]. In 2003, Wang and Xu proposed
a class of reaction-diffusion Hopfield neural networks with
the Neumann boundary conditions and studied the global
exponential stability of this class of networks. Since than,
many researchers have done extensive works on this subject,
there exist some results on global asymptotical stability, global
exponential stability and periodic solutions for the reaction-
diffusion neural networks with various delays and the Neu-
mann boundary conditions, for example, see [4]-[16] and ref-
erences therein. On the other hand, besides delay and diffusion
effect, impulsive effect likewise exists in the neural network
system. As artificial electronic systems, neural networks such
as CNNs, bidirectional neural networks and recurrent neural
networks often are subject to impulsive perturbations which
can affect dynamical behaviors of the systems just as time
delays. Therefore, it is necessary to consider impulsive effect,
diffusion effect and delay effect on the stability of neural
networks [21]-[25], [28]. However, we note that, in [3]-[16],
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[21]-[23], [25], [28], all criteria on stability and periodicity
for reaction-diffusion neural networks with the Neumann
boundary conditions were independent of the diffusion effect.
In other words, in those results of Ref. [3]-[16], [21]-[23],
[25], [28], we do not know the reaction-diffusion phenomenon
how to affect stability of neural networks. Recently, Lu et al.
proposed some reaction-diffusion delayed recurrent neural net-
works with Dirichlet boundary conditions and obtained some
diffusion-dependent criteria on stability and periodicity for the
formulated neural networks [17]-[19], these criteria show that
the diffusion phenomenon is beneficial to the stabilization of
neural systems.

The bidirectional associative memory (BAM) neural net-
work is first introduced by Kosko [29]. It is a special class of
recurrent neural networks that can store bipolar vector pairs.
The BAM neural network is composed of neurons arranged
in two layers, the X-layer and Y-layer. The neurons in one
layer are fully interconnected to the neurons in the other
layer. Through iterations of forward and backward information
flows between the two layer, it performs a two-way asso-
ciative search for stored bipolar vector pairs and generalize
the single-layer autoassociative Hebbian correlation to a two-
layer pattern-matched heteroassociative circuits. Therefore,
this class of networks possesses good application prospects in
some fields such as pattern recognition, signal and image pro-
cess, artificial intelligence. To the best of our knowledge, few
authors have considered BAM fuzzy cellular neural networks.
To the best of our knowledge, few authors have investigated
impulsive BAM fuzzy cellular neural networks with distributed
delays and reaction-diffusion terms.

Motivated by the above discussions, the objective of this
paper is to formulate and study impulsive BAM fuzzy neural
networks with distributed delays and diffusion. Under quite
general conditions, by employing delay differential inequality
and inequality technique developed by Xu et al. [27], [28],
some sufficient conditions ensuring the existence, uniqueness
and global exponential stability of equilibrium point for im-
pulsive BAM fuzzy cellular neural networks with distributed
delays and diffusion are obtained.

The paper is organized as follows. In Section 2, the new neu-
ral network model is formulated, and the necessary knowledge
is provided. Main results are given in Section 3. In Section 4,
An example is given to show the effectiveness of the results
obtained here. Finally, we give the conclusion in Section 5.
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II. MODEL DESCRIPTION AND PRELIMINARIES

In this section, we will consider the model of impulsive
BAM fuzzy neural networks with distributed delays and
reaction-diffusion terms, it is described by the following
functional differential equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui(t,x)
∂t =

l∑
r=1

∂
∂xr

(Dir
∂ui(t,x)

∂xr
)− aiui(t, x)

+
m∑
j=1

aijgj(vj(t, x)) +
m∑
j=1

ãijwj

+
m∧
j=1

αij

∫ t

−∞Nij(t− s)gj(vj(s, x))ds

+
m∨
j=1

α̃ij

∫ t

−∞Nij(t− s)gj(vj(s, x))ds

+
m∧
j=1

Tijwj +
m∨
j=1

Hijwj + Ii, t ≥ 0, t �= tk,

ui(t
+, x) = ui(t

−, x) + Pik(ui(t
−, x)), t = tk,

∂vj(t,x)
∂t =

l∑
r=1

∂
∂xr

(D̄jr
∂vj(t,x)

∂xr
)− bjvj(t, x)

+
n∑

i=1

bjifi(ui(t, x)) +
n∑

i=1

b̃jiw̃i

+
n∧

i=1

βji
∫ t

−∞Kji(t− s)fi(ui(s, x))ds

+
n∨

i=1

β̃ji
∫ t

−∞Kji(t− s)fi(ui(s, x))ds

+
n∧

i=1

T̃jiw̃i +
n∨

i=1

H̃jiw̃i + Jj , t ≥ 0, t �= tk,

vj(t
+, x) = vj(t

−, x) +Qik(vj(t
−, x)), t = tk

(1)
for i ∈ I � {1, 2, · · · , n}, j ∈ J � {1, 2, · · · ,m},
k ∈ N � {1, 2, · · ·}, where x = (x1, x2, · · · , xl)T ∈ Ω ⊂
Rl, and Ω = {x = (x1, x2, · · · , xl)T , |xr| < lr, r =
1, 2, · · · , l} is a bounded compact set with smooth boundary
and mesΩ > 0 in space Rl;u = (u1, u2, · · · , un)T ∈ Rn, v =
(v1, v2, · · · , vm)T ∈ Rm; ui(t, x) and vj(t, x) are the states
of the ith neuron and the jth neuron at time t and in space
x, respectively; Dik ≥ 0 and D̄jk ≥ 0 correspond to the
transmission diffusion coefficient along the ith neuron and the
jth neuron, respectively; fi and gj denote the signal functions
of the ith neuron and the jth neuron at time t and in space
x, respectively; w̃i and wj denote inputs of the ith neuron
and the jth neuron at the time t, respectively; and Ii and Jj
denote bias of the ith neuron and the jth neuron at the time t,
respectively; ai > 0, bj > 0, aij , ãij , αij , α̃ij , bji, b̃ji, βji, β̃ji
are constants, ai and bj represent the rate with which the
ith neuron and the jth neuron will reset their potential to
the resting state in isolation when disconnected from the
networks and external inputs, respectively; aij , bji and ãij , b̃ji
denote connection weights of feedback template and feed-
forward template, respectively; αij , βji and α̃ij , β̃ji denote
connection weights of the delays fuzzy feedback MIN template
and the delays fuzzy feedback MAX template, respectively;
Tij , T̃ji and Hij , H̃ji are elements of fuzzy feedforward MIN
template and fuzzy feedforward MAX template, respectively;∧

and
∨

denote the fuzzy AND and fuzzy OR operation,
respectively; tk is called impulsive moment, and satisfies
0 < t1 < t2 < · · ·, lim

k→+∞
tk = +∞; ui(t−k , x), vj(t

−
k , x) and

ui(t
+
k , x), vj(t

+
k , x) denote the left-hand and right-hand limits

at tk, respectively; Pik and Qjk show impulsive perturbation
of the ith neuron and jth neuron at time tk, respectively.
We always assume ui(t

+
k , x) = ui(tk, x) and vj(t

+
k , x) =

vj(tk, x), k ∈ N .
The Dirichlet boundary conditions and initial conditions are

respectively given by{
ui(t, x) = 0, t ≥ 0, x ∈ ∂Ω, i ∈ I ,
vj(t, x) = 0, t ≥ 0, x ∈ ∂Ω, j ∈ J ,

(2)

and {
ui(s, x) = φui(s, x), −∞ < s ≤ 0,
vj(s, x) = φvj(s, x), −∞ < s ≤ 0,

(3)

where φui(s, x), φvj(s, x) (i ∈ I , j ∈ J ) are bounded and
continuous on (−∞, 0]× Ω, respectively.

If the impulsive operators Pik(ui) = 0, Qjk(vj) = 0, i ∈
I , j ∈ J , k ∈ N , then system (1) may reduce to the
following model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui(t,x)
∂t =

l∑
r=1

∂
∂xr

(Dir
∂ui(t,x)

∂xr
)− aiui(t, x)

+
m∑
j=1

aijgj(vj(t, x)) +
m∑
j=1

ãijwj

+
m∧
j=1

αij

∫ t

−∞Nij(t− s)gj(vj(s, x))ds

+
m∨
j=1

α̃ij

∫ t

−∞Nij(t− s)gj(vj(s, x))ds

+
m∧
j=1

Tijwj +
m∨
j=1

Hijwj + Ii, t ≥ 0,

∂vj(t,x)
∂t =

l∑
r=1

∂
∂xr

(D̄jr
∂vj(t,x)

∂xr
)− bjvj(t, x)

+
n∑

i=1

bjifi(ui(t, x)) +
n∑

i=1

b̃jiw̃i

+
n∧

i=1

βji
∫ t

−∞Kji(t− s)fi(ui(s, x))ds

+
n∨

i=1

β̃ji
∫ t

−∞Kji(t− s)fi(ui(s, x))ds

+
n∧

i=1

T̃jiw̃i +
n∨

i=1

H̃jiw̃i + Jj , t ≥ 0,

(4)

where the Dirichlet boundary conditions and initial conditions
are given by (2) and (3), respectively. System (4) is called the
continuous system of model (1).

Throughout this paper, we make the following assumptions:
(H1) For neuron activation functions fi and gj (i ∈ I ; j ∈

J ), there exist two positive diagonal matrices F =
diag(F1, F2, · · · , Fn) and G = diag(G1, G2, · · · , Gm)
such that

Fi = sup
u�=v

∣∣∣∣fi(u)− fi(v)

u− v

∣∣∣∣ , Gj = sup
u�=v

∣∣∣∣gj(u)− gj(v)

u− v

∣∣∣∣
for all u, v ∈ R (u �= v).

(H2) The delay kernels Nij ,Kji : [0,+∞) → [0,+∞), (i ∈
I ; j ∈ J ) are real-valued non-negative continuous, and
there exists a constant δ > 0 such that functions

nij(λ) =

∫ +∞

0

eλsNij(s)ds
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and

kji(λ) =

∫ +∞

0

eλsKji(s)ds

are continuous for λ ∈ [0, δ) (i ∈ I ; j ∈ J ).
(H3) Let P̄k(u) = u + Pk(u) and Q̄k(v) = v +

Qk(v) be Lipschitz continuous in Rn and Rm, re-
spectively, that is, there exist nonnegative diagnose
matrices Γk = diag(γ1k, γ2k, · · · , γnk) and Γ̄k =
diag(γ̄1k, γ̄2k, · · · , γ̄mk) such that

|P̄k(u)−P̄k(v)| ≤ Γk|u−v|, for all u, v ∈ Rn, k ∈ N,

|Q̄k(u)−Q̄k(v)| ≤ Γ̄k|u−v|, for all u, v ∈ Rm, k ∈ N,

where P̄k(u) = (P̄1k(u1), P̄2k(u2), · · · , P̄nk(un))
T ,

Q̄k(v) = (Q̄1k(v1), Q̄2k(v2), · · · , Q̄mk(vm))T ,
Pk(x) = (P1k(u1), P2k(u2), · · · , Pnk(un))

T ,Qk(v) =
(Q1k(v1), Q2k(v2), · · · , Qmk(vm))T .

To begin with, we introduce some notation and recall some
basic definitions.
PC[J × Ω, Rι] � {w(t, x) : J × Ω → Rι |w(t, x) is

continuous at t �= tk, w(t+k , x) = u(tk, x) and w(t−k , x) exists
for t, tk ∈ J, k ∈ N}, where J ⊂ R is an interval.
PC[J,Rι] � {w(t) : J → Rι |w(t) is continuous at t �= tk,

w(t+k ) = w(tk) and w(t−k ) exists for t, tk ∈ J, k ∈ N},
where J ⊂ R is an interval.
PC(Ω) � {ϕ : (−∞, 0]×Ω → Rι| ϕ(s+, x) = φ(s, x) for

s ∈ (−∞, 0), ϕ(s−, x) exists for s ∈ (−∞, 0], ϕ(s−, x) =
ϕ(s, x) for all but at most a finite number of points s ∈
(−∞, 0]}.
PCn � {φ : (−∞, 0] → Rn| φ(s+) = φ(s) for

s ∈ (−∞, 0), φ(s−) exists for s ∈ (−∞, 0], φ(s−) = φ(s)
for all but at most a finite number of points s ∈ (−∞, 0]}.
PCm � {φ : (−∞, 0] → Rm| φ(s+) = φ(s) for s ∈

(−∞, 0), φ(s−) exists for s ∈ (−∞, 0], φ(s−) = φ(s) for
all but at most a finite number of points s ∈ (−∞, 0]}.

For w(t, x) = (w1(t, x), w2(t, x), · · · , wι(t, x))
T ∈ Rι, we

define ‖wi(t, x)‖2 =
[ ∫

Ω
|wi(t, x)|2dx

] 1
2

, i = 1, 2, · · · , ι,
and for any φ(s, x) = (φ1(s, x), φ2(s, x), · · · , φι(s, x))T ∈
PC(Ω), the norm on PC(Ω) is defined by

‖φ‖2 = sup
−∞≤s≤0

ι∑
i=1

‖φi(s, x)‖2,

then it can be proved that PC(Ω) is a Banach space [19].
Definition 1: A function (u(t, x), (v(t, x))T

(u : (−∞,+∞) × Ω → Rn, v : (−∞,+∞) × Ω → Rm)
is said to be the solution of impulsive system (1), if the
following two conditions are satisfied
(i) For t, u(t, x) and v(t, x) are piecewise continuous with

first kind discontinuity at the points tk, k ∈ N . Moreover,
u(t, x) and v(t, x) is right continuous at each disconti-
nuity point.

(ii) u(t, x) and v(t, x) satisfy (1) and (2) for t ≥ 0, and
u(t, x) and v(t, x) satisfy (3) for t ≤ 0.

Especially, a point (u∗, v∗)T (u∗ ∈ Rn, v∗ ∈ Rm) is called an
equilibrium point of system (1), if (u(t, x), v(t))T = (u∗, v∗)T

is a solution of system (1).

Throughout this paper, we always assume that the impulsive
jumps Pk and Qk satisfy (referring to[14])

Pk(u
∗) = 0 and Qk(v

∗) = 0, k ∈ N,

i.e.,

P̄k(u
∗) = u∗ and Q̄k(v

∗) = v∗, k ∈ N, (7)

where (u∗, v∗)T is the equilibrium point of continuous systems
(4). That is, if (u∗, v∗)T is an equilibrium point of continuous
system (4), then (u∗, v∗)T is also the equilibrium of impulsive
system (1).

Definition 2: The equilibrium point (u∗, v∗)T of system
(1) is said to be globally exponentially stable, if there exist
constants λ > 0 and M ≥ 1 such that

n∑
i=1

‖ ui(t, x)− u∗i ‖2 +
m∑
j=1

‖ vj(t, x)− v∗j ‖2

≤ M(‖ φu − u∗ ‖2 + ‖ φv − v∗ ‖2)e−λt (8)

for all t ≥ 0, where

(u1(t, x), · · · , un(t, x), v1(t, x), · · · , vm(t, x))T

is any solution of system (1) with the initial condi-
tion (φu1, φu2, · · · , φun, φv1, φv2, · · · , φvm)T , and φu =
(φu1, φu2, · · · , φun)T , φv = (φv1, φv2, · · · , φvm)T .

Lemma 1: [26] For any positive integer n, let hj : R→ R
be a function (j = 1, 2, · · · , n), then we have
∣∣∣

n∧
j=1

αjhj(uj)−
n∧

j=1

αjhj(vj)
∣∣∣ ≤

n∑
j=1

∣∣∣αj

∣∣∣ · ∣∣∣hj(uj)−hj(vj)
∣∣∣,

∣∣∣
n∨

j=1

αjhj(uj)−
n∨

j=1

αjhj(vj)
∣∣∣ ≤

n∑
j=1

∣∣∣αj

∣∣∣ ·
∣∣∣hj(uj)− hj(vj)

∣∣∣
for all α = (α1, α2, · · · , αn)

T , u = (u1, u2, · · · , un)T , v =
(v1, v2, · · · , vn)T ∈ Rn.

Lemma 2: [17] Let Ω be a cube |xr| < lr (r = 1, 2, · · · , l)
and let h(x) be a real-valued function belonging to C1(Ω)
which vanish on the boundary ∂Ω of Ω, i.e., h(x)|∂Ω = 0.
Then ∫

Ω

h2(x)dx ≤ l2r

∫
Ω

∣∣∣ ∂h
∂xr

∣∣∣2dx.
By the methods developed by Xu et al. [27], [28], we can

get the following inequality.
Lemma 3: Let a < b ≤ +∞, and let ũ(t) =

(ũ1(t), ũ2(t), · · · , ũn(t))T ∈ PC[[a, b), Rn] and ṽ(t) =
(ṽ1(t), ṽ2(t), · · · , ṽm(t))T ∈ PC[[a, b), Rm] satisfy the fol-
lowing delay differential inequality with the initial condition
ũ(a+ s) ∈ PCn and ṽ(a+ s) ∈ PCm :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D+ũi(t) ≤ −riũi(t) +
m∑
j=1

pij ṽj(t)

+
m∑
j=1

qij
∫ +∞
0

Nij(s)ṽj(t− s)ds, i ∈ I ,

D+ṽj(t) ≤ −r̄j ṽj(t) +
n∑

i=1

p̄jiũi(t)

+
n∑

i=1

q̄ji
∫ +∞
0

Kji(s)ũi(t− s)ds, j ∈ J .

(8)
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where ri > 0, pij > 0, qij > 0, r̄j > 0, p̄ji > 0, q̄ji > 0, i ∈
I , j ∈ J . If the initial conditions satisfy{

ũ(s) ≤ κξe−λ(s−a), s ∈ [−∞, a],
ṽ(s) ≤ κηe−λ(s−a), s ∈ [−∞, a],

(9)

in which λ > 0, ξ = (ξ1, ξ2, · · · , ξn)T > 0 and η =
(η1, η2, · · · , ηm)T > 0 satisfy⎧⎪⎪⎨
⎪⎪⎩

(λ− ri)ξi +
m∑
j=1

(pij + qij
∫ +∞
0

Nij(s)e
λsds)ηj < 0,

(λ− r̄j)ηj +
n∑

i=1

(p̄ji + q̄ji
∫ +∞
0

Kji(s)e
λsds))ξi < 0,

(10)
for i ∈ I , j ∈ J . Then{

ũ(t) ≤ κξe−λ(t−a), t ∈ [a, b),
ṽ(t) ≤ κηe−λ(t−a), t ∈ [a, b).

Proof. For i ∈ I , j ∈ J and arbitrary ε > 0, set zi(t) �
(κ+ ε)ξie

−λ(t−a), z̄j(t) � (κ+ ε)ηje
−λ(t−a), we prove that

{
ũi(t) ≤ zi(t) = (κ+ ε)ξie

−λ(t−a), t ∈ [a, b), i ∈ I ,
ṽj(t) ≤ z̄j(t) = (κ+ ε)ηje

−λ(t−a), t ∈ [a, b), j ∈ J .
(11)

If this is not true, no loss of generality, suppose that there exist
i0 and t∗ ∈ [a, b) such that

ũi0(t
∗) = zi0(t

∗), D+ũi0(t
∗) ≥ żi0(t

∗),
ũi(t) ≤ zi(t), ṽj(t) ≤ z̄j(t), t ∈ [a, t∗] (12)

for i ∈ I , j ∈ J .
However, from (8), (12) and (11), we get

D+ũi0(t
∗) ≤ −ri0 ũi0(t∗) +

m∑
j=1

pi0j ṽj(t
∗)

+

m∑
j=1

qi0j

∫ +∞

0

Ni0j(s)ṽj(t
∗ − s)ds

≤ −ri0(κ+ ε)ξi0e
−λ(t∗−a)

+
m∑
j=1

pi0jηj(κ+ ε)ηje
−λ(t∗−a)

+
m∑
j=1

qi0j(κ+ ε)ηje
−λ(t∗−a)

×
∫ +∞

0

eλsNi0j(s)ds

=
[
− ri0ξi0 +

m∑
j=1

(
pi0j

+qi0j

∫ +∞

0

eλsNi0j(s)ds
)

×ηj
]
(κ+ ε)e−λ(t∗−a).

Since (10) holds, it follows that −ri0ξi0 +
m∑
j=1

(pi0j +

qi0j
∫ +∞
0

eλsNi0j(s)ds)ηj < −λξi0 < 0. Therefore, we have

D+ũi0(t
∗) < −λξi0(κ+ ε)e−λ(t∗−a) = żi0(t

∗),

which contradicts the inequality D+ũi0(t
∗) ≥ żi0(t

∗) in (12).
Thus (11) holds for all t ∈ [a, b). Letting ε→ 0, we have

{
ũi(t) ≤ κξie

−λ(t−a), t ∈ [a, b), i ∈ I ,
ṽj(t) ≤ κηje

−λ(t−a), t ∈ [a, b), j ∈ J .

The proof is completed.

III. MAIN RESULTS

In this section, we will discuss the existence and global
exponential stability of equilibrium point for impulsive BAM
fuzzy cellular neural networks with distributed delays and
reaction-diffusion terms, and give their proofs.

Theorem 1: Under assumptions (H1), (H2) and (H3), if the
following conditions hold:

(C1) there exist constant λ > 0 and vectors ξ =
(ξ1, ξ2, · · · , ξn)T > 0, η = (η1, η2, · · · , ηm)T > 0 such
that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ− ai −
l∑

r=1

Dir

l2r
)ξi +

m∑
j=1

[
|aij |+ (|αij |+ |α̃ij |)

× ∫ +∞
0

eλsNij(s)ds
]
Gjηj < 0, i ∈ I

(λ− bj −
l∑

r=1

D̄jr

l2r
)ηj +

n∑
i=1

[
|bji|+ (|βji|+ |β̃ji|)

× ∫ +∞
0

eλsKji(s)ds
]
Fi ξi < 0, j ∈ J ;

(C2) μ = sup
k∈N

{
lnμk

tk−tk−1

}
< λ, where μk =

max
1≤i≤n,1≤j≤m

{1, γik, γ̄jk}, k ∈ N ;

then system (1) has exactly one globally exponentially stable
equilibrium point, and its exponential convergence rate equals
λ− μ.

Proof. We shall prove this theorem in two steps.
Step 1: We prove the existence of the equilibrium point of

system (4).
Let (u(t, x), v(t, x))T and (ū(t, x), v̄(t, x))T be

arbitrary two solutions of system (4), where u(t, x) =
(u1(t, x), · · · , un(t, x))T , v(t, x) = (v1(t, x), · · · , vm(t, x))T

and ū(t, x) = ū1(t, x), · · · , ūn(t, x))T , v̄(t, x) =
v̄1(t, x), · · · , v̄m(t, x))T , then we have

∂(ui(t, x)− ūi(t, x))

∂t

=
l∑

r=1

∂

∂xr

(
Dir

∂(ui(t, x)− ūi(t, x))

∂xr

)

−ai(ui(t, x)− ūi(t, x))

+
m∑
j=1

aij [gj(vj(t, x))− gj(v̄j(t, x))]

+

m∧
j=1

αij

∫ t

−∞
Nij(t− s)gj(vj(s, x))ds

−
m∧
j=1

αij

∫ t

−∞
Nij(t− s)gj(v̄j(s, x))ds

+

m∨
j=1

α̃ij

∫ t

−∞
Nij(t− s)gj(vj(s, x))ds



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

1017

−
m∨
j=1

α̃ij

∫ t

−∞
Nij(t− s)gj(v̄j(s, x))ds (13)

and

∂(vj(t, x)− v̄j(t, x))

∂t

=
l∑

r=1

∂

∂xr

(
D̄jr

∂(vj(t, x)− v̄j(t, x)

∂xr

)

−bj(vj(t, x)− v̄j(t, x))

+
n∑

i=1

bji[fi(ui(t, x))− fi(ūi(t, x))]

+

n∧
i=1

βji

∫ t

−∞
Kji(t− s)fj(uj(s, x))ds

−
n∧

i=1

βji

∫ t

−∞
Kji(t− s)fj(ūj(s, x))ds

+
n∨

i=1

β̃ji

∫ t

−∞
Kji(t− s)fj(uj(s, x))ds

−
n∨

i=1

β̃ji

∫ t

−∞
Kji(t− s)fj(ūj(s, x))ds (14)

for i ∈ I , j ∈ J .
Let yi(t, x) = ui(t, x)− ūi(t, x), i ∈ I , zj(t, x) = vj(t, x)−
v̄j(t, x), j ∈ J . Multiply both sides of (13) by yi(t, x) and
integrate it, we get

1

2

d

dt

∫
Ω

(yi(t, x))
2dx

=

∫
Ω

yi(t, x)
l∑

r=1

∂

∂xr

(
Dir

∂yi(t, x)

∂xr

)
dx

−ai
∫
Ω

(yi(t, x))
2dx

+

m∑
j=1

aij

∫
Ω

yi(t, x)
[
gj(vj(t, x))− gj(vj(t, x))

]
dx

+

∫
Ω

yi(t, x)
[ m∧
j=1

αij

∫ t

−∞
Nij(t− s)gj(vj(s, x))ds

−
m∧
j=1

αij

∫ t

−∞
Nij(t− s)gj(v̄j(s, x))ds

]
dx

+

∫
Ω

yi(t, x)
[ m∨
j=1

α̃ij

∫ t

−∞
Nij(t− s)gj(vj(s, x))ds

−
m∨
j=1

α̃ij

∫ t

−∞
Nij(t− s)gj(v̄j(s, x))ds

]
dx. (15)

From Green’s formula and the Dirichlet boundary condition,
we have

∫
Ω

yi(t, x)
l∑

r=1

∂

∂xr

(
Dir

∂yi(t, x)

∂xr

)
dx

= −
l∑

r=1

∫
Ω

Dir

(∂(yi(t, x)
∂xr

)2

dx.

By Lemma 2, we can obtain

∫
Ω

yi(t, x)

l∑
r=1

∂

∂xr

(
Dir

∂yi(t, x)

∂xr

)
dx

≤ −
l∑

r=1

Dir

l2r
‖yi(t, x)‖22. (16)

From assumption (H1) and Höder inequality, we have

m∑
j=1

aij

∫
Ω

yi(t, x)
[
gj(vj(t, x))− gj(v̄j(t, x))

]
dx

≤
m∑
j=1

|aij |
∫
Ω

|yi(t, x)||gj(vj(t, x))− gj(v̄j(t, x))|dx

≤
m∑
j=1

|aij |
∫
Ω

|yi(t, x)||zj(t, x)|Gjdx

≤
m∑
j=1

|aij |Gj‖yi(t, x)‖2‖zj(t, x)‖2. (17)

By Lemma 1, assumption (H1) and Höder inequality, we have

∫
Ω

yi(t, x)
[ m∧
j=1

αij

∫ t

−∞
Nij(t− s)gj(vj(s, x))ds

−
m∧
j=1

αij

∫ t

−∞
Nij(t− s)gj(v̄j(s, x))ds

]
dx

≤
∫
Ω

|yi(t, x)|
∣∣∣

m∧
j=1

αij

∫ t

−∞
Nij(t− s)gj(vj(s, x))ds

−
m∧
j=1

αij

∫ t

−∞
Nij(t− s)gj(vj(s, x))ds

∣∣∣dx

≤
∫
Ω

|yi(t, x)|
m∑
j=1

|αij |
∣∣∣
∫ t

−∞
Nij(t− s)gj(vj(s, x))ds

−
∫ t

−∞
Nij(t− s)gj(v̄j(s, x))ds

∣∣∣dx
=

m∑
j=1

|αij |
∫
Ω

|yi(t, x)|
∣∣∣
∫ t

−∞
Nij(t− s)

×[gj(vj(s, x))− gj(v̄j(s, x)]ds
∣∣∣dx

≤
m∑
j=1

|αij |Gj

∫
Ω

|yi(t, x)|
[ ∫ t

−∞
Nij(t− s)

×|vj(s, x))− v̄j(s, x)|ds
]
dx

=
m∑
j=1

|αij |Gj

∫ t

−∞
Nij(t− s)

×
[ ∫

Ω

|yi(t, x)||vj(s, x))− v̄j(s, x)|dx
]
ds

≤
m∑
j=1

|αij |Gj‖yi(t, x)‖2
∫ t

−∞
Nij(t− s)‖zj(s, x)‖2ds.

(18)
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By the same reason, we have
∫
Ω

yi(t, x)
[ m∨
j=1

α̃ij

∫ t

−∞
Nij(t− s)gj(vj(s, x))ds

−
m∨
j=1

α̃ij

∫ t

−∞
Nij(t− s)gj(vj(s, x))ds

]
dx

≤
m∑
j=1

|α̃ij |Gj‖yi(t, x)‖2
∫ t

−∞
Nij(t− s)‖zj(s, x)‖2ds.

(19)

Substituting inequalities (16)-(19) into (15), we can obtain

1

2

d

dt
‖yi(t, x)‖22

≤ −(
ai +

l∑
r=1

Dir

l2r

)
‖yi(t, x)‖22

+

m∑
j=1

|aij |Gj‖yi(t, x)‖2‖zj(t, x)‖2

+

m∑
j=1

(|αij |+ |α̃ij |)Gj‖yi(t, x)‖2

×
∫ t

−∞
Nij(t− s)‖zj(s, x)‖2ds,

i.e.

D+‖yi(t, x)‖2

≤ −(
ai +

l∑
r=1

Dir

l2r

)
‖yi(t, x)‖2

+
m∑
j=1

|aij |Gj‖zj(t, x)‖2

+
m∑
j=1

(|αij |+ |α̃ij |)Gj

×
∫ t

−∞
Nij(t− s)‖zj(s, x)‖2ds, i ∈ I . (20)

By the same consequence, multiply both sides of (14) by
zj(t, x) and integrate it, we can obtain

D+‖zj(t, x)‖2

≤ −(
bj +

l∑
r=1

Djr

l2r

)
‖zj(t, x)‖2

+
n∑

i=1

|bji|Fi‖yi(t, x)‖2

+
n∑

i=1

(|βji|+ |β̃ji|)Fi

×
∫ t

−∞
Kji(t− s)‖yi(s, x)‖2ds, j ∈ J . (21)

Let ũi(t) = ‖yi(t, x)‖2, ṽj(t) = ‖zj(t, x)‖2, i ∈ I , j ∈
J , and ri = ai +

l∑
r=1

Dir

l2r
, pij = |aij |Gj , qij = (|αij | +

|α̃ij |)Gj , r̄j = bj +
l∑

r=1

Djr

l2r
, p̄ji = |bji|Fi, q̄ji = (|βji| +

|β̃ji|)Fi for i ∈ I , j ∈ J , where ri > 0, pij > 0, qij >
0, r̄j > 0, p̄ji > 0, q̄ji > 0, i ∈ I , j ∈ J .
from (20), (21), we can obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D+ũi(t) ≤ −riũi(t) +
m∑
j=1

pij ṽj(t)

+
m∑
j=1

qij
∫ +∞
0

Nij(s)ṽj(t− s)ds, i ∈ I ,

D+ṽj(t) ≤ −r̄j ṽj(t) +
n∑

i=1

p̄jiũi(t)

+
n∑

i=1

q̄ji
∫ +∞
0

Kji(s)ũi(t− s)ds, j ∈ J .

(22)
From condition (C1), there exist λ > 0 and ξ =
(ξ1, ξ2, · · · , ξn)T > 0, η = (η1, η2, · · · , ηm)T > 0 such that⎧⎪⎪⎨
⎪⎪⎩

(λ− ri)ξi +
m∑
j=1

(pij + qij
∫ +∞
0

Nij(s)e
λsds)ηj < 0,

(λ− r̄j)ηj +
n∑

i=1

(p̄ji + q̄ji
∫ +∞
0

Kji(s)e
λsds))ξi < 0

(23)
for i ∈ I , j ∈ J .

Taking κ = ‖ϕ‖2

min
1≤i≤n,1≤j≤m

{ξi,ηj} =
‖φy‖2+‖φz‖2

min
1≤i≤n,1≤j≤m

{ξi,ηj} =

‖φu−φū‖2+‖φv−φv̄‖2

min
1≤i≤n,1≤j≤m

{ξi,ηj} , it is easy to prove that

{
ũ(s) ≤ κξe−λs, s ∈ [−∞, 0],
ṽ(s) ≤ κηe−λs, s ∈ [−∞, 0].

(24)

Combining (22)-(24) and Lemma 3, we have{
ũ(t) ≤ κξe−λt, t ≥ 0,
ṽ(t) ≤ κηe−λt, t ≥ 0.

(25)

Let M =

n∑

i=1

ξi+
m∑

j=1

ηj

min
1≤i≤n,1≤j≤m

{ξi,ηj} , we can obtain

n∑
i=1

‖yi(t, x)‖2 +
m∑
j=1

‖zj(t, x)‖2

≤ M
(

sup
−∞<s≤0

n∑
i=1

‖yi(s, x)‖2

+ sup
−∞<s≤0

m∑
j=1

‖zj(s, x)‖2
)
e−λt. (26)

It follows that

‖(u(t, x), v(t, x))T − (ū(t, x), v̄(t, x))T ‖2
≤ Me−λt‖(φu, φv)T − (φū, φv̄)

T ‖2 (27)

for all t ≥ 0.
That is

‖(u(t, x), v(t, x))T − (ū(t, x), v̄(t, x))T ‖2 = O(e−λt). (28)

For any fixed Δt > 0, (u(t−Δt, x), v(t−Δt, x))T is also a
solution of system (4), from (27), one can derive that∥∥∥ (u(t, x), v(t, x))T − (u(t−Δt, x), v(t−Δt, x))T

Δt

∥∥∥
2

= O(e−λt). (29)
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This implies that

‖(u̇(t, x), v̇(t, x))T ‖2 = O(e−λt), (30)

where (u̇(t, x), v̇(t, x))T denotes the derivative of
(u(t, x), v(t, x))T for argument t. According to Cauchy
convergence principle, we conclude that system (4) has an
equilibrium solution

(u∗, v∗)T = (u∗1, u
∗
2, · · · , u∗n, v∗1 , v∗2 , · · · , v∗m)T ,

where limt→∞ u(t, x) = u∗, limt→∞ v(t, x) = v∗. That is,
system (1) has an equilibrium point.

Step 2: We prove that the equilibrium point of system (1)
is globally exponentially stable.

Let (u∗, v∗)T be an equilibrium point of system (1),
(u(t, x), v(t, x))T is an arbitrary solution of system (1), and set
ũi(t, x) = ui(t, x)− u∗i , ṽj(t, x) = vj(t, x)− v∗j , i ∈ I , j ∈
J . It is easy to see that system (1) can be transformed into
the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ũi(t,x)
∂t =

l∑
r=1

∂
∂xr

(Dir
∂ũi(t,x)

∂xr
)− aiũi(t, x)

+
m∑
j=1

aij

(
gj(vj)− gj(v

∗
j )
)

+
m∧
j=1

αij

∫ t

−∞Nij(t− s)gj(v)ds

−
m∧
j=1

αij

∫ t

−∞Nij(t− s)gj(v
∗
j )ds

+
m∨
j=1

α̃ij

∫ t

−∞Nij(t− s)gj(vj)ds

−
m∨
j=1

α̃ij

∫ t

−∞Nij(t− s)gj(v
∗
j )ds, t �= tk,

ũi(t
+
k , x) = P̃ik(ũi(t

−
k , x)), k ∈ N

∂ṽj(t,x)
∂t =

l∑
r=1

∂
∂xr

(Dir
∂ṽj(t,x)

∂xr
)− bj ṽj(t, x)

+
n∑

i=1

bji

(
fi(ui)− fi(u

∗
i )
)

+
n∧

i=1

βji
∫ t

−∞Kji(t− s)fi(ui)ds

−
n∧

i=1

βji
∫ t

−∞Kji(t− s)fi(u
∗
i )ds

+
n∨

i=1

β̃ji
∫ t

−∞Kji(t− s)fi(ui)ds

−
n∨

i=1

β̃ji
∫ t

−∞Kji(t− s)fi(u
∗
i )ds, t �= tk

ṽj(t
+
k , x) = Q̃jk(ṽj(t

−
k , x)), k ∈ N,

(30)
where P̃ik(ũi(t, x)) = P̄ik(ũi(t, x) + u∗i ) −
P̄ik(u

∗
i ), Q̃jk(ṽj(t, x)) = Q̄jk(ṽj(t, x) + v∗j ) − Q̄jk(v

∗
j ),

and the Dirichlet boundary conditions and initial conditions
of (3.18) are respectively{

ũi(t, x) = 0, t ≥ 0, x ∈ ∂Ω, i ∈ I ,
ṽj(t, x) = 0, t ≥ 0, x ∈ ∂Ω, j ∈ J ,

(31)

and{
φ̃u(s, x) = u(s, x)− u∗ = φu(s, x)− u∗, s ∈ (−∞, 0],

φ̃v(s, x) = v(s, x)− v∗ = φv(s, x)− v∗, s ∈ (−∞, 0].
(32)

Multiply both sides of first equation and third equation in (30)
by ũi(t, x) and ṽj(t, x), respectively, and then integrate them.
By a minor modification of the proof of Step 1, we can easily
derive that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D+ũi(t) ≤ −riũi(t) +
m∑
j=1

pij ṽj(t)

+
m∑
j=1

qij
∫ +∞
0

Nij(s)ṽj(t− s)ds, i ∈ I ,

D+ṽj(t) ≤ −r̄j ṽj(t) +
n∑

i=1

p̄jiũi(t)

+
n∑

i=1

q̄ji
∫ +∞
0

Kji(s)ũi(t− s)ds, j ∈ J ,

(33)
where parameters ri, r̄j , pij , p̄ji, qij , q̄ji (i ∈ I , j ∈ J )
are the same as (22). Uniformity, from condition (C1),
there exist λ > 0 and ξ = (ξ1, ξ2, · · · , ξn)T > 0, η =
(η1, η2, · · · , ηm)T > 0 such that⎧⎪⎪⎨
⎪⎪⎩

(λ− ri)ξi +
m∑
j=1

(pij + qij
∫ +∞
0

Nij(s)e
λsds)ηj < 0,

(λ− r̄j)ηj +
n∑

i=1

(p̄ji + q̄ji
∫ +∞
0

Kji(s)e
λsds))ξi < 0

(34)
for i ∈ I , j ∈ J .

Taking κ == ‖φu−φu∗‖2+‖φv−φv∗‖2

min
1≤i≤n,1≤j≤m

{ξi,ηj} , it is easy to prove that

{ ‖ũ(t)‖2 ≤ κξe−λt, −∞ < t ≤ 0 = t0,
‖ṽ(t)‖2 ≤ κηe−λt, −∞ < t ≤ 0 = t0.

From Lemma 3, we obtain{ ‖ũ(t)‖2 ≤ κξe−λt, t0 ≤ t < t1,
‖ṽ(t)||2 ≤ κηe−λt, t0 ≤ t < t1.

(35)

Suppose that for l ≤ k, the inequalities{ ‖ũ(t)‖2 ≤ κμ0μ1 · · ·μl−1ξe
−λt, tl−1 ≤ t < tl,

‖ṽ(t)‖2 ≤ κμ0μ1 · · ·μl−1ηe
−λt, tl−1 ≤ t < tl.

(36)

hold, where μ0 = 1. When l = k + 1, we note that

‖ũ(tk)‖2 = ‖ũ(t+k , x)‖2 = ‖P̃k(ũ(t
−
k , x))‖2

≤ Γk‖ũ(t−k , x)‖2
≤ κμ0μ1 · · ·μk−1Γkξ lim

t→t−k
e−λt

≤ κμ0μ1 · · ·μk−1μkξe
−λtk , (37)

and

‖ṽ(tk)‖2 = ‖ṽ(t+k , x)‖2 = ‖Q̃k(ṽ(t
−
k , x))‖2

≤ Γ̄k‖ṽ(t−k , x)‖2
≤ κμ0μ1 · · ·μk−1Γ̄kη lim

t→t−k
e−λt

≤ κμ0μ1 · · ·μk−1μkηe
−λtk . (38)

From (37), (38) and μk ≥ 1, we have{ ‖ũ(t)‖2 ≤ κμ0μ1 · · ·μk−1μkξe
−λt, −∞ ≤ t ≤ tk,

‖ṽ(t)‖2 ≤ κμ0μ1 · · ·μk−1μkηe
−λt, −∞ ≤ t ≤ tk.

(39)
Combining (33),(34),(39) and Lemma 3, we obtain that{ ‖ũ(t)‖2 ≤ κμ0μ1 · · ·μkξe

−λt, tk ≤ t < tk+1,
‖ṽ(t)‖2 ≤ κμ0μ1 · · ·μkηe

−λt, tk ≤ t < tk+1.
(40)
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Applying the mathematical induction, we can obtain the fol-
lowing inequalities
{ ‖ũ(t)‖2 ≤ κμ0μ1 · · ·μkξe

−λt, t ∈ [tk, tk+1), k ∈ N,
‖ṽ(t)‖2 ≤ κμ0μ1 · · ·μkηe

−λt, t ∈ [tk, tk+1), k ∈ N.
(41)

According to (C2), we have μk ≤ eμ(tk−tk−1) < eλ(tk−tk−1),
so we have

‖ũ(t)‖2
≤ κeμt1eμ(t2−t1) · · · eμ(tk−1−tk−2)ξe−λt

= κξeμtk−1e−λt ≤ κξe−(λ−μ)t, t ∈ [tk−1, tk), k ∈ N,

and

‖ṽ(t)‖2
≤ κeμt1eμ(t2−t1) · · · eμ(tk−1−tk−2)ηe−λt

= κηeμtk−1e−λt ≤ κηe−(λ−μ)t, t ∈ [tk−1, tk), k ∈ N.

That is{ ‖ũ(t)‖2 ≤ κξe−(λ−μ)t, t ∈ (−∞, tk), k ∈ N,
‖ṽ(t)‖2 ≤ κηe−(λ−μ)t, t ∈ (−∞, tk), k ∈ N.

(42)
It follows that

n∑
i=1

‖ui(t, x)− u∗i ‖2 +
m∑
j=1

‖vj(t, x)− v∗j ‖2

=

n∑
i=1

‖ũi(t)‖2 +
m∑
j=1

‖ṽj(t)‖2

≤
n∑

i=1

κξie
−(λ−μ)t +

m∑
j=1

κηje
−(λ−μ)t

=

∑n
i=1 ξi +

∑m
j=1 ηj

min
1≤i≤n,1≤j≤m

{ξi, ηj} (‖φ̃u‖2 + ‖φ̃v‖2)e−(λ−μ)t

=

∑n
i=1 ξi +

∑m
j=1 ηj

min
1≤i≤n,1≤j≤m

{ξi, ηj}

×
(
‖φu − u∗‖2 + ‖φv − v∗‖2

)
e−(λ−μ)t.

Let M =
∑n

i=1 ξi+
∑m

j=1 ηj

min
1≤i≤n,1≤j≤m

{ξi,ηj} , then we have

n∑
i=1

‖ui(t, x)− u∗i ‖2 +
m∑
j=1

‖vj(t, x)− v∗j ‖2

≤ M
(
‖φu − u∗‖2 + ‖φv − v∗‖2

)
e−(λ−μ)t.

The proof is completed.

Remark 1 From the conditions of Theorem 1, one can
know that the diffusion coefficient, the the Dirichlet boundary
conditions, the delay kernel functions and system parameters
have key effect on the stability of system (1). This theorem
also shows that the diffusion phenomenon can conduce to
stabilization of neural system.

Remark 2 In order to obtain more precise estimate of the
exponential convergence rate of system (1) (or system (4)), it
is necessary to solve the following optimization problem

(OP)

{
maxλ,
s.t. (C1)holds.

When Dir = 0, D̄jr = 0 or Dir 
 lr, D̄jr 
 lr (r =
1, 2, · · · , l), that is, the diffusion effect can be ignored, we
have the following corollary.

Corollary 1: Under assumptions (H1), (H2) and (H3), if the
following conditions hold:

(C1′) there exist constant λ > 0 and vectors ξ =
(ξ1, ξ2, · · · , ξn)T > 0, η = (η1, η2, · · · , ηm)T > 0 such
that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ− ai)ξi +
m∑
j=1

[
|aij |+ (|αij |+ |α̃ij |)

× ∫ +∞
0

eλsNij(s)ds
]
Gjηj < 0, i ∈ I

(λ− bj)ηj +
n∑

i=1

[
|bji|+ (|βji|+ |β̃ji|)

× ∫ +∞
0

eλsKji(s)ds
]
Fiξi < 0, j ∈ J ;

(C2) μ = sup
k∈N

{
lnμk

tk−tk−1

}
< λ, where μk =

max
1≤i≤n,1≤j≤m

{1, γik, γ̄jk}, k ∈ N ;

then system (1) has exactly one globally exponentially stable
equilibrium point, and its exponential convergence rate equals
λ− μ.

Remark 3 Note that Lemma 2 transforms the fuzzy AND
(
∧

) and the fuzzy OR (
∨

) operation into the SUM operation
(
∑

). So above results can be applied to the following classical
impulsive BAM neural networks with distributed delays and
reaction-diffusion terms

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui(t,x)
∂t =

l∑
r=1

∂
∂xr

(Dir
∂ui(t,x)

∂xr
)− aiui(t, x)

+
m∑
j=1

aijgj(vj(t, x))

+
m∑
j=1

αij

∫ t

−∞Nij(t− s)gj(vj(s, x))ds

+Ii, t ≥ 0, t �= tk, i ∈ I ,
ui(t

+, x) = ui(t
−, x) + Pik(ui(t

−, x)),
t = tk, k ∈ N, i ∈ I ,

∂vj(t,x)
∂t =

l∑
r=1

∂
∂xr

(D̃jr
∂vj(t,x)

∂xr
)− bjvj(t, x)

+
n∑

i=1

bjifi(ui(t, x))

+
n∑

i=1

βji
∫ t

−∞Kji(t− s)fi(ui(s, x))ds

+Jj , t ≥ 0, t �= tk, j ∈ J ,
vj(t

+, x) = vj(t
−, x) +Qik(vj(t

−, x)),
t = tk, k ∈ N, j ∈ J

(43)
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and its corresponding continuous system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui(t,x)
∂t =

l∑
r=1

∂
∂xr

(Dir
∂ui(t,x)

∂xr
)− aiui(t, x)

+
m∑
j=1

aijgj(vj(t, x))

+
m∑
j=1

αij

∫ t

∞Nij(t− s)gj(vj(s, x))ds

+Ii, t ≥ 0, i ∈ I ,

∂vj(t,x)
∂t =

l∑
r=1

∂
∂xr

(D̃jr
∂vj(t,x)

∂xr
)− bjvj(t, x)

+
n∑

i=1

bjifi(ui(t, x))

+
n∑

i=1

βji
∫ t

−∞Kji(t− s)fi(ui(s, x))ds

+Jj , t ≥ 0, j ∈ J .

(44)

For system (43) and system (44), it is easy to obtain the
following results.

Theorem 2: Under assumptions (H1) and (H2), if the fol-
lowing conditions hold:

(C̄1) there exist vectors ξ = (ξ1, ξ2, · · · , ξn)T > 0, η =
(η1, η2, · · · , ηm)T > 0 and positive number λ > 0 such
that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
λ− ai −

l∑
r=1

Dir

l2r

)
ξi +

m∑
j=1

[
|aij |+ |αij |

× ∫ +∞
0

eλsNij(s)ds
]
Gjηj < 0, i ∈ I(

λ− bj −
l∑

r=1

D̄jr

l2r

)
ηj +

n∑
i=1

[
|bji|+ |βji|

× ∫ +∞
0

eλsKji(s)ds
]
Fiξi < 0, j ∈ J ;

(C2) μ = sup
k∈N

{
lnμk

tk−tk−1

}
< λ, where μk =

max
1≤i≤n,1≤j≤m

{1, γik, γ̄jk}, k ∈ N ;

then system (43) has exactly one globally exponentially stable
equilibrium point, and its exponential convergence rate equals
λ− μ.

Corollary 2: Under assumption (H1) and (H2) , system (44)
has exactly one globally exponentially stable equilibrium point
if condition C̄1 holds.
Remark 4 Although those models in [6], [8], [12], [13], [20]
are different from system (44) because of the difference of
diffusion terms and boundary conditions, but all criteria in
[6], [8], [12], [13], [20] are independent of diffusion effect.
Comparing with some corresponding criteria in [6], [8], [12],
[13], [20], Corollary 2 is less conservative.

IV. AN ILLUSTRATIVE EXAMPLE

In order to illustrate the feasibility of our above-established
criteria in the preceding sections, we provide a concrete ex-
ample. Although the selection of the coefficients and functions
in the example is somewhat artificial, the possible application
of our theoretical theory is clearly expressed.

Consider the following impulsive BAM fuzzy neural net-
works with distributed delays and reaction-diffusion terms:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui(t,x)
∂t =

3∑
r=1

∂
∂xr

(Dir
∂ui(t,x)

∂xr
)− aiui(t, x)

+
2∑

j=1

aijgj(vj(t, x)) +
2∑

j=1

ãijwj + Ii

+
2∧

j=1

αij

∫ t

−∞Nij(t− s)gj(vj(s, x))ds

+
2∨

j=1

α̃ij

∫ t

−∞Nij(t− s)gj(vj(s, x))ds

+
2∧

j=1

Tijwj +
2∨

j=1

Hijwj , t ≥ 0, t �= tk,

ui(t, x) = ui(t
−, x) + (−1 + e sin tk)ui(t

−, x),
t = tk, t0 = 0, tk − tk−1 = 10, k ∈ N,

∂vj(t,x)
∂t =

3∑
r=1

∂
∂xr

(D̃jr
∂vj(t,x)

∂xr
)− bjvj(t, x)

+
2∑

i=1

bjifi(ui(t, x)) +
2∑

i=1

b̃jiw̃i + Jj

+
2∧

i=1

βji
∫ t

−∞Kji(t− s)fi(ui(s, x))ds

+
2∨

i=1

β̃ji
∫ t

−∞Kji(t− s)fi(ui(s, x))ds

+
2∧

i=1

T̃jiw̃i +
2∨

i=1

H̃jiw̃i, t ≥ 0, t �= tk

vj(t, x) = vj(t
−, x) + (−1 + e cos tk)vj(t

−, x),
t = tk, t0 = 0, tk − tk−1 = 10, k ∈ N

(45)
for i = 1, 2, j = 1, 2, where Ω = {(x1, x2, x3)T | |xr| <
1, r = 1, 2, 3}, and

D11 = 0.01, D12 = 0.03, D13 = 0.01, D21 =
0.01, D22 = 0.02, D23 = 0.02,
a1 = 2.95, a2 = 2.95, a11 = 1.5, a12 =
−0.5, a21 = −0.5, a22 = 0.75,
ã11 = 0.45, ã12 = −0.45, ã21 = −0.36, ã22 =
0.36, α11 = 0.25, α12 = −0.25,
α21 = −0.125, α22 = 0.75, α̃11 = 0.25, α̃12 =
0.25, α̃21 = 0.375, α̃22 = 0.5,
T11 = 0.5, T12 = 0.5, T21 = 0.5, T22 =
0.5, H11 = 0.25, H12 = 0.25,
H21 = 0.25, H22 = 0.25, I1 = −0.75, I2 =
−0.75, w1 = 1, w2 = 1,
D̄11 = 0.01, D̄12 = 0.03, D̄13 = 0.01, D̄21 =
0.01, D̄22 = 0.02, D̄13 = 0.02,
b1 = 2.95, b2 = 2.95, b11 = 0.75, b12 =
−0.5, b21 = 1.25, b22 = 0.55,
b̃11 = −0.45, b̃12 = −0.35, b̃21 = −0.35, b̃22 =
0.25, β11 = 0.125, β12 = 0.25,
β21 = −0.45, β22 = 0.225, β̃11 = 0.125, β̃12 =
−0.25, β̃21 = 0.3, β̃22 = 0.225,
T̃11 = 0.25, T̃12 = 0.25, T̃21 = 0.25, T̃22 =
0.25, H̃11 = 0.5, H̃12 = 0.5,
H̃21 = 0.5, H̃22 = 0.5, J1 = 0.05, J2 =
−0.65, w̃1 = 1, w̃2 = 1,
Nij(s) = e−s, Kji(s) = 2e−2s;
f1(u) = f2(u) = tanh(u), g1(v) = g2(v) =
|v+1|−|v−1|

2 .
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It is easy to verify that assumptions (H1) and (H2) are satisfied,
and it is easy to calculate that

F = G =

(
1

1

)
, Γk = Γ̄k =

(
e

e

)
, μk =

max{1, e} = e, μ = sup
k∈N

ln e
tk−tk−1

= 0.1.

Solving the following optimization problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxλ,

(λ− a1 −
3∑

r=1

D1r

l2r
)ξ1 +

2∑
j=1

[
|a1j |+ (|α1j |+ |α̃1j |)

× ∫ +∞
0

eλsNij(s)ds
]
Gjηj < 0,

(λ− a2 −
3∑

r=1

D2r

l2r
)ξ2 +

2∑
j=1

[
|a2j |+ (|α2j |+ |α̃2j |)

× ∫ +∞
0

eλsNij(s)ds
]
Gjηj < 0,

(λ− b1 −
3∑

r=1

D̄1r

l2r
)η1 +

2∑
i=1

[
|b1i|+ (|β1i|+ |β̃1i|)

× ∫ +∞
0

eλsKji(s)ds
]
Fiξi < 0,

(λ− b2 −
3∑

r=1

D̄2r

l2r
)η2 +

2∑
i=1

[
|b2i|+ (|β2i|+ |β̃2i|)

× ∫ +∞
0

eλsKji(s)ds
]
Fiξi < 0,

λ > 0, ξ = (ξ1, ξ2)
T > 0, η = (η1, η2)

T > 0,

we obtain that ξ = (1709700, 1232282)T > 0, η =
(1130721, 1787826)T > 0, λ ≈ 0.164678 > 0.1 = μ.
From Theorem 1, the equilibrium point of system (45) is
globally exponentially stable, and its exponential convergence
rate λ− μ ≈ 0.064678.

V. CONCLUSIONS

A class of impulsive BAM fuzzy cellular neural networks
with distributed delays and reaction-diffusion terms has been
formulated and investigated. The global exponential stability
criteria for impulsive BAM fuzzy cellular neural networks with
distributed delays and reaction-diffusion terms have been de-
rived. In particular, the more precise estimate of the exponen-
tial convergence rate is also provided, which depends on the
system parameters, boundary conditions, delays and impulses.
An illustrate example is given to show the effectiveness of
obtained results. In addition, the sufficient conditions what
we obtained are easily verified. This has practical benefits,
since easily verifiable conditions for the global exponential
stability are important in the design and applications of neural
networks.

REFERENCES

[1] L. O. Chua, “Passivity and Complexity”, IEEE Trans. Circ. Syst.-I:
Fundamental Theory and Applications 46 (1999) 71-82.

[2] M. Itoh, L. O. Chua, “Complexity of Reaction-diffusion CNN”, Int. J.
Bifurc. Chaos 16 (2006) 2499-2527.

[3] L. Wang, D. Xu, “Global exponential stability of Hopfield reaction-
diffusion neural networks with variable delays”, Sci. China Ser. F 46
(2003) 466-474.

[4] J. Liang, J. Cao, “Global exponential stability of reaction-diffusion
recurrent neural networks with time-varying delays”, Phys. Lett. A 314
(2003) 434-442.

[5] A. Chen, L. Huang, J. Cao, “Exponential stability of delayed bidirectional
associative memory neural networks with reaction diffusion terms”, Int.
J. Syst. Sci. 38 (2007) 421-432.

[6] X. Lou, B. Cui, “New criteria on global exponential stability of BAM
neural networks with distributed delays and reaction-diffusion terms”, Int.
J. Neural Syst. 17 (2007) 43-52.

[7] X. Lou, B. Cui, “Asymptotic synchronization of a class of neural networks
with reaction-diffusion terms and time-varying delays”, Computers &
Mathematics with Applications 52 (2006) 897-904.

[8] B. Cui, X. Lou, “Global asymptotic stability of BAM neural networks
with distributed delays and reaction-diffusion terms”, Chaos, Solitons &
Fractals 27 (2006) 1347-1354.

[9] H. Zhao, G. Wang, “Existence of periodic oscillatory solution of reaction-
diffusion neural networks with delays”, Phys. Lett. A 343 (2005) 372-383.

[10] Q. Song, Z. Wang, “An analysis on existence and global exponential
stability of periodic solutions for BAM neural networks with time-varying
delays”, Nonlinear Analysis: Real World Applications 8 (2007) 1224-
1234.

[11] Q. Song, J. Cao, “Global exponential stability and existence of periodic
solutions in BAM networks with delays and reaction-diffusion terms”,
Chaos, Solitons & Fractals 23 (2005) 421-430.

[12] Q. Song, Z. Zhao, Y. Li, “Global exponential stability of BAM neural
networks with distributed delays and reaction-diffusion terms”, Phys. Lett.
A 335 (2005) 213-225.

[13] Q. Song, J. Cao, “Dynamics of bidirectional associative memory net-
works with distributed delays and reaction-diffusion terms”, Nonlinear
Anal.: Real World Applications 8 (2007) 345-361.

[14] Q. Song, J. Cao, “Exponential stability for impulsive BAM neural net-
works with time-varying delays and reaction-diffusion terms”, Advances
in Difference Equations 2007, art. no. 781608.

[15] Q. Song, Z. Wang, “Dynamical behaviors of fuzzy reaction-diffusion
periodic cellular neural networks with variable coefficients and delays”,
Appl. Math. Model. 33 (2009) 3533-3545.

[16] Q. Zhou, J. Sun, G. Chen, “Global exponential stability and periodic
oscillations of reaction-diffusion BAM neural networks with periodic
coefficients and general delays”, Int. J. Bifurc. Chaos 17 (2007) 129-142.

[17] J. G. Lu, “Global exponential stability and periodicity of reaction-
diffusion delayed recurrent neural networks with Dirichlet boundary
conditions”, Chaos, Solitons & Fractals 35 (2008) 116-125.

[18] J. Wang, J. G. Lu, “Global exponential stability of fuzzy cellular neural
networks with delays and reaction-diffusion terms”, Chaos, Solitons &
Fractals 38 (2008) 878-885.

[19] J. G. Lu, L. J. Lu, “Global exponential stability and periodicity of
reaction-diffusion recurrent neural networks with distributed delays and
Dirichlet boundary conditions”, Chaos, Solitons & Fractals 39 (2009)
1538-1549.

[20] K. Li, Q. Song, “Stability analysis of BAM fuzzy neural networks with
distributed delays and reaction-diffusion terms”, Dyn. Contin. Disc. Impul.
Syst.-A: Math. Anal. 16 (2009) 375-396.

[21] K. Li, “Stability analysis of impulsive fuzzy cellular neural networks
with time-varying delays and reaction-diffusion terms”, Far East J.
Dynamical Systems 9 (2007) 325-344.

[22] K. Li, Q. Song, “Exponential stability of impulsive Cohen-Grossberg
neural networks with time-varying delays and reaction-diffusion terms”,
Neurocomputing 72 (2008) 231-240.

[23] Z. Li, K. Li, “Stability analysis of impulsive Cohen-Grossberg neural
networks with distributed delays and reaction-diffusion terms”, Appl.
Math. Model. 33 (2009) 1337-1348.

[24] K. Li, “Global exponential stability of impulsive fuzzy cellular neural
networks with delays and diffusion”, Int. J. Bifurc. Chaos 19 (2009) 245-
261.

[25] J. Qiu, “Exponential stability of impulsive neural networks with time-
varying delays and reaction-diffusion terms”, Neurocomputing 70 (2007)
1102-1108.

[26] T. Yang, L. Yang, “The global stability of fuzzy celluar neural networks”,
IEEE Trans. Cric. Syst. I 43 (1996) 880-883.

[27] D. Xu, Z. Yang, “Impulsive delay differential inequality and stability of
neural networks”, J. Math. Anal. Appl. 305 (2005) 107-120.

[28] X. Wang, D. Xu, “Global exponential stability of impulsive fuzzy
cellular neural networks with mixed delays and reaction-diffusion terms”,
Chaos, Solitons & Fractals 42 (2009) 2713-2721.

[29] B. Kosko, “Adaptive bi-directional associative memories”, Appl Opt. 26
(1987) 4947-4960.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

1023

Xinhua Zhang received the B.S. degree in Math-
ematics in 1987 from Southwest normal university,
Chongqing, China. From July, 1987 to March, 2004,
he was with the department of mathematics, Zigong
Teacher’s College, and obtained associate professor
in 2001. Since March, 2004, he has been working
in Sichuan University of Science & Engineering,
Sichuan, China. He is currently a associate Professor
at Sichuan University of Science & Engineering.
His current research interests include differential
equation, neural network and stability theory.

Kelin Li received the B.S. degree in Mathematics
in 1984 from Sichuan normal university, Sichuan,
China. From July, 1984 to March, 2004, he worked
in Zigong Teacher’s College, and obtained associate
professor in 1997. Since March, 2004, he has been
working in Sichuan University of Science & Engi-
neering, Sichuan, China. He is currently a Professor
at Sichuan University of Science & Engineering. He
is the author or coauthor of more than 15 journal
papers and one edited book. His current research
interests include nonlinear system, neural network,

stability theory and applied mathematics.


